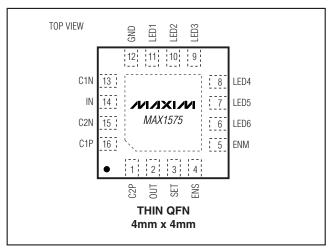


White LED 1x/1.5x Charge Pump for Main and Sub-Displays

General Description

The MAX1575 charge pump drives up to four white LEDs in the main display and up to two white LEDs in the sub-display with regulated constant current for uniform intensity. By utilizing adaptive 1x/1.5x chargepump modes and very-low-dropout current regulators, it achieves high efficiency over the full 1-cell lithiumbattery input voltage range. A 1MHz fixed-frequency switching allows for tiny external components, and the regulation scheme is optimized to ensure low EMI and low input ripple.

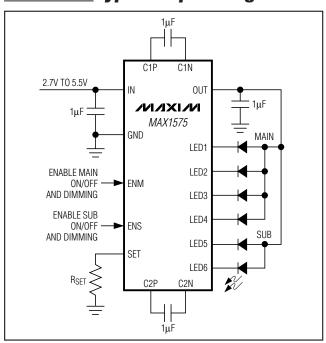

The MAX1575 uses an external resistor to set the fullscale 100% LED current. Two enable inputs, ENM and ENS, are used for simple on/off controls for the main and sub-displays, respectively. By repeatedly pulsing either enable input, the LEDs can be dimmed in multiple steps down to 5%. Once the desired brightness is set, the MAX1575 maintains that brightness setting as long as the enable input is kept high. If an enable input is kept low for more than 2ms, the LED current for the respective display is set to zero. If both enable inputs are kept low for more than 2ms, the MAX1575 enters shutdown.

The MAX1575 is available in a 16-pin 4mm x 4mm thin QFN package (0.8mm max height).

Applications

Cell Phones with Main and Sub-Displays PDAs/Smart Phones with Up to Six White LEDs

Pin Configuration


Features

- ♦ Powers Main and Sub-Display LEDs
- ♦ 85% Average Efficiency (PLED / PBATT) Over Li+ **Battery Discharge**
- ♦ 2% LED Current Matching
- ◆ Up to 30mA/LED Drive Capability
- ♦ Adaptive 1x/1.5x Mode Switchover
- ♦ Low Input Ripple and EMI
- ♦ Individual 5% to 100% Dimming Through Single-Wire Serial Pulse Interface
- ♦ Low 0.1µA Shutdown Current
- ◆ 2.7V to 5.5V Supply Voltage Range
- **♦ Soft-Start Limits Inrush Current**
- **♦ Output-Overvoltage Protection**
- ♦ Thermal-Shutdown Protection
- 16-Pin Thin QFN 4mm x 4mm Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1575ETE	-40°C to +85°C	16 Thin QFN 4mm x 4mm

Typical Operating Circuit

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

IN, OUT, ENM, ENS to GND	0.3V to +6.0V
SET, LED_, C1N, C2N to GND	0.3V to $(V_{IN} + 0.3V)$
C1P, C2P to GND	0.3V to
the greater of	$f(V_{OUT} + 1V)$ or $(V_{IN} + 1V)$
OUT Short Circuit to GND	

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
16-Pin Thin QFN 4mm x 4mm	
(derate 16.9 mW/°C above +70°C)	1349mW
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

