Features

* High Performance, Low Power AVR®32 32-Bit Microcontroller

— 133 MHz clock frequency
— 16 KB instruction cache and 16 KB data caches
— Memory Management Unit enabling use of operating systems
— Single-cycle RISC instruction set including SIMD and DSP instructions
— Java Hardware Acceleration _®
¢ Multimedia Co-Processor
— Vector Multiplication Unit for video acceleration through color-space conversion
(YUV<->RGB), image scaling and filtering, quarter pixel motion compensation

¢ Multi-hierarchy bus system AVR®32 32'bit

— High-performance data transfers on separate buses for increased performance
* Data Memories i
KB toe SRAM Microcontroller
¢ External Memory Interface
— SDRAM, DataFlash™, SRAM, Multi Media Card (MMC), Secure Digital (SD),
Compact Flash, Smart Media, NAND Flash,
* Direct Memory Access Controller AT32AP7000
— External Memory access without CPU intervention
¢ Interrupt Controller
— Individually maskable Interrupts = u
— Each interrupt request has a programmable priority and autovector address Prel imi nary
¢ System Functions
— Power and Clock Manager
— Crystal Oscillator with Phase-Lock-Loop (PLL)
— Watchdog Timer
— Real-time Clock
¢ 6 Multifunction timer/counters
— Three external clock inputs, I/O pins, PWM, capture and various counting
capabilities
* 4 Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
— 115.2 kbps IrDA Modulation and Demodulation
— Hardware and software handshaking
¢ 3 Synchronous Serial Protocol controllers
— Supports AC97, 12S, S/PDIF, SPI and generic frame-based protocols
* Two-Wire Interface
— Sequential Read/Write Operations, Philips’ 2C© compatible
¢ Liquid Crystal Display (LCD) interface
— Supports TFT displays
— Configurable pixel resolution supporting QCIF/QVGA/VGA/SVGA configurations.
* Image Sensor Interface
— 12-bit Data Interface for CMOS cameras
¢ Universal Serial Bus (USB) 2.0 High Speed (480 Mbps) Device
— On-chip Transceivers with physical interface
¢ 2 Ethernet MAC 10/100 Mbps interfaces
— 802.3 Ethernet Media Access Controller
— Supports Media Independent Interface (MIl) and Reduced Mil (RMII)
* 16-bit stereo audio DAC
— Sample rates up to 50 kHz
¢ On-Chip Debug System
— Nexus Class 3
— Full speed, non-intrusive data and program trace
— Runtime control and JTAG interface
* Package/Pins
— 256-ball CABGA 1.0mm pitch/160 GPIO pins
* Power supplies
- 1.65V to01.95V VDDCORE
- 3.0V to 3.6V VDDIO 32003E-AVR32-05/06

ATMEL

1.

2

ATMEL

Part Description

The AT32AP7000 is a complete System-on-chip application processor with an AVR32 RISC
processor running at frequencies up to 133 MHz. AVR32 is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular empha-
sis on low power consumption, high code density and high application performance.

AT32AP7000 implements a Memory Management Unit (MMU) and a flexible interrupt controller
supporting modern operating systems and real-time operating systems. The processor also
includes a rich set of DSP and SIMD instructions, specially designed for multimedia and telecom
applications.

AT32AP7000 incorporates SRAM memories on-chip for fast and secure access. For applica-
tions requiring additional memory, external 16-bit SRAM is accessible. Additionally, an SDRAM
controller provides off-chip volatile memory access as well as controllers for all industry standard
off-chip non-volatile memories, like Compact Flash, Multi Media Card (MMC), Secure Digital
(SD)-card, SmartCard, NAND Flash and Atmel DataFlash™.

The Direct Memory Access controller for all the serial peripherals enables data transfer between
memories without processor intervention. This reduces the processor overhead when transfer-
ring continuous and large data streams between modules in the MCU.

The Timer/Counters includes three identical 16-bit timer/counter channels. Each channel can be
independently programmed to perform a wide range of functions including frequency measure-
ment, event counting, interval measurement, pulse generation, delay timing and pulse width
modulation.

AT32AP7000 also features an onboard LCD Controller, supporting single and double scan
monochrome and color passive STN LCD modules and single scan active TFT LCD modules.
On monochrome STN displays, up to 16 gray shades are supported using a time-based dither-
ing algorithm and Frame Rate Control (FRC) method. This method is also used in color STN
displays to generate up to 4096 colors.

The LCD Controller is programmable for supporting resolutions up to 2048 x 2048 with a pixel
depth from 1 to 24 bits per pixel.

A pixel co-processor provides color space conversions for images and video, in addition to a
wide variety of hardware filter support

The media-independent interface (MIl) and reduced MIl (RMII) 10/100 Ethernet MAC modules
provides on-chip solutions for network-connected devices.

Synchronous Serial Controllers provide easy access to serial communication protocols, audio
standards like AC'97, 12S, 12C© and various SPI modes. The modules support frame-based pro-
tocols, like VolP SIP protocols.

The Java hardware acceleration implementation in AVR32 allows for a very high Java byte-code
execution. AVR32 implements Java instructions in hardware, reusing the existing RISC data
path, which allows for a near-zero hardware overhead and cost with a very high performance.

The Image Sensor Interface supports cameras with up to 12-bit data buses and connects
directly to the LCD interface through a separate bus.

PS2 connectivity is provided for standard input devices like mice and keyboards.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

AT32AP7000 integrates a class 3 Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive
real-time trace, full-speed read/write memory access in addition to basic runtime control.

The C-compiler is closely linked to the architecture and is able to utilize code optimization fea-
tures, both for size and speed.

ATMEL ;

32003E-AVR32-05/06

ATMEL

2. Blockdiagram

Figure 2-1. Blockdiagram

Pixel
AVR32 AP CPU Coprocessor
Nex“ggl'aass 3 | 16KkBICACHE MMU | 16kB DCACHE
\ \
-< B PHY (| USBHS Device | 5 <& > P 16kB SRAM
N 16kB SRAM
L y.| Image Sensor | < -
i o Interface a =
-t I DMA Controller
<
-t P Ethernet MACO | =
=~ 5 “| AHB Bus
o Matrix EBI
£ < - »
o -t P Ethernet MAC1 | = » <« >
5 > SDRAM —
o Controller
= <
> - P LCD Controller 2 - >
% ECC
=] . -l oy 7]
Q Peripheral DMA - - > c
£ Controller] Static Memory o
Controller —
>
o
Y A4 5
- ' - PS2 - g
AHB-APB | | AHB-APB P System Manager <——> a
o - > TWI - Bridge Bridge <
~ oy
< ol O > INTC
.y Ll
11}
USARTO MACBO & P
- | USART1 9 | MACB1 g > PWM -t >0l o
- ® usarT2 | = [® o™ >
USART3 ISI
<
2 usB - TCO P -
@ — TC1 ~ o
< HMATRIX |
. :
SDRAM > 2 DAC |[a—»
ECC
------------------ < L
35C0 Configuration > = AC97C |- L
< > ase1 § < Registers
SSC2 <
> = MCI - -
APB Bus A
- >

