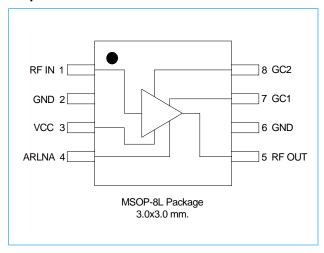


SiGe 900 MHz GSM Low-Noise Amplifier with Gain Control


Features

- 925-960 MHz operation for GSM applications
- Low power, single 2.8 volt supply
- Gain control feature with 0, 17, and 25 dB gain settings
- 40 dB of reverse isolation at all gain settings
- Standby Mode with less than 20 μA current consumption
- Compact MSOP-8L package
- High IIP3 and low noise meet demanding system requirements

Applications

GSM portable transceivers

Figure 1. IBM43RCLNA1115 Low Noise Amplifier

Description

The IBM43RCLNA1115 is a gain-controlled low-noise amplifier (LNA) implemented using IBM Microelectronics Silicon Germanium (SiGe) technology.

The LNA is designed for low power consumption and uses a 2.8 volt power supply. It is optimized for GSM applications that require amplifiers with very high reverse isolation such as direct conversion where the LNA is more susceptible to local oscillator leakage.

The IBM43RCLNA1115 is programmable for three levels of gain, and it has a very low power standby mode.

The inputs for gain control and standby mode are 3V CMOS compatible.

External capacitors in series with the input and output are required for DC blocking and as part of the impedance matching networks. A series inductor on the input and a shunt inductor on the output are also part of the matching

network. Proper selection of these components ensures optimized LNA performance in the desired band.

Specifications in this data sheet were obtained using the circuit in the IBM evaluation board for this product.

Ordering Information

To order samples of the LNA or an evaluation board, contact an IBM sales representative or distributor. Regional contact information is located on the IBM Microelectronics Division web site at:

www.ibm.com/chips/support/howtobuy.html

Part Number	Product
IBM43RCLNA1115	SiGe 900 MHz GSM Low- Noise Amplifier with Gain Control
IBM43RCLNA1115EVBA	900 MHz LNA Evaluation Board

Note: The low noise amplifier is susceptible to damage from electrostatic discharge (ESD). Observe normal ESD precautions at all times.

April 03, 2002 Page 1 of 6

0.01uF 47pF 68pF 0.01uF

0.01uF 47pF 68pF 0.01uF

6.8nH

RF IN 33pF 5.6nH 1

LNA 5 4.7pF PG2
PG1
STANDBY

Figure 2. SiGe 900 MHz GSM LNA Schematic

Technical Description

Table 1. Operating Conditions

Symbol	Parameter	Min.	Typical	Max	Units	Notes
V_{CC1} and V_{CC2}	Supply voltage	2.7	2.8	2.9	Vdc	
I _{CC}	I _{CC} Supply current		6	20	μA	standby mode
			8	10	mA	low gain mode
			17	22		mid gain mode
			12	15		high gain mode
I _{GC1}	Gain Control 1 Current		7	10	μA	
I_{GC2}	Gain Control 2 Current		8	10	μA	
T _{OPR}	Operating Temperature	-20	+25	+70	°C	
T _{STO}	Storage Temperature	-40	+25	+85		

Table 2. Control Functions¹

MODE	STANDBY (pin 4)	Programmable Gain 1 (pin 7)	Programmable Gain 2 (pin 8)
High	1	1	1
Mid	1	0	1
Low	1	0	0
Standby	0	0	0

Note: ¹Control lines PG1, PG2, and STANDBY require CMOS logic levels

Page 2 of 6 April 03, 2002

Table 3. AC Characteristics ($V_{CC} = 2.8 Vdc, T_A = 25$ °C)

Symbol Parameter		Rating			Heita	Natas
Symbol	Parameter	Minimum	Typical	Maximum	Units	Notes
F0	Frequency		925 to 960		MHz	
		24	25	28	dB	high gain mode
$\left S_{21}\right ^2$	Insertion power gain	15.5	17	20		mid gain mode
		-3	0	3		low gain mode
			+/-1.7		dB	high gain mode
$\left S_{21}\right ^2$ Variation	Over Supply/Temperature		+/-1.5		dB	mid gain mode
			+/-0.8		dB	low gain mode
1 ~ 12			+/-0.1		dB	high gain mode
$\left S_{21}\right ^2$ Variation	Over Frequency		+/-0.1		dB	mid gain mode
			+/-0.1		dB	low gain mode
_ 2	Over Process		+/-0.8		dB	high gain mode
$\left S_{21}\right ^2$ Variation			+/-0.8		dB	mid gain mode
			+/-0.8		dB	low gain mode
	Noise Figure		1.6	3.0	dB	high gain mode
NF			2.4	3.3		mid gain mode
_			3.8	5.0		low gain mode
$\left S_{12}\right ^2$	Reverse Isolation		-40	-35	dB	in all gain modes
			1.7:1	3:1		high gain mode
ISWR	Input SWR		2.1:1	3:1		mid gain mode
			2.3:1	3:1		low gain mode
			1.6:1	2:1		high gain mode
OSWR	Output SWR		1.2:1	2:1		mid gain mode
			1.3:1	2:1		low gain mode
		-20	-17.0			high gain mode
IIP3	Input Third Order Intercept	-9.5	-6.0		dBm	mid gain mode
		-9.5	-6.3			low gain mode
	Input 1 dB Compression Point	-30	-26.0			high gain mode
P1dB		-20	-16		dBm	mid gain mode
		-20	-16			low gain mode
	Stability		Unconditional			

