PSMN3R0-60PS

N-channel 60 V 3.0 m Ω standard level MOSFET

Rev. 02 — 28 October 2010

Product data sheet

1. Product profile

1.1 General description

Standard level N-channel MOSFET in a TO220 package qualified to 175 °C. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

- High efficiency due to low switching and conduction losses
- Suitable for standard level gate drive sources

1.3 Applications

- DC-to-DC converters
- Load switching

- Motor control
- Server power supplies

1.4 Quick reference data

Table 1. Quick reference data

141010 11	Quion rolorollos da						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25 ^{\circ}\text{C}; T_j \le 175 ^{\circ}\text{C}$		-	-	60	V
I _D	drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u>	[1]	-	-	100	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	306	W
Static cha	racteristics						
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 \text{ °C};$ see <u>Figure 11</u> ; see <u>Figure 12</u>		-	2.4	3	mΩ
Dynamic o	characteristics						
Q_GD	gate-drain charge	$V_{GS} = 10 \text{ V}; I_D = 80 \text{ A}; V_{DS} = 12 \text{ V};$ see <u>Figure 13</u> ; see <u>Figure 14</u>		-	28	-	nC
Avalanche	ruggedness						
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 100 A; V_{sup} ≤ 60 V; R_{GS} = 50 Ω ; unclamped		-	-	800	mJ

^[1] Continuous current is limited by package.

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		_
2	D	drain	mb	D
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S
			SOT78 (TO-220AB)	

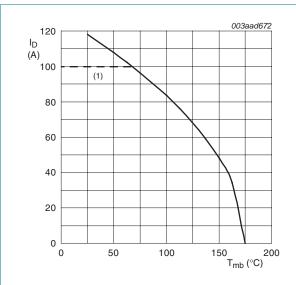
3. Ordering information

Table 3. Ordering information

Type number	Package				
	Name	Description	Version		
PSMN3R0-60PS	TO-220AB	plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB	SOT78		

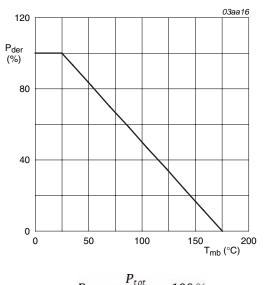
4. Limiting values

Table 4. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	60	V
V_{DGR}	drain-gate voltage	$T_j \ge 25$ °C; $T_j \le 175$ °C; $R_{GS} = 20$ kΩ		-	60	V
V_{GS}	gate-source voltage			-20	20	V
I _D	drain current	V _{GS} = 10 V; T _{mb} = 100 °C; see <u>Figure 1</u>		-	83.4	Α
		V _{GS} = 10 V; T _{mb} = 25 °C; see <u>Figure 1</u>	<u>[1]</u>	-	100	Α
I _{DM}	peak drain current	pulsed; $t_p \le 10 \mu s$; $T_{mb} = 25 °C$; see <u>Figure 3</u>		-	824	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	306	W
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
Source-drain	n diode					
Is	source current	T _{mb} = 25 °C	[1]	-	100	Α
I _{SM}	peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$		-	824	Α
Avalanche ru	uggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 100 A; $V_{sup} \le$ 60 V; R_{GS} = 50 Ω ; unclamped		-	800	mJ

[1] Continuous current is limited by package.


PSMN3R0-60PS All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

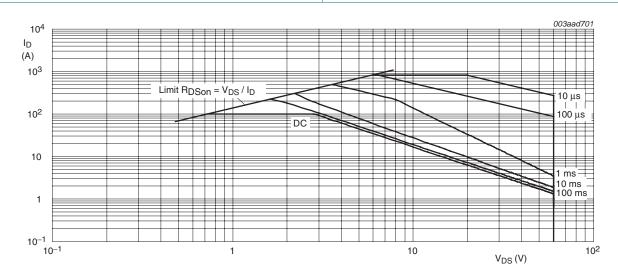

 $V_{\it GS} \geq$ 10 V(1) Capped at 100 A due to package

Fig 1. Continuous drain current as a function of mounting base temperature.