32003E-AVR32-05/06

2.1 Processor and architecture
2.1.1 AVR32AP CPU

¢ 32-bit load/store AVR32B RISC architecture.
— Up to 15 general-purpose 32-bit registers.
— 32-bit Stack Pointer, Program Counter and Link Register reside in register file.
— Fully orthogonal instruction set.
— Privileged and unprivileged modes enabling efficient and secure Operating Systems.
— Innovative instruction set together with variable instruction length ensuring industry leading
code density.
— DSP extention with saturating arithmetic, and a wide variety of multiply instructions.
— SIMD extention for media applications.
¢ 7 stage pipeline allows one instruction per clock cycle for most instructions.
— Java Hardware Acceleration.
— Byte, half-word, word and double word memory access.
— Unaligned memory access.
— Shadowed interrupt context for INT3 and multiple interrupt priority levels.
— Dynamic branch prediction and return address stack for fast change-of-flow.
— Coprocessor interface.
Full MMU allows for operating systems with memory protection.
16Kbyte Instruction and 16Kbyte data caches.
— Virtually indexed, physically tagged.
— 4-way associative.
— Write-through or write-back.
* Nexus Class 3 On-Chip Debug system.
— Low-cost NanoTrace supported.

21.2 Pixel Coprocessor (PiCo)

¢ Coprocessor coupled to the AVR32 CPU Core through the TCB Bus.
* Three parallel Vector Multiplication Units (VMU) where each unit can:
— Multiply three pixel components with three coefficients.
— Add the products from the multiplications together.
— Accumulate the result or add an offset to the sum of the products.
¢ Can be used for accelerating:
- Image Color Space Conversion.
¢ Configurable Conversion Coefficients.
¢ Supports packed and planar input and output formats.
e Supports subsampled input color spaces (i.e 4:2:2, 4:2:0).
- Image filtering/scaling.
e Configurable Filter Coefficients.
e Throughput of one sample per cycle for a 9-tap FIR filter.
¢ Can use the built-in accumulator to extend the FIR filter to more than 9-taps.
¢ Can be used for bilinear/bicubic interpolations.
— MPEG-4/H.264 Quarter Pixel Motion Compensation.
* Flexible input Pixel Selector.
— Can operate on numerous different image storage formats.
* Flexible Output Pixel Inserter.
— Scales and saturates the results back to 8-bit pixel values.

ATMEL ;

32003E-AVR32-05/06

ATMEL

— Supports packed and planar output formats.
¢ Configurable coefficients with flexible fixed-point representation.

213 Debug and Test system

* IEEE1149.1 compliant JTAG and boundary scan

* Direct memory access and programming capabilities through JTAG interface

¢ Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 3
¢ Auxiliary port for high-speed trace information

¢ Hardware support for 6 Program and 2 data breakpoints

¢ Unlimited number of software breakpoints supported

¢ Advanced Program, Data, Ownership, and Watchpoint trace supported

214 DMA controller

* 2 AHB Master Interfaces
¢ 3 Channels
¢ Software and Hardware Handshaking Interfaces
— 11 Hardware Handshaking Interfaces
* Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
¢ Single-block DMA Transfer
¢ Multi-block DMA Transfer
- Linked Lists
— Auto-Reloading
— Contiguous Blocks
* DMA Controller is Always the Flow Controller
¢ Additional Features
— Scatter and Gather Operations
— Channel Locking
- Bus Locking
- FIFO Mode
— Pseudo Fly-by Operation

215 Peripheral DMA Controller

¢ Transfers from/to peripheral to/from any memory space without intervention of the processor.
* Next Pointer Support, forbids strong real-time constraints on buffer management.
¢ Eighteen channels

— Two for each USART

— Two for each Serial Synchronous Controller

— Two for each Serial Peripheral Interface

2.1.6 Bus system

¢ AHB bus matrix with 10 Masters and 8 Slaves handled
— Handles Requests from the CPU Icache, CPU Dcache, AHB bridge, HISI, USB 2.0 Controller,
LCD Controller, Ethernet Controller 0, Ethernet Controller 1, DMA Controller 0, DMA

6 AT32AP7000 m——

Controller 1, and to internal SRAM 0, internal SRAM 1, APB A, APB B, EBI, USB, LCD
Controller and DMA controller.
— Round-Robin Arbitration (three modes supported: no default master, last accessed default
master, fixed default master)
— Burst Breaking with Slot Cycle Limit
— One Address Decoder Provided per Master
* 2 APB buses allowing each bus to run on different bus speeds.
— APB A intended to run on low clock speeds, with peripherals connected to the PDC.
— APB B intended to run on higher clock speeds, with peripherals connected to the DMAC.
¢ AHB-AHB Bridge providing a low-speed AHB bus running at the same speed as APBA
— Allows PDC transfers between a low-speed APB bus and a bus matrix of higher clock speeds

Figure 2-2 gives an overview of the bus system. All modules connected to the same bus use the
same clock, but the clock to each module can be individually shut off by the Power Manager.
The figure identifies the number of master and slave interfaces of each module connected to the
AHB bus, and which DMA controller is connected to which peripheral.

Figure 2-2. Buses in AVR32AP7000

PiCo
I
AVR32AP CPU
Data(fache | Instr.ICache | [waco | [waci | [teoc |
M | M | M | M] M]s 2*M | S
AHB Bus Matrix
M | [s S | &'s M [s M [2rs
AHB / AHB AHB/APB AHB/APB EBI USB20 S| INTRAMO
Bridge Bridge Bridge Device INTRAM1
A B
Low Speed|AHB Bus .
System Peripheral Bus B
PDC pAC 4 [wmcl 4 [Acoicd [INTC | [_PwMm |
_____ I I

TCO SMC MACB1 RTC
TC1 SDRAMC MACBO - _V_VST_ —
ECC 1SI T EM T
UsB | |F—-—==-—-—
HMATRIX PM
Config registers System Manager

System Peripheral Bus A

SPIO USART SSCo PIOA pPS2

SPI1 USART SSC1 PIOB TWI
USART SSC2 PIOC
S Slave Interface USART PIOD
M Master Interface PIOE