April 03, 2002 Page 3 of 6

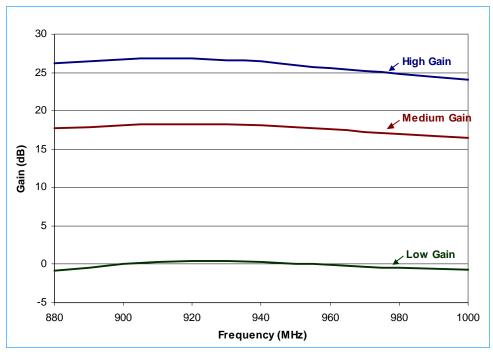
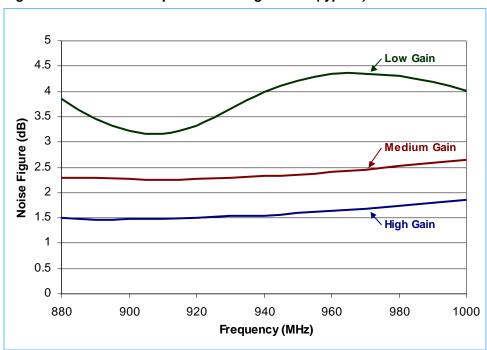



Figure 3. Low Noise Amplifier Gain Plot (typical)

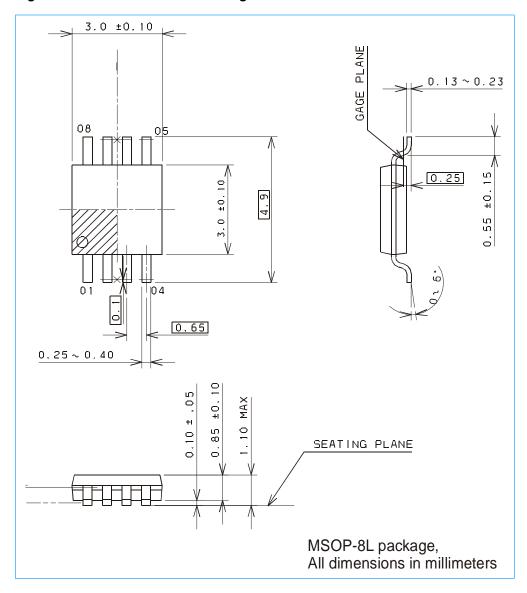

Page 4 of 6 April 03, 2002

Table 4. Pin Descriptions

Pin	Name	Description	Package Type
1	RF IN	RF input	
2	GND	Ground	RF IN 1
3	V _{CC}	DC supply	GND 2 7 GC1
4	STANDBY	Mode control (see Table 2)	VCC 3 6 GND
5	RF OUT	RF output	
6	GND	Ground	ARLNA 4 5 RF OUT
7	PG1	Mode control (see Table 2)	MSOP-8L Package
8	PG2	Mode control (see Table 2)	3.0x3.0 mm.

Figure 5. 900 MHz GSM LNA Package Dimensions

April 03, 2002 Page 5 of 6

SiGe 900 MHz GSM Low-Noise Amplifier with Gain Control

Document Revision Log

Rev.	Contents of Modification
July 19, 1999	Initial release (00)
November 21, 2001	Overall revision (01)
April 03, 2002	Removed preliminary from document for general release (02)

Note: This document contains information on products in the design, sampling and/or initial production phases of development. This information is subject to change without notice. Verify with your IBM field applications engineer that you have the latest version of this document before finalizing a design.

© Copyright International Business Machines Corporation 2002 All Rights Reserved

Printed in the United States of America April 2002

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.

IBM IBM Load

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division

1580 Route 52, Bldg. 504 Hopewell Junction, NY 12533-6351

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics Division home page can be found at http://www.chips.ibm.com

Ina1115_ds_040302.fm.02 April 03, 2002

Page 6 of 6 April 03, 2002