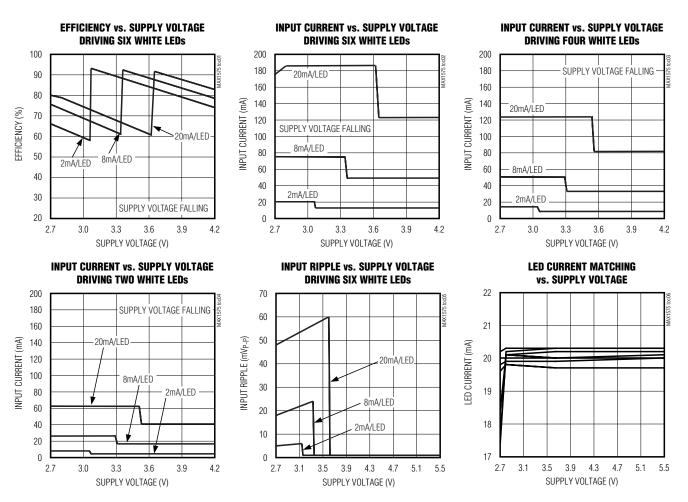
 $(V_{IN}=3.6V,\,V_{GND}=0V,\,ENM=ENS=IN,\,R_{SET}=6.81k\Omega,\,C_{IN}=C1=C2=C_{OUT}=1\mu F,\,T_{A}=-40^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ}C.$) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
IN Operating Voltage		2.7		5.5	V	
Undervoltage-Lockout Threshold	V _{IN} falling	2.25	2.45	2.60	V	
Undervoltage-Lockout Hysteresis			35		mV	
OUT Overvoltage-Protection Threshold	V _{OUT} rising		5		V	
No Lood Cumply Current	1MHz switching in 1.5x mode		2		νο Λ	
No-Load Supply Current	No switching in 1x mode, 10% setting		0.5		mA	
Shutdown Supply Current	ENM = ENS = OUT = GND		0.1	2	μΑ	
Soft-Start Time			2		ms	
SET Bias Voltage			0.6		V	
SET Leakage in Shutdown	ENM = ENS = GND		0.01	1	μΑ	
CET Current Dence	$T_A = 0$ °C to +85°C	10		130		
SET Current Range	$T_A = -40$ °C to $+85$ °C	30		130	μΑ	
SET-to-LED_ Current Ratio (ILED_ / ISET)	100% setting		234		A/A	
LED Comment Assumption	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$	-8	±2	+8	%	
LED Current Accuracy	$T_A = -40$ °C to $+85$ °C	-9.5		+9.5		
LED to LED Comment Metabling (Note 2)	$T_A = +25$ °C to $+85$ °C	-5	±1.5	+5	%	
LED-to-LED Current Matching (Note 2)	$T_A = -40$ °C to $+85$ °C	-6.5		+6.5	%	
Maximum LED_ Sink Current	$R_{SET} = 4.53k\Omega$	27.4	30.0		mA	
LED_ Dropout Voltage	(Note 3)		60	100	mV	
LED_ 1x-to-1.5x Transition Threshold	V _{LED} falling	90	100	110	mV	
LED Leakage in Shutdown	ENM = ENS = GND, V _{LED} = 5.5V		0.01	1	μΑ	
Maximum OUT Current	V _{IN} ≥ 3.4V, V _{OUT} = 3.9V, 100% setting	120			mA	
Ones Leen OLIT Besistance	1x mode (V _{IN} - V _{OUT}) / I _{OUT}		1	2.5	Ω	
Open-Loop OUT Resistance	1.5x mode (1.5 x V _{IN} - V _{OUT}) / I _{OUT}		4.2	10	22	
Switching Frequency			1		MHz	
OUT Pulldown Resistance	ENM = ENS = GND		5		kΩ	
ENM, ENS High Voltage	V _{IN} = 2.7V to 5.5V	1.6			V	
ENM, ENS Low Voltage	V _{IN} = 2.7V to 5.5V			0.4	V	
ENM, ENS Input Current	V _{EN} _ = 0V or 5.5V		0.01	1	μΑ	
Shutdown Delay	From falling edge of ENM and ENS	1.0	2	3.3	ms	

ELECTRICAL CHARACTERISTICS (continued)