Connected to DMAC
Connected to PDC

ATMEL 7

32003E-AVR32-05/06

ATMEL

3. Package and Pinout

Figure 3-1. 256 CABGA Pinout
Ball A1

4 1234567 8 910111213141516 161514131211109 8 7 6 5 4 3 2 1
Al @ OO0 O0OO0O0O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |A
B OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OOoOO0OO0O OO |B
C OO0 O0O0OO0O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |C
D 0O 0000000 O0OO0OO0OO0OO0OO0OO0OO0O |D
E OO0 0O O0OO0OO0OO0OO0OO0OO0OOoOO0OOoOOoOOoOOoO |E
F OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |F
G I ©0000000000000O0O0O |G
H OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOOOoO |H
J OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0 |J
K 0O 0000000 O0OO0OO0OO0OO0OO0OO0O 0O |K
L OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |L
M AVR32 0O 0000000 O0OO0OO0OO0OO0OO0OO0OO0O |M
N OO0 0O OO0 O0OO0OO0OO0OO0OO0OO0OOoOOoOOoOOoO |N
P CABGA256 OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |P
R OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |R
T O 0O 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOoOOoO |T

Table 3-1. CABGA256 Package Pinout A1..T8

1 2 3 4 5 6 7 8

A| VDDIO PE15 PE13 PE11 PEO7 PEO2 AGNDPLL OSCEN_N

B| GNDIO PE16 PE12 PEO9 PEO4 PLLO AVDDOSC PC30

C| PDO1 PDO00 PE14 PE10 PEO6 PEOO PLL1 PC31

D| PE17 PE18 PDO02 PEO8 PEO3 GND AGNDOSC PC29

E| PX48 PX50 PX49 PX47 PEO5 PEO1 X0uUT32 PC28

F| PX32 PX00 PX33 VDDIO PX51 AVDDPLL XINO PC27

G| PX04 VDDCORE PX05 PX03 PX02 PX01 XOuTo PC26

H| PDO6 VDDIO PDO7 PDO05 PDO0O4 PDO03 GND XIN32

J| TRST_N TMS TDI TCK TDO PDO09 PDO08 EVTI_N

K| PAO5 PAO1 PAO2 PAOO RESET_N PAO3 PAO4 HSDP

L| PAO9 PB25 VDDIO PA08 GND PB24 AGNDUSB VDDCORE

M PA14 PA11 PA13 PA10 PA12 VDDIO VDDIO GND

N| PA18 PA16 PA17 PA15 PD14 GND FSDM VBG

32003E-AVR32-05/06

Table 3-1. CABGA256 Package Pinout A1..T8

P| PA20 PA19 PA21 PD11 PD16 XOUT1 GND PA25
R| PA22 PD10 PA23 PD13 PD17 AVDDUSB HSDM PA26
T| vDDIO GND PA24 PD12 PD15 XIN1 FSDP VDDIO
Table 3-2. CABGA256 Package Pinout A9..T16

9 10 11 12 13 14 15 16

A| PC23 PA06 PB21 PB16 PB13 PB11 GND VDDIO
B| PC25 PC19 PB23 PB18 PB14 PB10 PC17 PC16
C| PC24 PAO7 PB22 PB17 PB12 PB09 PBO7 PBO8
D| PC22 PC18 PB20 PB15 PB03 PBO5 PBO4 PB06
E| vDDIO GND PB19 PB00 PX46 PBO1 VDDIO PB02
F| PC21 VDDCORE GND PX44 PX42 PX43 PX40 PX45
G| PC20 PC15 PC14 PC10 PC11 PC13 PC12 VDDCORE
H| Pco9 PCO05 PCO06 PE26 VDDIO PCO7 PX39 PCO08
J| PB27 PX27 PX28 PX29 PX30 VDDCORE GND PX31
K| PA27 GND PX22 PX23 PX24 PX26 VDDIO PX25
L| PA28 VDDIO PE24 PX38 PX18 PX20 PX21 PX19
M PA29 PB28 PE20 PX08 PX34 PX36 PX37 PX35
N| PA30 PX53 PE22 PX06 PX11 PX15 PX17 PX16
P| WAKE_N PX41 PE21 PX09 PB30 PC02 PX13 PX14
R| PA31 PX52 PE23 PX07 PB29 PCO00 PCO04 GND
T| PB26 PE25 PE19 PX10 PX12 PCO1 PCO03 VDDIO

32003E-AVR32-05/06

ATMEL

ATMEL

4. Signals Description

The following table gives details on the signal name classified by peripheral. The pinout multi-
plexing of these signals is given in Section 10.7.

Table 4-1. Signal Description List
Active
Signal Name Function Type Level Comments
Power

AVDDPLL PLL Power Supply Power 1.65t01.95V
AvVDDUSB USB Power Supply Power 1.65t01.95V
AVDDOSC Oscillator Power Supply Power 1.65t01.95V
VDDCORE Core Power Supply Power 1.65t01.95V
VDDIO 1/0O Power Supply Power 3.0 to 3.6V
AGNDPLL PLL Ground Ground

AGNDUSB USB Ground Ground

AGNDOSC Oscillator Ground Ground

GND Ground Ground

Clocks, Oscillators, and PLLs

XINO, XIN1, XIN32 Crystal 0, 1, 32 Input Analog

§88$g,2XOUT1, Crystal 0, 1, 32 Output Analog

PLLO, PLLA PLL 0,1 Filter Pin Analog

JTAG

TCK Test Clock Input

TDI Test Data In Input

TDO Test Data Out Output

T™MS Test Mode Select Input

TRST_N Test Reset Input Low

Auxiliary Port - AUX

MCKO Trace Data Output Clock Output

MDOO - MDO5 Trace Data Output Output

MSEQOO - MSEO1 Trace Frame Control Output

EVTI_N Event In Output Low

10 /AT 32 /A P70 /() 5000000

32003E-AVR32-05/06

Table 4-1. Signal Description List
Active
Signal Name Function Type Level Comments
EVTO_N Event Out Output Low
Power Manager - PM

GCLKO - GCLK4 Generic Clock Pins Output
OSCEN_N Oscillator Enable Input Low
RESET_N Reset Pin Input Low
WAKE_N Wake Pin Input Low

External Interrupt Module - EIM
EXTINTO - EXTINT3 External Interrupt Pins Input
NMI_N Non-Maskable Interrupt Pin Input Low

AC97 Controller - AC97C
SCLK AC97 Clock Signal Input
SDI AC97 Receive Signal Output
SDO AC97 Transmit Signal Output
SYNC AC97 Frame Synchronization Signal Input
DAC - DAC

DATAOQ - DATA1 D/A Data Out Output
DATANO - DATAN1 D/A Inverted Data Out Output

Ethernet MAC - MACBO, MACB1

COL Collision Detect Input
CRS Carrier Sense and Data Valid Input
MDC Management Data Clock Output
MDIO Management Data Input/Output /0
RXDO - RXD3 Receive Data Input
RX_CLK Receive Clock Input
RX_DV Receive Data Valid Input
RX_ER Receive Coding Error Input
SPEED Speed Output
TXDO - TXD3 Transmit Data Output