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$$

Fig 2. Normalized total power dissipation as a function of mounting base temperature

 T_{mb} = 25 °C; I_{DM} is a single pulse; Capped at 100 A due to package

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	0.3	0.49	K/W

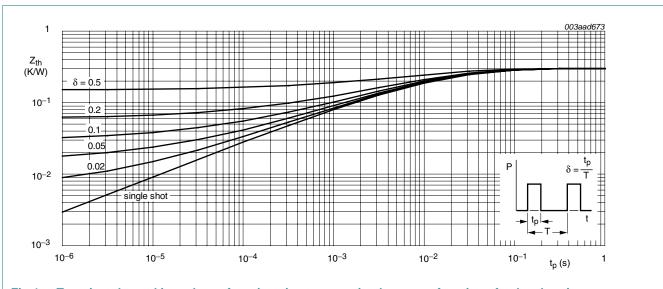


Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

6. Characteristics

Table 6. Characteristics

Various Var	Table 0.	- Cital acteristics					
$ \begin{array}{c} V_{(BR)DSS} \\ V_{(BS)(h)} \\ \hline \\ V_{(DS)(h)} \\ \hline \\ V_{(DS)($	Symbol		Conditions	Min	Тур	Max	Unit
Vosition	Static cha	aracteristics					
VGS(he) gate-source threshold voltage gate-source threshold voltage lo = 1 mA; VDs = VGs; Tj = 25 °C; 2 3 4 V V V V V V V V V	$V_{(BR)DSS}$			54	-	-	V
Vosh gate-source threshold voltage l _D = 1 mA; V _{DS} = V _{GS} ; T _j = 175 °C; 1 - V V See Figure 9		voitage	$I_D = 250 \mu A; V_{GS} = 0 V; T_j = 25 °C$	60	-	-	V
See Figure 9 I _D = 1 mA; V _{DS} = V _{DS} ; T _J = ·55 °C;	$V_{GS(th)}$	gate-source threshold voltage		2	3	4	V
See Figure 9 See Figure 9 See Figure 9 See Figure 9 See Figure 14 See Figure 14 See Figure 15 See Figure 16 See Figure 17 See Figure 16 See Figure 16 See Figure 16 See Figure 17 See Figure 16 See Figure 16 See Figure 16 See Figure 17 See Figure 17 See Figure 18 See Figure 18 See Figure 19	V_{GSth}	gate-source threshold voltage		1	-	-	V
$V_{DS} = 60 \text{ V; } V_{CS} = 0 \text{ V; } T_j = 175 \text{ °C} \qquad - \qquad - \qquad 500 \qquad \mu A$ $I_{GSS} \qquad \text{gate leakage current} \qquad V_{GS} = -20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \qquad 2 \qquad 100 \qquad nA$ $V_{GS} = 20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \qquad 2 \qquad 100 \qquad nA$ $R_{DSOn} \qquad \text{drain-source on-state} \qquad V_{GS} = 10 \text{ V; } I_j = 25 \text{ A; } T_j = 175 \text{ °C;} \qquad - \qquad - \qquad 7.2 \qquad m\Omega$ $See \ \ \frac{\text{Figure 10}}{\text{V}_{GS}} = 10 \text{ V; } I_j = 25 \text{ A; } T_j = 175 \text{ °C;} \qquad - \qquad - \qquad 2.4 \qquad 3 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } I_j = 25 \text{ A; } T_j = 175 \text{ °C;} \qquad - \qquad 2.4 \qquad 3 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } I_j = 25 \text{ A; } T_j = 175 \text{ °C;} \qquad - \qquad 2.4 \qquad 3 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } I_j = 25 \text{ A; } T_j = 175 \text{ °C;} \qquad - \qquad 2.4 \qquad 3 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } I_j = 25 \text{ A; } T_j = 175 \text{ °C;} \qquad - \qquad 2.4 \qquad 