

GaAs MMIC VSAT Power Amplifier, 2.0 W 14.0 - 14.5 GHz

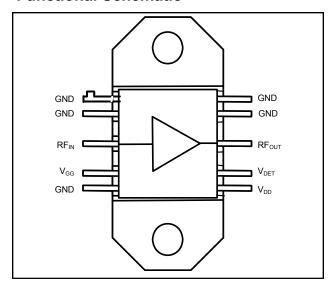
Rev. V8

Features

- High Linear Gain: 22 dB Typical
- High Saturated Output Power: +33 dBm Typical
- High Power Added Efficiency: 22% Typical
- High P1dB: 32 dBm Typ.
- 50 Ω Input/Output Broadband Matched
- Integrated Output Power Detector
- Lead-Free Ceramic Bolt Down Package
- RoHS* Compliant and 260°C Reflow Compatible

Description

AM42-0007 is a The three-stage linear power amplifier in a lead-free, ceramic bolt down style hermetic package. The AM42-0007 employs a fully matched chip with internally decoupled gate and drain bias networks and an output power detector. The AM42-0007 is designed to be operated from a constant voltage drain supply.


The AM42-0007 is designed for use as an output stage or a driver, in applications for VSAT systems. This design is fully monolithic and requires a minimum of external components.

The AM42-0007 is fabricated using a mature 0.5 micron GaAs MESFET process. The process features full passivation for increased performance and reliability. This product is 100% RF tested to ensure compliance to performance specifications.

Ordering Information

Part Number	Package	
AM42-0007	Ceramic Bolt Down	

Functional Schematic

Pin Configuration

Pin No.	Pin Name	Description	
1	GND	DC and RF Ground	
2	GND	DC and RF Ground	
3	RF _{IN}	RF Input	
4	V_{GG}	Gate Supply	
5	GND	DC and RF Ground	
6	V_{DD}	Voltage Drain Supply	
7	V_{DET}	Output Power Detector	
8	RF _{OUT}	RF Output	
9	GND	DC and RF Ground	
10	GND	DC and RF Ground	

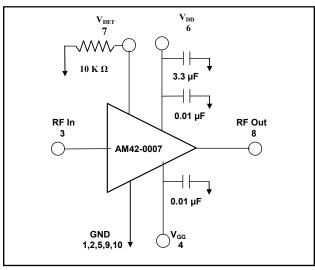
^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

GaAs MMIC VSAT Power Amplifier, 2.0 W 14.0 - 14.5 GHz

Rev. V8

Electrical Specifications: $T_A = +25^{\circ}C$, $V_{DD} = +9$ V, $V_{GG} = -5.0$ V, $Z_0 = 50$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Linear Gain	P _{IN} ≤ 0 dBm	dB	19	22	_
Input VSWR	P _{IN} ≤ 0 dBm	Ratio	_	2.5:1	2.7:1
Output VSWR	P _{IN} ≤ 0 dBm	Ratio	_	2.7:1	_
Saturated Output Power	P _{IN} = +14 dBm	dBm	_	33	_
Output Power at P1dB	_	dBm	31	32	_
Output IP3	Two +24 dB, output tones @ 1 MHz spacing	dBm	_	41	_
Power Added Efficiency	P _{IN} = +14 dBm	%	_	22	_
Bias Current	I _{DD} (No RF) I _{GG} (No RF)	mA mA	_	850 18	 25
Thermal Resistance	25°C Heat Sink	°C/W	_	9.5	_
Detector Output Voltage	R_L = 10 K Ω , P_{OUT} = +31dBm	V	_	+3.5	_


Absolute Maximum Ratings 1,2,3

Parameter	Absolute Maximum		
V_{DD}	12 Volts		
V_{GG}	-10 Volts		
Power Dissipation	13.2 W		
RF Input Power	+23 dBm		
Channel Temperature	150°C		
Storage Temperature	-65°C to +150°C		
I _{DS}	2100 mA		

- 1. Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM Technology does not recommend sustained operation near these survivability limits.
- 3. Case Temperature $(T_C) = +25^{\circ}C$.