32003E-AVR32-05/06

ATMEL

11

ATMEL

Table 4-1. Signal Description List

Active

Signal Name Function Type Level Comments
TX_CLK Transmit Clock or Reference Clock Output
TX_EN Transmit Enable Output
TX_ER Transmit Coding Error Output

External Bus Interface - EBI
ADDRO - ADDR25 Address Bus Output
CAS Column Signal Output Low
CFCE1 Compact Flash 1 Chip Enable Output Low
CFCE2 Compact Flash 2 Chip Enable Output Low
CFRNW Compact Flash Read Not Write Output
DATAO - DATA31 Data Bus I/0
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
NCSO0 - NCS5 Chip Select Output Low
NRD Read Signal Output Low
NWAIT External Wait Signal Input Low
NWEO Write Enable 0 Output Low
NWE1 Write Enable 1 Output Low
NWE3 Write Enable 3 Output Low
RAS Row Signal Output Low
SDA10 SDRAM Address 10 Line Output
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output
SDCS SDRAM Chip Select Output Low
SDWE SDRAM Write Enable Output Low

Image Sensor Interface - ISI
DATAO - DATA11 Image Sensor Data Input
HSYNC Horizontal Synchronization Input
PCLK Image Sensor Data Clock Input
12 /AT 32 /A P77 000 1550000000000 —

32003E-AVR32-05/06

Table 4-1. Signal Description List

Active
Signal Name Function Type Level Comments

VSYNC Vertical Synchronization Input

LCD Controller - LCDC

CC LCD Contrast Control Output
DATAO - DATA23 LCD Data Bus Input

DVAL LCD Data Valid Output
GPLO - GPL7 LCD General Purpose Lines Output
HSYNC LCD Horizontal Synchronization Output
MODE LCD Mode Output
PCLK LCD Clock Output
PWR LCD Power Output
VSYNC LCD Vertical Synchronization Output

Mulitmedia Card Interface - MMCI

CLK Multimedia Card Clock Output
CMDO - CMD1 Multimedia Card Command /10
DATAO - DATA7 Multimedia Card Data 110

Parallel Input/Output 2 - PIOA, PIOB, PIOC, PIOD, PIOE

PO - P31 Parallel I/O Controller PIOA I/0
PO - P30 Parallel /0O Controller PIOB /0
PO - P31 Parallel I/O Controller PIOC I/0
PO - P17 Parallel I1/0O Controller PIOD /0
PO - P26 Parallel I/O Controller PIOE I/0

PS2 Interface - PSIF

CLOCKO - CLOCK1 PS2 Clock Input

DATAO - DATA1 PS2 Data I/0

Serial Peripheral Interface - SPI0, SPI1

MISO Master In Slave Out /0
MOSI Master Out Slave In 1/10
NPCSO0 - NPCS3 SPI Peripheral Chip Select 110 Low

ATMEL i

32003E-AVR32-05/06

ATMEL

Table 4-1. Signal Description List
Active

Signal Name Function Type Level Comments
SCK Clock Output

Synchronous Serial Controller - SSC0, SSC1, SSC2
RX_CLOCK SSC Receive Clock /0
RX_DATA SSC Receive Data Input
RX_FRAME_SYNC SSC Receive Frame Sync I/0
TX_CLOCK SSC Transmit Clock I/0
TX_DATA SSC Transmit Data Output
TX_FRAME_SYNC SSC Transmit Frame Sync /10

DMA Controller - DMAC

DMARQO - DMARQ3 | DMA Requests Input

Timer/Counter - TIMERO, TIMER1

AO Channel 0 Line A 1/0
A1l Channel 1 Line A I/0
A2 Channel 2 Line A 1/0
BO Channel 0 Line B I/0
B1 Channel 1 Line B 1/0
B2 Channel 2 Line B I/0
CLKO Channel 0 External Clock Input Input
CLKA1 Channel 1 External Clock Input Input
CLK2 Channel 2 External Clock Input Input
Two-wire Interface - TWI

SCL Serial Clock I/0
SDA Serial Data I/0

Universal Synchronous Asynchronous Receiver Transmitter - USARTO0, USART1, USART2, USART3
CLK Clock I/0
CTS Clear To Send Input
RTS Request To Send Output
RXD Receive Data Input
14 /AT 32 /A P70 /() 5000000

32003E-AVR32-05/06

Table 4-1. Signal Description List

Active
Signal Name Function Type Level Comments

TXD Transmit Data Output

Pulse Width Modulator - PWM

PWMO - PWM3 PWM OQutput Pins Output

Universal Serial Bus Device - USB

DDM USB Device Port Data - Analog

DDP USB Device Port Data + Analog

ATMEL s

32003E-AVR32-05/06

5. Power Considerations

5.1 Power Supplies

ATMEL

The AT32AP7000 has several types of power supply pins:

VDDCORE pins: Power the core, memories, and peripherals. Voltage is 1.8V nominal.
VDDIO pins: Power I/O lines. Voltage is 3.3V nominal.
VDDPLL pin: Powers the PLL. Voltage is 1.8V nominal.
VDDUSB pin: Powers the USB. Voltage is 1.8V nominal.
VDDOSC pin: Powers the oscillators. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE and VDDIO. The ground pin for VDDPLL is

GNDPLL, and the GND pin for VDDOSC is GNDOSC.

See "Electrical Characteristics - TBD” on page 910 for power consumption on the various supply

pins.

5.2 Power Supply Connections

Special considerations should be made when connecting the power and ground pins on a PCB.
Figure 5-1 shows how this should be done.

Figure 5-1. Connecting analog power supplies

AVDDUSB
AVDDPLL
AVDDOSC

AGNDUSB

AGNDPLL
AGNDOSC

VDDCORE

C54
.10u

(=)

C56
0.10u

C55
0.10u

3.3uH

O VvCC_1vs

|||—

16 /AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

6. 1/0 Line Considerations

6.1 JTAG pins

6.2 WAKE_N pin

6.3 RESET_N pin

6.4 EVTLN pin

6.5 TWI pins

6.6 PIO pins

32003E-AVR32-05/06

The TMS, TDI and TCK pins have pull-up resistors. TDO is an output, driven at up to VDDIO,
and have no pull-up resistor. The TRST_N pin is used to initialize the embedded JTAG TAP
Controller when asserted at a low level. It is a schmitt input and integrates permanent pull-up
resistor to VDDIO, so that it can be left unconnected for normal operations.

The WAKE_N pin is a schmitt trigger input integrating a permanent pull-up resistor to VDDIO.

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.