3 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } I_j = 25 \text{ A; } T_j = 175 \text{ °C;} \qquad - \qquad 2.4 \qquad 3 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } I_j = 25 \text{ °C;} \qquad - \qquad 2.4 \qquad 3 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } I_j = 25 \text{ °C;} \qquad - \qquad 2.4 \qquad 3 \qquad m\Omega$ $V_{GS} = 10 \text{ V; } I_j = 25 \text{ °C;} \qquad - \qquad 1.1 \qquad - \qquad \Omega$ $V_{DS} = 12 \text{ V; } V_{GS} = 10 \text{ V;} \qquad - \qquad 130 \qquad - \qquad $				-	-	4.6	V
$ \begin{array}{c} l_{GSS} \\ l_{GSSS} \\ l_{GSSS} \\ l_{GSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS$	I _{DSS}	drain leakage current	$V_{DS} = 60 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.05	10	μΑ
$V_{GS} = 20 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C \qquad - \qquad 2 \qquad 100 \qquad nA$ $R_{DSOn} \qquad drain-source on-state resistance \qquad V_{GS} = 10 \ V; \ I_D = 25 \ A; \ T_j = 175 \ ^{\circ}C; \qquad - \qquad 7.2 \qquad m\Omega$ $V_{GS} = 10 \ V; \ I_D = 25 \ A; \ T_j = 175 \ ^{\circ}C; \qquad - \qquad - \qquad 7.2 \qquad m\Omega$ $V_{GS} = 10 \ V; \ I_D = 25 \ A; \ T_j = 25 \ ^{\circ}C; \qquad - \qquad - \qquad 7.2 \qquad m\Omega$ $V_{GS} = 10 \ V; \ I_D = 25 \ A; \ T_j = 25 \ ^{\circ}C; \qquad - \qquad - \qquad 2.4 \qquad 3 \qquad m\Omega$ $V_{GS} = 10 \ V; \ I_D = 25 \ A; \ T_j = 25 \ ^{\circ}C; \qquad - \qquad - \qquad 2.4 \qquad 3 \qquad m\Omega$ $V_{GS} = 10 \ V; \ I_D = 25 \ A; \ I_S = 25 \ ^{\circ}C; \qquad - \qquad - \qquad - \qquad 2.4 \qquad 3 \qquad m\Omega$ $V_{DS} = 10 \ V; \ I_S = $			$V_{DS} = 60 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 \text{ °C}$	-	-	500	μΑ
$ \begin{array}{c} V_{GS} = 20 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C \qquad - \qquad 2 \qquad 100 \qquad nA \\ \\ R_{DSon} \\ R_{DSon} \\ \\ R_{GS} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	I _{GSS}	gate leakage current	$V_{GS} = -20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	2	100	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{GS} = 20 V; V _{DS} = 0 V; T _j = 25 °C	-	2	100	nA
$R_{G} \qquad \text{gate resistance} \qquad f = 1 \text{ MHz} \qquad - \qquad 1.1 \qquad - \qquad \Omega$	R _{DSon}		•	-	-	7.2	mΩ