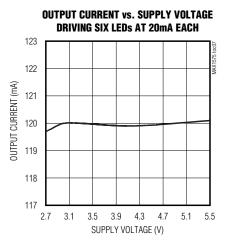
 $(V_{IN}=3.6V, V_{GND}=0V, ENM=ENS=IN, R_{SET}=6.81k\Omega, C_{IN}=C1=C2=C_{OUT}=1\mu F, T_A=-40^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.) (Note 1)

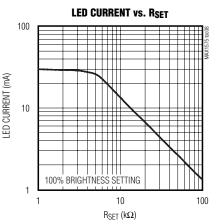
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{LO} (ENM, ENS) (Figure 1)		0.5		500	μs
t _{HI} (ENM, ENS) (Figure 1)		0.5			μs
Initial tHI (ENM, ENS) (Figure 1)	Only required for first EN_ pulse	50			μs
Thermal-Shutdown Threshold			+160		°C
Thermal-Shutdown Hysteresis			20		°C

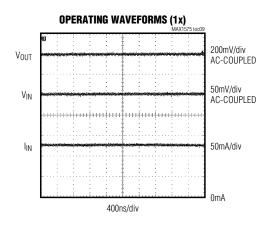

Note 1: Specifications to -40°C are guaranteed by design and not production tested.

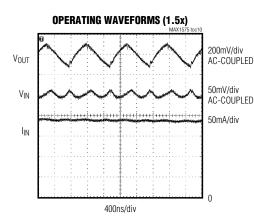
Note 2: LED current matching is defined as: (I_{LED} - I_{AVG}) / I_{AVG}

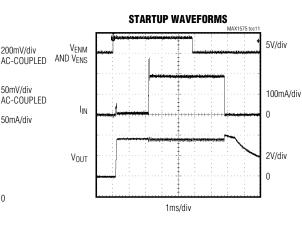
Note 3: Dropout voltage is defined as the LED_-to-GND voltage at which current into the LED drops 10% from the LED current at VLED_ = 0.2V.

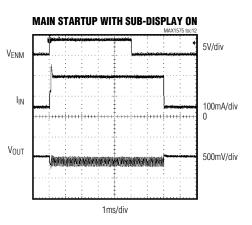

Typical Operating Characteristics

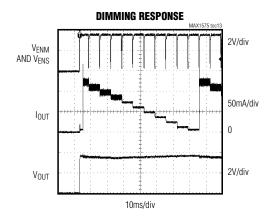

 $(V_{IN} = 3.6V, ENM = ENS = IN, circuit of Figure 2, T_A = +25$ °C, unless otherwise noted.)

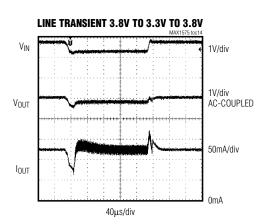



Typical Operating Characteristics (continued)


 $(V_{IN} = 3.6V, ENM = ENS = IN, circuit of Figure 2, T_A = +25$ °C, unless otherwise noted.)