The EVTI_N pin is a schmitt input and integrates a non-programmable pull-up resistor to VDDIO.

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the
pins have the same characteristics as PIO pins.

All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is
performed independently for each 1/O line through the PIO Controllers. After reset, I/O lines
default as inputs with pull-up resistors enabled, except when indicated otherwise in the column
“Reset State” of the PIO Controller multiplexing tables.

ATMEL 17

ATMEL

7. AVR32 AP CPU

71

7.2

18

Rev: 1.0.0

This chapter gives an overview of the AVR32 AP CPU. AVR32 AP is an implementation of the
AVR32 architecture. A summary of the programming model, instruction set, caches and MMU is
presented. For further details, see the AVR32 Architecture Manual and the AVR32 AP Technical
Reference Manual.

AVR32 Architecture

AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for cost-
sensitive embedded applications, with particular emphasis on low power consumption and high
code density. In addition, the instruction set architecture has been tuned to allow a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid- or high-performance
processors. AVR32 extends the AVRO family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and half-word data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, half-word, word and double word data
with automatic sign- or zero extension of half-word and byte data.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

The AVR32 AP CPU

AVR32 AP targets high-performance applications, and provides an advanced OCD system, effi-
cient data and instruction caches, and a full MMU. Figure 7-1 on page 19 displays the contents
of AVR32 AP.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

Figure 7-1. Overview of the AVR32 AP CPU
N
[Q [}
8 8 8
© IS £ £
Q = ——
= [a)] 5}
= O < 7]
5 101 =5 14
S
<
8 OCD JTAG Reset
| system control control
=
Tightly Coupled Bus . . . BTB RAM interface
I oMt = AVR32 CPU pipeline with Java accelerator]
A A
Y MMU Y
Dcache Icache
Cache RAM interface § controller |« . S E E - »| controller [Cache RAM interface
=l F |=
. Sl |2 .
AHB lite 2 &£ |2 AHB lite
c|l o |E
master 5| 2|5 master
QO ™M (<

< AHB lite bus

< AHB lite bus

AT32AP7000

7.2.1 Pipeline Overview

AVR32 AP is a pipelined processor with seven pipeline stages. The pipeline has three subpipes,
namely the Multiply pipe, the Execute pipe and the Data pipe. These pipelines may execute dif-
ferent instructions in parallel. Instructions are issued in order, but may complete out of order
(O00) since the subpipes may be stalled individually, and certain operations may use a subpipe
for several clock cycles.

Figure 7-2 on page 20 shows an overview of the AVR32 AP pipeline stages.

19

ATMEL

32003E-AVR32-05/06

7.2.2

7.2.3

7.24

20

ATMEL

Figure 7-2. ' The AVR32 AP Pipeline

> Ml - M2 - Multiply pipe
IF1 | IF2 | ID IS ‘ > Al > A2 » WB ALU pipe
Prefetch unit Decode unit
> -
L»l DA D > Load_ store
» pipe

.The follwing abbreviations are used in the figure:

¢ |[F1, IF2 - Instruction Fetch stage 1 and 2
¢ |D - Instruction Decode

* |S - Instruction Issue

* A1, A2 - ALU stage 1 and 2

* M1, M2 - Multiply stage 1 and 2

¢ DA - Data Address calculation stage

* D - Data cache access

* WB - Writeback

AVR32B Microarchitecture Compliance

Java Support

AVR32 AP implements an AVR32B microarchitecture. The AVR32B microarchitecture is tar-
geted at applications where interrupt latency is important. The AVR32B therefore implements
dedicated registers to hold the status register and return address for interrupts, exceptions and
supervisor calls. This information does not need to be written to the stack, and latency is there-
fore reduced. Additionally, AVR32B allows hardware shadowing of the registers in the register
file.

The scall, rete and rets instructions use the dedicated return status registers and return address
registers in their operation. No stack accesses are performed by these instructions.

AVR32 AP provides Java hardware acceleration in the form of a Java Virtual Machine hardware
implementation. Refer to the AVR32 Java Technical Reference Manual for details.

Memory management

AVR32 AP implements a full MMU as specified by the AVR32 architecture. The page sizes pro-
vided are 1K, 4K, 64K and 1M. A 32-entry fully-associative common TLB is implemented, as well
as a 4-entry micro-ITLB and 8-entry micro-DTLB. Instruction and data accesses perform lookups
in the micro-TLBs. If the access misses in the micro-TLBs, an access in the common TLB is per-
formed. If this access misses, a page miss exception is issued.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

7.2.5 Caches and write buffer

AVR32 AP implements 16K data and 16K instruction caches. The caches are 4-way set asso-
ciative. Each cache has a 32-bit System Bus master interface connecting it to the bus. The
instruction cache has a 32-bit interface to the fetch pipeline stage, and the data cache has a 64-
bit interface to the load-store pipeline. The caches use a least recently used allocate-on-read-
miss replacement policy. The caches are virtually tagged, physically indexed, avoiding the need
to flush them on task switch.

The caches provide locking on a per-line basis, allowing code and data to be permanently
locked in the caches for timing-critical code. The data cache also allows prefetching of data
using the prefinstruction.

Accesses to the instruction and data caches are tagged as cacheable or uncacheable on a per-
page basis by the MMU. Data cache writes are tagged as write-through or writeback on a per-
page basis by the MMU.

The data cache has a 32-byte combining write buffer, to avoid stalling the CPU when writing to
external memory. Writes are tagged as bufferable or unbufferable on a per-page basis by the
MMU. Bufferable writes to sequential addresses are placed in the buffer, allowing for example a
sequence of byte writes from the CPU to be combined into word transfers on the bus. A sync
instruction is provided to explicitly flush the write buffer.

7.2.6 Unaligned reference handling

32003E-AVR32-05/06

AVR32 AP has hardware support for performing unaligned memory accesses. This will reduce
the memory footprint needed by some applications, as well as speed up other applications oper-
ating on unaligned data.

AVR32 AP is able to perform certain word-sized load and store instructions of any alignment,
and word-aligned st.d and /d.d. Any other unaligned memory access will cause an MMU address
exception. All coprocessor memory access instructions require word-aligned pointers. Double-
word-sized accesses with word-aligned pointers will automatically be performed as two word-
sized accesses.

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses. Accessing an unaligned address may require several
clock cycles, refer to the AVR32 AP Technical Reference Manual for details.