Dynamic characteristics $Q_{G(tot)}$ total gate charge $I_D = 80 \text{ A}$; $V_{DS} = 12 \text{ V}$; $V_{GS} = 10 \text{ V}$; see Figure 14 - 130 - nC Q_{GS} gate-source charge $I_D = 80 \text{ A}$; $V_{DS} = 12 \text{ V}$; $V_{GS} = 10 \text{ V}$; see Figure 13 - 43 - nC Q_{GD} gate-drain charge $I_D = 80 \text{ A}$; $V_{DS} = 12 \text{ V}$; $V_{GS} = 10 \text{ V}$; see Figure 13 - 28 - nC C_{iss} input capacitance $V_{DS} = 30 \text{ V}$; $V_{GS} = 0 \text{ V}$; $f = 1 \text{ MHz}$; see Figure 15; see Figure 15; see Figure 15; see Figure 16 - 971 - pF C_{oss} output capacitance $V_{DS} = 30 \text{ V}$; $V_{GS} = 0 \text{ V}$; $f = 1 \text{ MHz}$; see Figure 15; see Figure 16 - 492 - pF C_{rss} reverse transfer capacitance $V_{DS} = 30 \text{ V}$; $V_{GS} = 0 \text{ V}$; $f = 1 \text{ MHz}$; see Figure 15; see Figure 16 - 492 - pF C_{rss} reverse transfer capacitance $V_{DS} = 30 \text{ V}$; $V_{GS} = 0 \text{ V}$; $f = 1 \text{ MHz}$; see Figure 15; see Figure 16 - 26 - ns C_{rss} reverse time $V_{DS} = 30 \text{ V}$; $V_{CS} = 0 $				-	2.4	3	mΩ
$ \begin{array}{c} Q_{G(tot)} & \text{total gate charge} & I_D = 80 \text{ A; } V_{DS} = 12 \text{ V; } V_{GS} = 10 \text{ V;} \\ \text{see Figure 14} & - & 130 & - & nC \\ \end{array} $ $ \begin{array}{c} Q_{GS} & \text{gate-source charge} & I_D = 80 \text{ A; } V_{DS} = 12 \text{ V; } V_{GS} = 10 \text{ V;} \\ \text{see Figure 14} & \text{see Figure 13} \\ \end{array} $	R _G	gate resistance	f = 1 MHz	-	1.1	-	Ω
	Dynamic	characteristics					
$Q_{GD} \qquad \text{gate-drain charge} \qquad I_{D} = 80 \text{ A; } V_{DS} = 12 \text{ V; } V_{GS} = 10 \text{ V; } \\ \text{see } \qquad \text{Figure } 13; \text{ see } \qquad \text{Figure } 14; \text{ see } \qquad \text{Figure } 15; \text{ see } \qquad \text{Figure } 16; \text{ see } \qquad \text{Figure } 15; $	Q _{G(tot)}	total gate charge		-	130	-	nC
	Q_{GS}	gate-source charge		-	43	-	nC
$T_{j} = 25 ^{\circ}\text{C}; \text{see Figure 15}; \text{see Figure 16}$ $C_{oss} \qquad \text{output capacitance} \qquad V_{DS} = 30 \text{V}; V_{GS} = 0 \text{V}; f = 1 \text{MHz}; - 971 - pF \\ T_{j} = 25 ^{\circ}\text{C}; \text{see Figure 15}$ $C_{rss} \qquad \text{reverse transfer capacitance} \qquad V_{DS} = 30 \text{V}; V_{GS} = 0 \text{V}; f = 1 \text{MHz}; - 492 - pF \\ T_{j} = 25 ^{\circ}\text{C}; \text{see Figure 15}; \text{see Figure 15}; \text{see Figure 16}$ $t_{d(on)} \qquad \text{turn-on delay time} \qquad V_{DS} = 30 \text{V}; R_{L} = 0.5 \Omega; V_{GS} = 10 \text{V}; - 31 - ns \\ t_{r} \qquad \text{rise time} \qquad R_{G(ext)} = 1.5 \Omega \qquad - 26 - ns \\ t_{d(off)} \qquad \text{turn-off delay time} \qquad - 77 - ns \\ t_{f} \qquad \text{fall time} \qquad - 22 - ns \\ \textbf{Source-drain diode}$ $V_{SD} \qquad \text{source-drain voltage} \qquad I_{S} = 25 \text{A}; V_{GS} = 0 \text{V}; T_{j} = 25 ^{\circ}\text{C}; \qquad - 0.88 1.2 \text{V} \\ \text{see Figure 17}$ $t_{rr} \qquad \text{reverse recovery time} \qquad I_{S} = 25 \text{A}; \text{dIs/dt} = -100 \text{A/µs}; \qquad - 54 - ns \\ \textbf{V}_{SD} \qquad \text{C}_{SD} \qquad \text{C}_{$	Q_{GD}	gate-drain charge		-	28	-	nC