Commitment to produce in volume is not guaranteed.

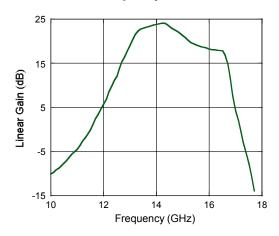
Typical Bias Configuration^{4,5,6,7,8}

- Nominal bias is obtained by first connecting –5 volts to pin 4 (V_{GG}), followed by connection +9 volts to pin 6 (V_{DD}). Note sequence.
- RF ground and thermal interface is the flange (case bottom).Adequate heat sinking is required.
- 6. No DC bias voltage appears at the RF ports.

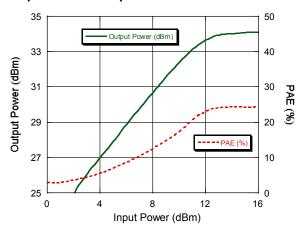
North America Tel: 800.366.2266

- For optimum IP3 performance, the V_{DD} bypass capacitors should be placed within 0.5 inches of pin 6.
- Resistor and capacitors surrounding the amplifier are suggestions and not included as part of the AM42-0007.

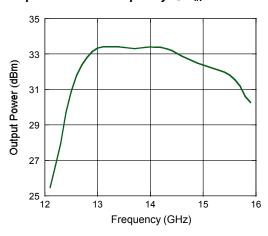
Europe Tel: +353.21.244.6400

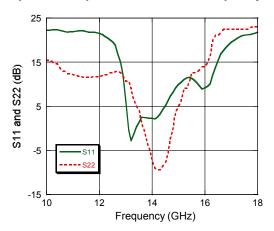


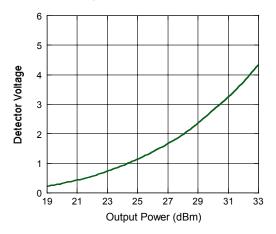
GaAs MMIC VSAT Power Amplifier, 2.0 W 14.0 - 14.5 GHz

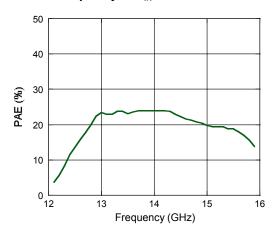

Rev. V8

Typical Performance Curves @ +25°C


Linear Gain vs. Frequency


Output Power vs. Input Power @ 14.25 GHz


Output Power vs. Frequency @ $P_{IN} = +14 \text{ dBm}$


Input and Output Return Loss vs. Frequency

Detector Voltage vs. Output Power @ 14.25 GHz

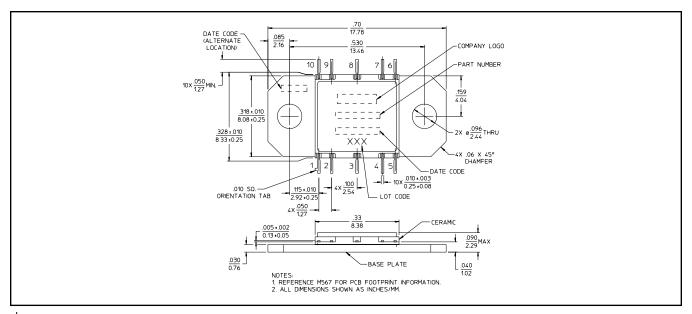
PAE vs. Frequency @ $P_{IN} = +14 dBm$

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are
typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.

Commitment to produce in volume is not guaranteed.


North America Tel: 800.366.2266
 India Tel: +91.80.43537383
 Visit www.macomtech.com for additional data sheets and product information.

GaAs MMIC VSAT Power Amplifier, 2.0 W 14.0 - 14.5 GHz

Rev. V8

Lead-Free CR-15[†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Europe Tel: +353.21.244.6400

North America Tel: 800.366.2266