Table 7-1. Instructions with unaligned reference support
Instruction Supported alignment
Id.w Any
st.w Any
lddsp Any
lddpc Any
stdsp Any
Id.d Word
st.d Word
All coprocessor memory access instruction | Word

ATMEL 2

ATMEL

7.2.7 Unimplemented instructions
The following instructions are unimplemented in AVR32 AP, and will cause an Unimplemented
Instruction Exception if executed:

* mems
* memc
* memt

7.2.8 Exceptions and Interrupts

AVR32 AP incorporates a powerful exception handling scheme. The different exception
sources, like lllegal Op-code and external interrupt requests, have different priority levels, ensur-
ing a well-defined behavior when multiple exceptions are received simultaneously. Additionally,
pending exceptions of a higher priority class may preempt handling of ongoing exceptions of a
lower priority class. Each priority class has dedicated registers to keep the return address and
status register thereby removing the need to perform time-consuming memory operations to
save this information.

There are four levels of external interrupt requests, all executing in their own context. The INT3
context provides dedicated shadow registers ensuring low latency for these interrupts. An inter-
rupt controller does the priority handling of the external interrupts and provides the autovector
offset to the CPU.

The addresses and priority of simultaneous events are shown in Table 7-2 on page 23.

22 /AT 32 /A P70 O/ () 50000000000

Table 7-2. Priority and handler addresses for events
Priority | Handler Address Name Event source Stored Return Address
1 0xA000_0000 Reset External input Undefined
2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction
3 EVBA-+0x00 Unrecoverable exception Internal PC of offending instruction
4 EVBA+0x04 TLB multiple hit Internal signal PC of offending instruction
5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction
6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction
7 EVBA+0x10 NMI External input First non-completed instruction
8 Autovectored Interrupt 3 request External input First non-completed instruction
9 Autovectored Interrupt 2 request External input First non-completed instruction
10 Autovectored Interrupt 1 request External input First non-completed instruction
11 Autovectored Interrupt O request External input First non-completed instruction
12 EVBA+0x14 Instruction Address ITLB PC of offending instruction
13 EVBA+0x50 ITLB Miss ITLB PC of offending instruction
14 EVBA+0x18 ITLB Protection ITLB PC of offending instruction
15 EVBA+0x1C Breakpoint OCD system First non-completed instruction
16 EVBA+0x20 lllegal Opcode Instruction PC of offending instruction
17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction
18 EVBA+0x28 Privilege violation Instruction PC of offending instruction
19 EVBA+0x2C Floating-point FP Hardware PC of offending instruction
20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction
21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2
22 EVBA+0x34 Data Address (Read) DTLB PC of offending instruction
23 EVBA+0x38 Data Address (Write) DTLB PC of offending instruction
24 EVBA+0x60 DTLB Miss (Read) DTLB PC of offending instruction
25 EVBA+0x70 DTLB Miss (Write) DTLB PC of offending instruction
26 EVBA+0x3C DTLB Protection (Read) DTLB PC of offending instruction
27 EVBA+0x40 DTLB Protection (Write) DTLB PC of offending instruction
28 EVBA+0x44 DTLB Modified DTLB PC of offending instruction

32003E-AVR32-05/06

ATMEL

23

ATMEL

7.3 Programming Model

7.3.1 Register file configuration

The AVR32B architecture specifies that the exception contexts may have a different number of
shadowed registers in different implementations. Figure 7-3 on page 24 shows the model used
in AVR32 AP.

Figure 7-3. The AVR32 AP Register File

Application Supervisor INTO INT1 INT2 INT3 Exception NMI
Bit31 Bit 0 Bit 31 Bit0 Bit 31 Bit 0 Bit31 Bit0 Bit 31 Bit0 Bit 31 Bit 0 Bit 31 Bit0 Bit 31 Bit0

PC PC PC PC PC PC PC PC

LR LR LR LR LR LR_INT3 LR LR
SP_APP SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS

R12 R12 R12 R12 R12 R12_INT3 R12 R12

R11 R11 R11 R11 R11 R11_INT3 R11 R11

R10 R10 R10 R10 R10 R10_INT3 R10 R10

R9 R9 R9 R9 R9 R9_INT3 R9 R9

R8 R8 R8 R8 R8 R8_INT3 R8 R8

R7 R7 R7 R7 R7 R7 R7 R7

R6 R6 R6 R6 R6 R6 R6 R6

R5 R5 R5 R5 RS R5 RS RS

R4 R4 R4 R4 R4 R4 R4 R4

R3 R3 R3 R3 R3 R3 R3 R3

R2 R2 R2 R2 R2 R2 R2 R2

R1 R1 R1 R1 R1 R1 R1 R1

RO RO RO RO RO RO RO RO

sR | [SR SR SR SR SR SR SR
‘ RSR_SUP RSR_INTO RSR_INT1 RSR_INT2 RSR_INT3 RSR_EX RSR_NMI
‘ RAR_SUP RAR_INTO RAR_INT1 RAR_INT2 RAR_INT3 RAR_EX RAR_NMI

7.3.2 Status register configuration

The Status Register (SR) is splitted into two halfwords, one upper and one lower, see Figure 7-4
on page 24 and Figure 7-5 on page 25. The lower word contains the C, Z, N, V and Q condition
code flags and the R, T and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 7-4. The Status Register High Halfword

Bit 31 Bit 16

- - H J DM | D - M2 | M1 | MO | EM | I3M | I2M | IIM | IOM | GM | Bit name

ojo0jo0o;jo0,0}j010]0/|0O0 171]0|0] 0| 0| 1 |Initalvalue

|—> Global Interrupt Mask

—— Interrupt Level 0 Mask
Interrupt Level 1 Mask
Interrupt Level 2 Mask
Interrupt Level 3 Mask
Exception Mask
Mode Bit 0

Mode Bit 1

Mode Bit 2

Reserved

Debug State

Debug State Mask
Java State

Java Handle
Reserved

Reserved

YYYYYYYYYYYY V{

24 /AT 3:2/A P7/0/0/(550000000000

AT32AP7000

Figure 7-5. The Status Register Low Halfword

Bit 15 Bit0

R|T |-} -|-|-|-]-]-]-]L|]Q|V|N|]Z]|C |Bitname

ojo0o|j0|j0|0|O0O|]O0O]O]O]O|O]O|O0]|O0]| 0| O |[Initialvalue

a8 L» Carry

L———» Zero

Sign

Overflow

Saturation

Lock

Reserved

Scratch

Register Remap Enable

YYyVvVvYyYyy V{

7.3.3 Processor States
7.3.3.1 Normal RISC State
The AVR32 processor supports several different execution contexts as shown in Table 7-3 on
page 25.
Table 7-3. Overview of execution modes, their priorities and privilege levels.
Priority | Mode Security Description
1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode
2 Exception Privileged Execute exceptions
3 Interrupt 3 Privileged General purpose interrupt mode
4 Interrupt 2 Privileged General purpose interrupt mode
5 Interrupt 1 Privileged General purpose interrupt mode
6 Interrupt O Privileged General purpose interrupt mode
N/A Supervisor Privileged Runs supervisor calls
N/A Application Unprivileged Normal program execution mode

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

7.3.3.2 Debug State
The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

ATMEL 2

32003E-AVR32-05/06

ATMEL

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32 AP Technical Reference Manual.
Debug state is exited by the retd instruction.