$T_{j} = 25 \text{ °C}; \text{ see } \underline{\text{Figure } 15}$ $C_{rss} \qquad \text{reverse transfer capacitance} \qquad V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}; \\ T_{j} = 25 \text{ °C}; \text{ see } \underline{\text{Figure } 15}; \\ \text{ see } \underline{\text{Figure } 16}$ $t_{d(on)} \qquad \text{turn-on delay time} \qquad V_{DS} = 30 \text{ V}; R_{L} = 0.5 \Omega; V_{GS} = 10 \text{ V}; \\ T_{r} \qquad \text{rise time} \qquad R_{G(ext)} = 1.5 \Omega \qquad \qquad -26 \qquad -ns$ $t_{d(off)} \qquad \text{turn-off delay time} \qquad -77 \qquad -ns$ $t_{f} \qquad \text{fall time} \qquad -22 \qquad -ns$ $Source-drain \ diode$ $V_{SD} \qquad \text{source-drain voltage} \qquad I_{S} = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_{j} = 25 \text{ °C}; \qquad -0.88 \qquad 1.2 \qquad V$ $\text{see } \underline{\text{Figure } 17}$ $t_{rr} \qquad \text{reverse recovery time} \qquad I_{S} = 25 \text{ A}; \text{ dIs/dt } = -100 \text{ A/µs}; \qquad -54 \qquad -ns$	C _{iss}	input capacitance	$T_j = 25 \text{ °C}$; see <u>Figure 15</u> ;	-	8079	-	pF
$T_{j} = 25 ^{\circ}\text{C}; \text{see Figure 15}; \\ \text{see Figure 16}$ $t_{d(on)} \qquad \text{turn-on delay time} \qquad V_{DS} = 30 V; R_{L} = 0.5 \Omega; V_{GS} = 10 V; \\ t_{r} \qquad \text{rise time} \qquad \qquad - 26 \qquad - \qquad \text{ns}$ $t_{d(off)} \qquad \text{turn-off delay time} \qquad \qquad - 77 \qquad - \qquad \text{ns}$ $t_{f} \qquad \text{fall time} \qquad \qquad - 22 \qquad - \qquad \text{ns}$ $\textbf{Source-drain diode}$ $V_{SD} \qquad \text{source-drain voltage} \qquad I_{S} = 25 A; V_{GS} = 0 V; T_{j} = 25 ^{\circ}\text{C}; \qquad - \qquad 0.88 1.2 V$ see Figure 17 $t_{rr} \qquad \text{reverse recovery time} \qquad I_{S} = 25 A; dI_{S}/dt = -100 A/\mu s; \qquad - 54 \qquad - \qquad \text{ns}$	C _{oss}	output capacitance		-	971	-	pF
$t_{r} \text{rise time} \begin{matrix} R_{G(ext)} = 1.5 \ \Omega \\ \hline \begin{matrix} t_{d(off)} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \end{matrix} \\ \hline \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \end{matrix} \\ \hline \end{matrix} \\ \hline \end{matrix} \\ \hline \begin{matrix} t_{d(off)} \end{matrix} \\ \hline \end{matrix} \\ \end{matrix} \\$	C _{rss}	reverse transfer capacitance	$T_j = 25 \text{ °C}$; see <u>Figure 15</u> ;	-	492	-	pF