Pin Description

PIN	NAME	FUNCTION						
1	C2P	Transfer-Capacitor 2 Positive Connection. Connect a 1µF ceramic capacitor from C2P to C2N.						
2	OUT	Output. Connect a $1\mu F$ ceramic capacitor from OUT to GND. Connect OUT to the anodes of all the LEDs. OUT is internally pulled down with $5k\Omega$ during shutdown.						
3	SET	Current-Set Input. Connect a resistor (R_{SET}) from SET to GND to set the maximum LED current. $I_{LED(MAX)} = 228 \times 0.6 \text{V} / R_{SET}$. SET is internally biased to 0.6 V. SET is high impedance during shutdown.						
4	ENS	Enable and Dimming Control for LED5 and LED6 (Sub-Display). The first time ENS goes high (50µs min), LED5 and LED6 turn on at 100% brightness. Pulsing ENS low dims the LEDs in multiple steps. If ENS is held low for more than 2ms (typ), LED5 and LED6 turn off. When ENM and ENS are both held low for more than 2ms (typ), the IC goes into shutdown mode. See Figure 1.						
5	ENM	Enable and Dimming Control for LED1–LED4 (Main Display). The first time ENM goes high (50µs min), LED1–LED4 turn on at 100% brightness. Pulsing ENM low dims the LEDs in multiple steps. If ENM is held low for more than 2ms (typ), LED1–LED4 turn off. When ENM and ENS are both held low for more than 2ms (typ), the IC goes into shutdown mode. See Figure 1.						
6	LED6	Sub-Display LEDs Cathode Connection. Current flowing into LED_ is described in the ENS and SET						
7	LED5	descriptions above. The charge pump regulates the lowest-enabled LED_ voltage to 180mV. Connect LED_ to IN if the LED is not populated. LED_ is high impedance during shutdown.						
8	LED4							
9	LED3	Main-Display LEDs Cathode Connection. Current flowing into LED_ is described in the ENM and SET descriptions above. The charge pump regulates the lowest-enabled LED_ voltage to 180mV. Connect LED_						
10	LED2	to IN if the LED is not populated. LED_ is high impedance during shutdown.						
11	LED1							
12	GND	Ground. Connect GND as close as possible to system ground and to the ground of the input bypass capacitor.						
13	C1N	Transfer-Capacitor 1 Negative Connection. Connect a 1µF ceramic capacitor from C1P to C1N.						
14	IN	Supply Voltage Input. Connect a 1µF ceramic capacitor from IN to GND. The input voltage range is 2.7V to 5.5V. IN is high impedance during shutdown.						
15	C2N	Transfer-Capacitor 2 Negative Connection. Connect a 1µF ceramic capacitor from C2P to C2N.						
16	C1P	Transfer-Capacitor 1 Positive Connection. Connect a 1µF ceramic capacitor from C1P to C1N.						
_	EP	Exposed Paddle. Connect the exposed paddle to GND.						

Detailed Description

The MAX1575 charge pump drives up to four white LEDs in the main display and up to two white LEDs in the sub-display with regulated constant current for uniform intensity. By utilizing adaptive 1x/1.5x charge-pump modes and very-low-dropout current regulators, it achieves high efficiency over the 1-cell lithium-battery input voltage range. 1MHz fixed-frequency switching allows for tiny external components and low input ripple.

1x to 1.5x Switchover

When V_{IN} is higher than V_{OUT} , the MAX1575 operates in 1x mode and V_{OUT} is pulled up to V_{IN} . The internal current regulators regulate the LED current. As V_{IN} drops, V_{LED} eventually falls below the switchover threshold of 100mV and the MAX1575 starts switching in 1.5x mode.

When the input voltage rises above V_{OUT} by about 50mV, the MAX1575 switches back to 1x mode.

Soft-Start

The MAX1575 includes soft-start circuitry to limit inrush current at turn-on. When starting up, the output capacitor is charged directly from the input with a ramped current source (with no charge-pump action) until the output voltage approaches the input voltage. Once this occurs, the charge pump determines if 1x or 1.5x mode is required. In the case of 1x mode, the soft-start is terminated and normal operation begins. During the soft-start time, the output current is set to 5% of the maximum set by RSET. In the case of 1.5x mode, soft-start operates until the lowest of LED1–LED6 reaches regulation. If an overload condition occurs, soft-start repeats every 2ms. If the output is shorted to ground (or <1.25V), the part reverts to soft-start and the ramped current source.

Setting the Output Current

The LED current at full (100%) brightness is set (up to 30mA) by a resistor, R_{SET}, as follows:

$$R_{SET} = \frac{0.6V \times 228}{I_{LED}}$$

ENM and ENS Dimming Controls

When the LEDs are enabled by driving ENM or ENS high, the LED current initially goes to I_{LED}.