7.3.3.3 Java State
AVR32 AP implements a Java Extension Module (JEM). The processor can be set in a Java

State where normal RISC operations are suspended. Refer to the AVR32 Java Technical Refer-
ence Manual for details.

26 /AT 32 /A P70 O/ () 50000000000

8. Pixel Coprocessor (PiCo)

Rev: 1.0.0
8.1 Features

¢ Coprocessor coupled to the AVR32 CPU Core through the TCB Bus.
* Three parallel Vector Multiplication Units (VMU) where each unit can:
— Multiply three pixel components with three coefficients.
— Add the products from the multiplications together.
— Accumulate the result or add an offset to the sum of the products.
¢ Can be used for accelerating:
- Image Color Space Conversion.
¢ Configurable Conversion Coefficients.
¢ Supports packed and planar input and output formats.
e Supports subsampled input color spaces (i.e 4:2:2, 4:2:0).
- Image filtering/scaling.
e Configurable Filter Coefficients.
e Throughput of one sample per cycle for a 9-tap FIR filter.
¢ Can use the built-in accumulator to extend the FIR filter to more than 9-taps.
¢ Can be used for bilinear/bicubic interpolations.
— MPEG-4/H.264 Quarter Pixel Motion Compensation.
* Flexible input Pixel Selector.
— Can operate on numerous different image storage formats.
* Flexible Output Pixel Inserter.
— Scales and saturates the results back to 8-bit pixel values.
— Supports packed and planar output formats.
¢ Configurable coefficients with flexible fixed-point representation.

8.2 Description

The Pixel Coprocessor (PiCo) is a coprocessor coupled to the AVR32 CPU through the TCB
(Tightly Coupled Bus) interface. The PiCo consists of three Vector Multiplication Units (VMUO,
VMU1, VMU2), an Input Pixel Selector and an Output Pixel Inserter. Each VMU can perform a
vector multiplication of a 1x3 12-bit coefficient vector with a 3x1 8-bit pixel vector. In addition a
12-bit offset can be added to the result of this vector multiplication.

The PiCo can be used for transforming the pixel components in a given color space (i.e. RGB,
YCrCb, YUV) to any other color space as long as the transformation is linear. The flexibility of
the Input Pixel Selector and Output Pixel Insertion logic makes it easy to efficiently support dif-
ferent pixel storage formats with regards to issues such as byte ordering of the color
components, if the color components constituting an image are packed/interleaved or stored as
separate images or if any of the color components are subsampled.

The three Vector Multiplication Units can also be connected together to form one large vector
multiplier which can perform a vector multiplication of a 1x9 12-bit coefficient vector with a 9x1 8-
bit pixel vector. This can be used to implement FIR filters, bilinear interpolations filters for
smoothing/scaling images etc. By allowing the outputs from the Vector Multiplication units to
accumulate it is also possible to extend the order of the filter to more than 9-taps.

The results from the VMUs are scaled and saturated back to unsigned 8-bit pixel values in the
Output Pixel Inserter.

ATMEL 2

32003E-AVR32-05/06

ATMEL

The PiCo is divided into three pipeline stages with a throughput of one operation per cpu clock

cycle.

8.3 Block Diagram

Figure 8-1. Pixel Coprocessor Block Diagram

' INPIXO \ INPIX1 \ INPIX2 ;

Input Pixel Selector

Pipeline Stage 1

Y v

y Y Y

Y

Y y

Y
é VMUO_INO \ VMUO_IN1 \ VMUO_IN2 M VMUL INO \ VMUL INL \ VMUL_IN2 M VMU2_INO \ VMU2_INL \ VMU2_IN2 #

nE

nli

3 L

COEFF0_0 > COEFF1.0 >

COEFFO0_1 - COEFF1_1 >

VMUO VMUL
COEFF0_2 > COEFF1_2 >
4 A
OFFSETO OFFSET1
A \
VMUO_OUT VMUL_OUT
| I | L = |

COEFF2 0

COEFF2_1
COEFF2_2

4

A

VMU2

Pipeline Stage 2

Output Pixel Inserter

/

Pipeline Stage 3

; OUTPIX0 \ OUTPIX1 \ OUTPIX2 ;

28 /AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

8.4 Vector Multiplication Unit (VMU)

Each VMU consists of three multipliers used for multiplying unsigned 8-bit pixel components with
signed 12-bit coefficients.The result from each multiplication is a 20-bit signed number that is
input to a 22-bit vector adder along with an offset as shown in Figure 8-2 on page 29. The oper-
ation is equal to the offsetted vector multiplication given in the following equation:

vmu_in0
vmu_out = [coeff0 coeffl coeff2] |vmu_in1| + Offset
vmu_in2
Figure 8-2. Inside VMUn (n € {0,1,2})
coeffn_0 vmun_in0 coeffn_1 vmun_inl coeffn_2 vmun_in2
Multiply Multiply Multiply
offsetn + i L
Vector Adder
VMUnN
\/

vmun_out

8.5 Input Pixel Selector

The Input Pixel Selector uses the ISM (Input Selection Mode) field in the CONFIG register and
the three input pixel source addresses given in the PiCo operation instructions to decide which
pixels to select for inputs to the VMUs.

8.5.1 Transformation Mode
When the Input Selection Mode is set to Transformation Mode the input pixel source addresses
INx, INy and INz directly maps to three pixels in the INPIXn registers. These three pixels are
then input to each of the VMUSs. The following expression then represents what is computed by
the VMUs in Transformation Mode:

VMUO_OUT COEFF0_0 COEFFO_1 COEFF0_2||INx| |OFFSETO or VMUO_OUT
VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| + |OFFSET1 or VMU1_OUT
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2||INz| |OFFSET2 or VMU2_OUT

ATMEL 2

32003E-AVR32-05/06

8.5.2

8.5.3

30

ATMEL

Horizontal Filter Mode
In Horizontal Filter Mode the input pixel source addresses INx, INy and INz represents the base
pixel address of a pixel triplet. The pixel triplet {IN(x), IN(x+1), IN(x+2)} is input to VMUO, the
pixel triplet {IN(y), IN(y+1), IN(y+2)} is input to VMU1 and the pixel triplet {IN(z), IN(z+1), IN(z+2)}
is input to VMU2. Figure 8-3 on page 30 shows how the pixel triplet is found by taking the pixel
addressed by the base address and following the arrow to find the next two pixels which makes
up the triplet.