$t_{r} \qquad \text{rise time} \qquad \begin{matrix} R_{G(ext)} = 1.5 \ \Omega \\ \hline t_{d(off)} \qquad \text{turn-off delay time} \end{matrix} \qquad \begin{matrix} - \qquad 26 \qquad - \qquad ns \\ \hline - \qquad 77 \qquad - \qquad ns \\ \hline t_{f} \qquad \text{fall time} \qquad \qquad - \qquad 22 \qquad - \qquad ns \\ \hline \begin{matrix} Source-drain \ diode \end{matrix} \\ \hline V_{SD} \qquad \text{source-drain voltage} \qquad \begin{matrix} I_{S} = 25 \ A; \ V_{GS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C; \qquad - \qquad 0.88 \qquad 1.2 \qquad V \\ \hline see \ Figure \ 17 \\ \hline \begin{matrix} I_{rr} \qquad \text{reverse recovery time} \end{matrix} \qquad \begin{matrix} I_{S} = 25 \ A; \ dI_{S}/dt = -100 \ A/\mu s; \qquad - \qquad 54 \qquad - \qquad ns \\ \hline \end{matrix}$	t _{d(on)}	turn-on delay time	$V_{DS} = 30 \text{ V}; R_L = 0.5 \Omega; V_{GS} = 10 \text{ V};$	-	31	-	ns
$t_{d(off)} \qquad turn-off \ delay \ time \qquad \qquad - \qquad 77 \qquad - \qquad ns$ $t_{f} \qquad fall \ time \qquad \qquad - \qquad 22 \qquad - \qquad ns$ $\textbf{Source-drain diode}$ $V_{SD} \qquad source-drain \ voltage \qquad \qquad I_{S} = 25 \ A; \ V_{GS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C; \qquad - \qquad 0.88 \qquad 1.2 \qquad V$ $see \ \frac{Figure \ 17}{Figure \ 17}$ $t_{rr} \qquad reverse \ recovery \ time \qquad \qquad I_{S} = 25 \ A; \ dI_{S}/dt = -100 \ A/\mu s; \qquad - \qquad 54 \qquad - \qquad ns$		rise time	$R_{G(ext)} = 1.5 \Omega$	-	26	-	ns
t _f fall time - 22 - ns Source-drain diode $V_{SD} \text{source-drain voltage} \begin{aligned} &I_S = 25 \text{ A; } V_{GS} = 0 \text{ V; } T_j = 25 \text{ °C;} &- 0.88 & 1.2 & V \\ &\text{see } \underline{\text{Figure } 17} \end{aligned}$ $t_{rr} \text{reverse recovery time} \begin{aligned} &I_S = 25 \text{ A; } dI_S/dt = -100 \text{ A/}\mu\text{s;} &- 54 &- \text{ns} \end{aligned}$		turn-off delay time		-	77	-	ns
V_{SD} source-drain voltage $I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C};$ - 0.88 1.2 V see Figure 17 I_{rr} reverse recovery time $I_S = 25 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s};$ - 54 - ns	` '	fall time		-	22	-	ns
see Figure 17 t_{rr} reverse recovery time $l_S = 25 \text{ A}$; $dl_S/dt = -100 \text{ A/}\mu\text{s}$; - 54 - ns	Source-d	rain diode					
V 0 V: V 20 V	V_{SD}	source-drain voltage		-	0.88	1.2	V
\\\ = 0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	t _{rr}	reverse recovery time	$I_S = 25 \text{ A}$; $dI_S/dt = -100 \text{ A/}\mu\text{s}$;	-	54	-	ns
	Qr	recovered charge	$V_{GS} = 0 \text{ V}; V_{DS} = 30 \text{ V}$	-	97	-	nC