Dimming for the main display is done by pulsing ENM low (500ns to 500µs pulse width). Dimming for the subdisplay is done by pulsing ENS low (500ns to 500µs pulse width). Each pulse reduces the LED current by 10%, so after one pulse the LED current is 0.9 x I_{LED}. The 10th pulse reduces the current by 5% so the LED current reduces from 0.1 x I_{LED} to 0.05 x I_{LED}. The 11th pulse sets the LED current back to I_{LED}. Figure 1 shows a timing diagram for EN_.

Because soft-start is longer than intitial t_{HI} , apply dimming pulses quickly upon startup (after initial t_{HI}) to avoid LED_ current transitioning through full brightness. If dimming control is not required, EN_ work as simple on/off controls. Drive ENM high to enable the main LEDs, or drive ENM low to turn off the main LEDs. Drive ENS high to enable the sub-LEDs, or drive ENS low to turn off the sub-LEDs. Drive both ENM and ENS low to put the IC in low-power shutdown mode.

Shutdown Mode

When both ENM and ENS are held low for 2ms or longer, the MAX1575 is shut down and put in a low-current mode. OUT is internally pulled to GND with $5k\Omega$ during shutdown.

Overvoltage Protection

If any LED fails as an open circuit, the output voltage is limited to approximately 5V by gating on/off the charge pump. In case any LED_ is floating or grounded, the MAX1575 operates in the same overvoltage-protection mode. To avoid overvoltage-protection mode when using fewer than six LEDs, connect any unused LED_ to IN.

Thermal Shutdown

The MAX1575 includes a thermal-limit circuit that shuts down the IC at approximately +160°C. The part turns on after the IC cools by approximately 20°C.

_Applications Information

Driving Fewer than Six LEDs

When driving fewer than six LEDs, connect any unused LED_ directly to IN (Figure 3). When connected in this manner, the corresponding LED driver is disabled.

Input Ripple

For LED drivers, input ripple is more important than output ripple. Input ripple depends on the source supply's impedance. Adding a lowpass filter to the input further reduces input ripple. Alternately, increasing C_{IN} to 2.2µF cuts input ripple in half with only a small increase in footprint. The 1x mode always has very low input ripple.

