M HARRIS HMM-11820

GaAs MMIC Amplifier 6-18 GHz

PRODUCT DATA

Features

- Low DC Current Draw Provides High dB/mA Performance
- On-Chip Source Resistor Network for Easy **Bias Point Selection**
- Directly Cascadable Without Interstage Matching
- . DC Blocking of Both RF Input and Output
- Ti/Pt/Au Metailization and Large Gate Cross Section for Enhanced Reliability
- Dielectric Scratch/Short Circuit Protection Improves Durability
- Individual Die Serialization Provides the Ultimate in Traceability
- Custom Wafer Qualification Available to Meet **Source Control Drawings**

Description

The HMM-11820 is a cascadable, broadband gain block designed for applications where minimum DC power consumption is an important consideration. A completely integrated amplifier, the HMM-11820 includes DC blocking of the RF input and output and an on-chip source bias resistor network.

The distributed amplifier design (4x 200 µm FETs) offers ultra wide bandwidth performance, while special active layer implants and DC-series FET biasing give the HMM-11820 both high dB/mA and low noise figure.

Electrical performance competes directly with MIC hybrids, while its small size and ruggedness as a monolithic circuit, give the HMM-11820 an advantage for demanding military applications or wherever space is at a premium.

The HMM-11820 is based on the same process as Harris Microwave's HMF family of discrete 0.5 µm recessed gate FETs providing a broad manufacturing baseline.

Standard wafer qualification includes 100 percent onwafer DC probe and visual inspection, as well as RF evaluation on a sample test basis. Special wafer qualification to customer electrical specifications and/or screening requirements is available.

Device Outline

DIMENSIONS IN MILS

CHIP THICKNESS 5 MILS Au BACKSIDE METALLIZATION

Bonding Diagram

HMM-11820

Electrical Specifications at $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	UNITS	MIN	ТҮР	MAX
Freq.	Operating Frequency Range	GHz	6		18
S ₂₁	Small Signal Gain	dB	4.5	6.0	
ΔG	Gain Flatness	dB			±0.8
P _{1dB}	Output Power at 1dB Gain Compression	dBm		12.0	
VSWR	Input/Output VSWR			1.5:1	2:1
NF	Noise Figure	dB		5.5	
	Conditions for above : V_{DD} = +8.5 V, I_{DD} = 35 mA (typical), Gain Bia	as Configu	ıration		
l _{DD}	Drain Current, V_{DD} = +8.0 V, R_{S} = 0 Ω	mA	25	50	80

NOTES: 1.Typical RF performance and minimum limits are based on testing of sample units from each wafer on 50 Ω test carriers

and do not include correction for tuner/fixture losses. DC min/max limits are guaranteed by 100% on-wafer probe testing. 2. Max I_{DD} is the terminal current with $R_S = 0 \Omega$. This is the saturated source drain current (I_{DSS}) for the series parallel combination of FETs in the circuit.

Product Ratings

SYMBOL	PARAMETER	MAXIMUM OPERATING CONDITIONS				
		RECOMMENDED	ABSOLUTE			
V _{DD}	Supply Voltage	+10.5 V	+12.5 V			
Т _{сн}	Channel Temperature, Operating	+180°C	+250°C			
T _{STG}	Storage Temperature	-65°C to +180°C	-65°C to +250°C			

NOTE: Permanent damage may result from operation at conditions beyond absolute maximum ratings.

HMM-11820

Gain Performance

Gain (S $_{21}$) vs. Frequency. V $_{\rm DD}$ = 8.5 V, $\rm t_{\rm DD}$ = 35 mA.

Return Loss

Input Return Loss (S $_{11}$) and Output Return Loss (S $_{22}$) vs. Frequency.

Device Schematic

Source Resistor Bias Network, Nominal Values

Typical S-Parameters, V_{DD} = 8.5 V, I_{DD} = 35 mA (Gain Blas Configuration)

FREQ (GHz)	S ₁₁		S ₂₁		S ₁₂		S ₂₂	
	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.0	.416	-152.4	1.042	-155.2	.010	70.6	.486	-158.4
3.0	.222	161.5	1.392	171.3	.018	61.2	.309	163.6
4.0	.058	96.8	1.735	135.6	.029	48.4	.217	144.0
5.0	.101	-59.9	1.930	102.7	.041	22.3	.198	130.9
6.0	.193	-98.6	2.002	70.5	.051	-4.0	.203	110.2
7.0	.243	-130.5	2.001	42.3	.060	-29.5	.206	87.8
8.0	.253	-157.4	1.998	14.9	.068	-55.6	.192	61.6
9.0	.235	174.3	2.026	-11.6	.078	-78.3	.153	30.3
10.0	.197	140.2	2.090	-39.3	.086	-102.3	.105	-11.2
11.0	.139	107.2	2.131	-68.1	.092	-122.6	.087	-82.0
12.0	.087	63.3	2.144	-98.2	.098	-145.3	.127	132.7
13.0	.050	7.4	2.077	-127.4	.096	-170.7	.181	-159.7
14.0	.031	27.0	2.028	-157.9	.096	162.0	.222	178.8
15.0	.079	26.6	1.985	174.1	.096	133.7	.223	164.3
16.0	.124	7.3	2.010	144.5	.099	102.6	.192	156.2
17.0	.155	-23.5	2.000	109.6	.113	70.1	.155	177.1
18.0	.168	-37.3	1.924	75.2	.126	36.6	.158	-157.7

NOTE: S-Parameters include bond wire inductances and are measured in a 50 Ω microstrip fixture.