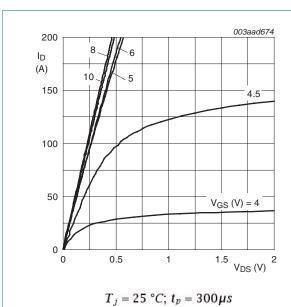


Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

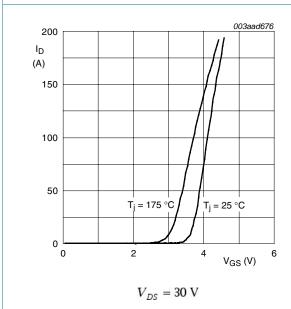
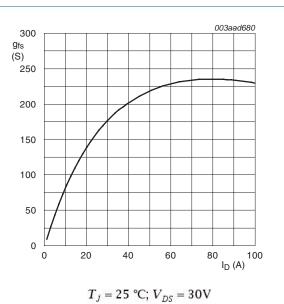
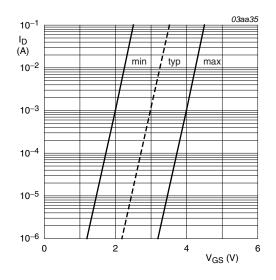
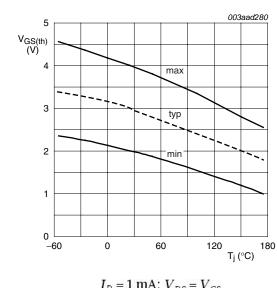




Fig 7. Transfer characteristics: drain current as a function of gate-source voltage; typical values

a 6 Forward transconductance as a func

Fig 6. Forward transconductance as a function of drain current; typical values



 $T_j = 25\,^{\circ}C; V_{DS} = 5V$

Fig 8. Sub-threshold drain current as a function of gate-source voltage

003aad773

N-channel 60 V 3.0 m Ω standard level MOSFET

 $I_D=1~{
m mA};~V_{DS}=V_{GS}$ Gate-source threshold voltage as a function of junction temperature

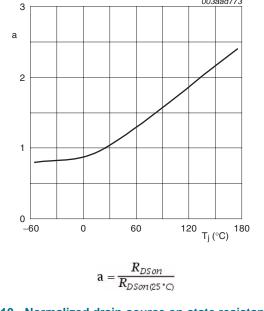


Fig 10. Normalized drain-source on-state resistance factor as a function of junction temperature

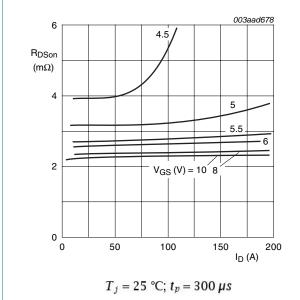


Fig 11. Drain-source on-state resistance as a function of drain current; typical values

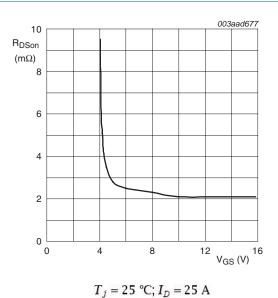


Fig 12. Drain-source on-state resistance as a function of gate-source voltage; typical values

Fig 9.

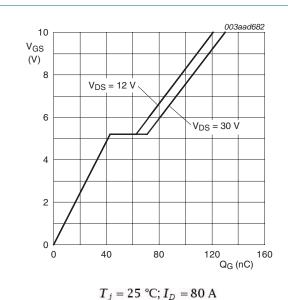


Fig 13. Gate-source voltage as a function of gate charge; typical values

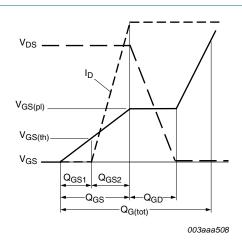


Fig 14. Gate charge waveform definitions

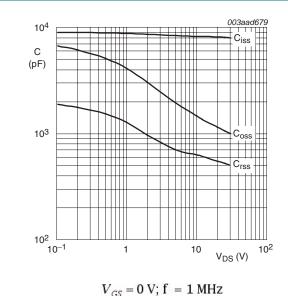


Fig 15. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical

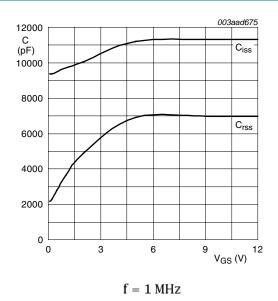


Fig 16. Input and reverse transfer capacitances as a function of gate-source voltage, typical values