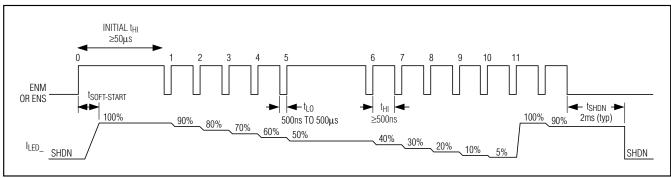


Figure 1. EN_ Timing Diagram

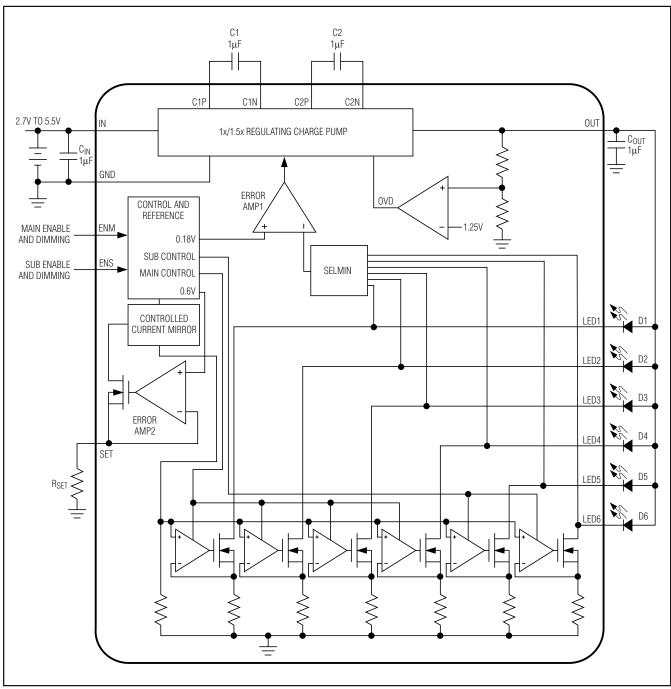


Figure 2. Functional Diagram and Typical Application Circuit

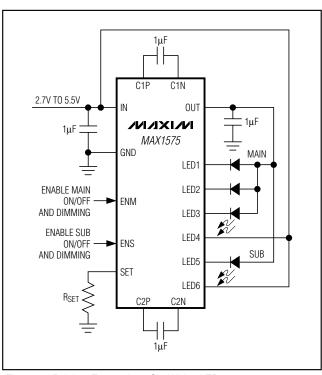


Figure 3. Driving Fewer than Six White LEDs

Component Selection

Use only ceramic capacitors with an X5R, X7R, or better dielectric. See Table 1 for a list of recommended parts.

PC Board Layout and Routing

The MAX1575 is a high-frequency switched-capacitor voltage regulator. For best circuit performance, use a solid ground plane and place C_{IN} , C_{OUT} , C1, and C2 as close to the MAX1575 as possible. Connect GND to the exposed paddle directly under the IC. Refer to the MAX1575 evaluation kit for an example.

Chip Information

TRANSISTOR COUNT: 5738

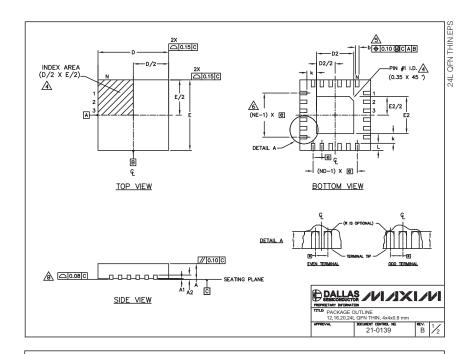

PROCESS: BICMOS

Table 1. Recommended Components

DESIGNATION	VALUE	MANUFACTURER	PART	DESCRIPTION
		Murata	GRM155R60J105K	1μF ±10%, 6.3V X5R ceramic capacitors (0402)
C _{IN} , C _{OUT} , C1, C2	1µF	1μF Taiyo Yuden JMK107BJ109		1μF ±10%, 6.3V X5R ceramic capacitors (0603)
		TDK	C1005X5R0J105M	1μF ±20%, 6.3V X5R ceramic capacitors (0402)
D1-D6		Nichia	NSCW215T	White LEDs
RSET	As required	Kamaya		1% resistor
NSEI	As required	Panasonic	_	1 /6 16818101

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

					CDMM	ON DI	MENS	SIDNS				
PKG	1	2L 4×4	1	1	16L 4×4		2	20L 4×4		24L 4×4		
REF.	MIN.	NDM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	M
Α	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.
A1	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.
A2	0.20 REF				0.20 REF			0.20 REF		0.20 REF		
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.
е		0.80 BS0		0.65 BSC.		0.50 BSC.		0.50 BSC.				
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.
N		12			16 20			24				
ND		3	4		4		5		6			
NE		3		4		5			6			
Jedec Vor.		WGGB	WGGC		WGGD-1		1	VGGD-2				

EXPUSED PAD VARIATIL						
PKG.	DS			E2		
CODES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
T1244-2	1.95	2.10	2.25	1.95	2.10	2.25
T1644-2	1.95	2.10	2.25	1.95	2.10	2.25
T2044-1	1.95	2.10	2.25	1.95	2.10	2.25
T2444-1	2.45	2.60	2.63	2.45	2.60	2.63
T2444-2	1.95	2.10	2.25	1.95	2.10	2.25

EVEREED DAD VARIATIENS

- DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. N IS THE TOTAL NUMBER OF TERMINALS.
- THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JEED 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
- ⚠ ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS
- DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR T2444-1.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600