EHA0-2510-6 Die

High Slew Rate Operational Amplifier Die

-65°C to +150°C

Absolute Maximum Ratings (TA = 25°C)

 VS
 Supply Voltage
 ± 20V

 VIN
 Differential Input Voltage
 ± 15V

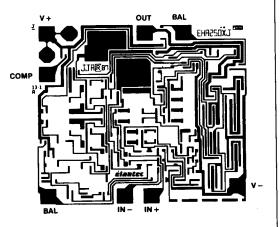
 IOUT
 Peak Output Current
 5 mA

 TJ
 Maximum Junction Temperature
 175°C

 TA
 Operating Temperature Range
 -55° to +125°C

Important Note:

TSR


Storage Temperature

For AC electrical characteristics, refer to the typical electrical table and performance curves in the package data sheet. These characteristics are guaranteed but not tested in die form. Unless otherwise noted, all tests are pulsed tests, therefore $T_J = T_C = T_A$.

Test Level

Test Procedure

100% production tested in wafer form. See remarks under Electrical Testing in the General Die section.

DIE SIZE: 66 x 61 MILS

DC Electrical Characteristics

 $V_S = \pm 15V, R_S = 50\Omega, R_L = 100 \text{ k}\Omega, V_{CM} = 0V, V_{OUT} = 0V, T_A = 25^{\circ}\text{C}$

Parameter	Description	Test Conditions	Min	Тур	Max	Test Level	Units
Vos	Offset Voltage			4	8	_1	mV
IB	Bias Current			100	200	I	пА
I _{OS}	Offset Current			25	25	I	nA
V _{CMR}	Common Mode Rate		± 10			I	v
CMRR	Common Mode Rejection Ratio (Note 2)	$\Delta V_{CM} = \pm 10V$	80	90		I	ďΒ
PSRR	Power Supply Rejection Ratio (Note 3)	$\Delta V_{S} = \pm 5V$	80	90		1	dВ
A _{VOL}	Large Signal Voltage Gain (Note 4)	$R_L = 2 k\Omega, V_{OUT} = \pm 10V$	15	25		1	V/mV
V _{OUT}	Output Voltage Swing	$R_L = 2 k\Omega$	± 10	±12		1	v
IOUT	Output Current	$V_{OUT} = \pm 10V$	±10	± 20		I	mA
ICC	Supply Current (Note 5)			4	6	I	mA

Note 1: Both input currents I_{B+} and I_{B-}, are tested individually.

Note 2: For CMRR+, $V_{CM} = 0V$ to +10V and for CMRR-, $V_{CM} = 0V$ to -10V.

Note 3: For PSRR+, V_{S+} , = +10V to +20V with V_{S-} = -15V.

For PSRR-, $V_{S-} = -10V$ to -20V with $V_{S+} = +15V$.

Note 4: For A_{VOL} +, $V_{OUT} = 0V$ to +10V and for A_{VOL} , $V_{OUT} = 0V$ to -10V.

Note 5: Both positive and negative supply current, I_{CC+} and I_{CC-}, are tested.