values

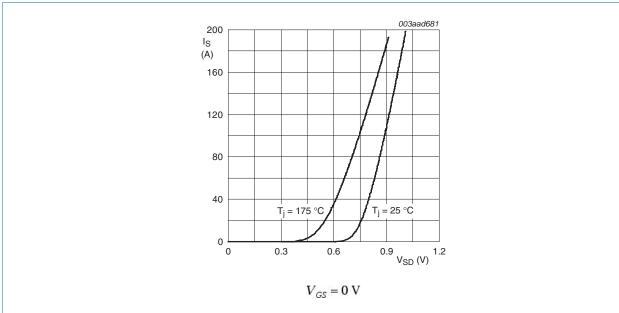
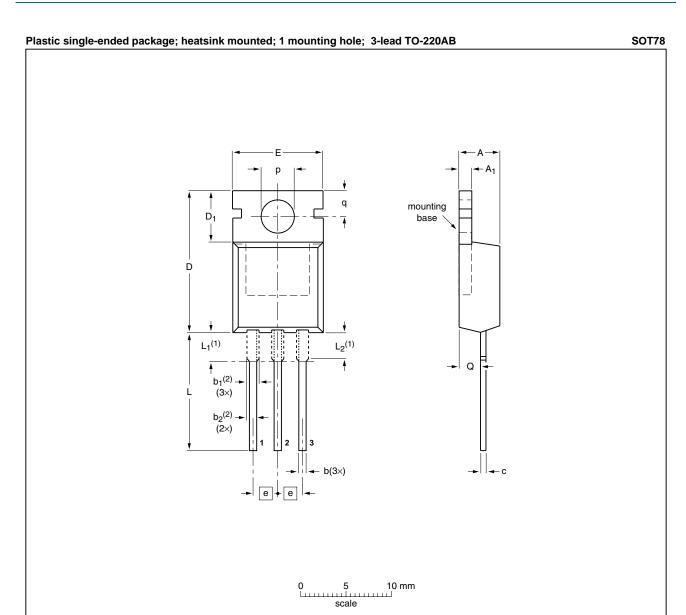



Fig 17. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values

9 of 14

7. Package outline

DIMENSIONS (mm are the original dimensions)

UNIT	А	A ₁	b	b ₁ (2)	b ₂ ⁽²⁾	С	D	D ₁	E	е	L	L ₁ (1)	L ₂ ⁽¹⁾ max.	р	q	Q
mm	4.7 4.1	1.40 1.25	0.9 0.6	1.6 1.0	1.3 1.0	0.7 0.4	16.0 15.2	6.6 5.9	10.3 9.7	2.54	15.0 12.8	3.30 2.79	3.0	3.8 3.5	3.0 2.7	2.6 2.2

Notes

- 1. Lead shoulder designs may vary.
- 2. Dimension includes excess dambar.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT78		3-lead TO-220AB	SC-46		08-04-23 08-06-13

Fig 18. Package outline SOT78 (TO-220AB)

PSMN3R0-60PS

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN3R0-60PS v.2	20101028	Product data sheet	-	PSMN3R0-60PS v.1
Modifications:	 Various changes 			
PSMN3R0-60PS v.1	20091123	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective

PSMN3R0-60PS

PSMN3R0-60PS

N-channel 60 V 3.0 mΩ standard level MOSFET

agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and **HD Radio** logo — are trademarks of iBiquity Digital Corporation.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

11. Contents

1	Product profile
1.1	General description
1.2	Features and benefits1
1.3	Applications
1.4	Quick reference data1
2	Pinning information
3	Ordering information
4	Limiting values
5	Thermal characteristics4
6	Characteristics5
7	Package outline
8	Revision history11
9	Legal information12
9.1	Data sheet status
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks13
10	Contact information

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.