Figure 8-3. Horizontal Filter Mode Pixel Addressing

INPIXO ING TNE TNE iy
/
INPIX1 |N4(/5 NG N
//
INPIX2 INS=———ND O NP

The following expression represents what is computed by the VMUSs in Horizontal Filter Mode:

(
(
(

(

N
N(x+1)| + (OFFSETO or VMUO_OUT)
N
IN
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] |IN(
IN
N
N
N

|
VMUO_OUT = [COEFF0_0 COEFF0_1 COEFFO0_2]|I
|

(

IN(
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2]|IN(
|

IN(

+ (OFFSET2 or VMU2_OUT)

x+0f
x+1)
X+2)|
y+0)|
y+1)| + (OFFSET1 or VMU1_OUT)
y+2)]
z+0f
z+1)
z+2)|

Vertical Filter Mode
In Vertical Filter Mode the input pixel source addresses INXx, INy and INz represent the base of a
pixel triplet found by following the vertical arrow shown in Figure 8-4 on page 31. The pixel triplet
{IN(x), IN((x+4)%11), IN((x+8)%11)} is input to VMUO, the pixel triplet {IN(y), IN((y+4)%11),
IN((y+8)%11)} is input to VMU1 and the pixel triplet {IN(z), IN((z+4)%11), IN((z+8)%11)} is input
to VMU2.

/AT 32 /A P70 O/ () 50000000000

AT32AP7000

Figure 8-4. Vertical Filter Mode Pixel Addressing

INPIXO INO %1 y” IN

/

INPIX1 IN¢ // INB //INb //IN'

INPIX2 IN'{ INK INl(INZI!

The following expression represents what is computed by the VMUs in Vertical Filter Mode:

[IN((x+0)%11
VMUO_OUT = [COEFF0_0 COEFF0_1 COEFF0_2] |IN((x+4)%11
LIN((x+8)%11

+ (OFFSETO or VMUO_OUT)

)
)
)
[IN((y+0)%11)]
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] |IN((y+4)%11)| + (OFFSET1 or VMU1_OUT)
LIN((y+8)%11)]
)
)
)]

[IN((z+0)%11
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2||IN((z+4)%11
|IN((2+8)%11

+ (OFFSET2 or VMU2_OUT)

8.6 Output Pixel Inserter

The Output Pixel Inserter uses the OIM (Output Insertion Mode) field in the CONFIG register and
the destination pixel address given in the PiCo operation instructions to decide which three of
the twelve possible OUTn pixels to write back the scaled and saturated results from the VMUs
to. The 22-bit results from each VMU is first scaled by performing an arithmetical right shift by
COEFF_FRAC_BITS in order to remove the fractional part of the results and obtain the integer
part. The integer part is then saturated to an unsigned 8-bit number in the range 0 to 255.

8.6.1 Planar Insertion Mode
In Planar Insertion Mode the destination pixel address OUTd specifies which pixel in each of the
registers OUTPIX0, OUTPIX1 and OUTPIX2 will be updated. VMUn writes to OUTPIXn. This
can be seen in Figure 8-5 on page 32 and Table 8-2 on page 49. This mode is useful when
transforming from one color space to another where the resulting color components should be
stored in separate images.

ATMEL s

32003E-AVR32-05/06

ATMEL

Figure 8-5. Planar Pixel Insertion

OUTPIX0 ouTo ouT1 ouT2 ouT3
OUTPIX1 ouT4 ouT5 ouT6 ouT?
OUTPIX2 ouTs ouTY ouUT10 ouTi1
W__/&A N N
d=0 d=1 d=2 d=3

8.6.2 Packed Insertion Mode
In Packed Insertion Mode the three output registers OUTPIX0, OUTPIX1 and OUTPIX2 are
divided into four pixel triplets as seen in Figure 8-6 on page 32 and Table 8-2 on page 49. The
destination pixel address is then the address of the pixel triplet. VMUn writes to pixel n of the
pixel triplet.This mode is useful when transforming from one color space to another where the
resulting color components should be packed together.

Figure 8-6. Packed Pixel Insertion.

| |
I I
I I
I I
I I
I I
| I
QUTPIXO0 OUTPIX1 QOUTPIX2
A A A
4 Y Y A
OuTO OuUT1l ouT2 OuUT3 OouT4 OuUT5 OuUT6 OouT7 ouT8 ouT9 OuUT10 OuUT11
g N N N J
Y Y Y Y
d=0 d=1 d=2 d=3

32003E-AVR32-05/06

8.7 User Interface

The PiCo uses the TCB interface to communicate with the CPU and the user can read from or
write to the PiCo Register File by using the PiCo load/store/move instructions which maps to

generic coprocessor instructions.

8.7.1 Register File
The PiCo register file can be accessed from the CPU by using the picomv.x, picold.x, picost.x,
picoldm and picostm instructions.
Table 8-1. PiCo Register File

Cp Reg # Register Name Access

cr0 Input Pixel Register 2 INPIX2 Read/Write
cri Input Pixel Register 1 INPIX1 Read/Write
cr2 Input Pixel Register 0 INPIXO Read/Write
cr3 Output Pixel Register 2 OUTPIX2 Read Only
crd Output Pixel Register 1 OUTPIX1 Read Only
cr5 Output Pixel Register 0 OUTPIX0 Read Only
cré Coefficient Register A for VMUO COEFFO_A Read/Write
cr7 Coefficient Register B for VMUO COEFFO0_B Read/Write
cr8 Coefficient Register A for VMU1 COEFF1_A Read/Write
cr9 Coefficient Register B for VMUA1 COEFF1_B Read/Write
cr10 Coefficient Register A for VMU2 COEFF2_A Read/Write
crid Coefficient Register B for VMU2 COEFF2_B Read/Write
cri2 Output from VMUO VMUOQO_OUT Read/Write
cr13 Output from VMUA1 VMU1_OUT Read/Write
cri4 Output from VMU2 VMU2_OUT Read/Write
cr15 PiCo Configuration Register CONFIG Read/Write

32003E-AVR32-05/06

ATMEL

33

ATMEL

8.7.1.1 Input Pixel Register 0
Register Name: INPIX0

Access Type: Read/Write

31 30 29 28 27 26 25 24

| INO |
23 22 21 20 19 18 17 16

| IN1 |
15 14 13 12 11 10 9 8

| IN2 |
7 6 5 4 3 2 1 0

| IN3 |

¢ INO: Input Pixel 0
Input Pixel number 0 to the Input Pixel Selector Unit.

¢ IN1: Input Pixel 1
Input Pixel number 1 to the Input Pixel Selector Unit.

¢ IN2: Input Pixel 2
Input Pixel number 2 to the Input Pixel Selector Unit.

¢ IN3: Input Pixel 3
Input Pixel number 3 to the Input Pixel Selector Unit.

34 /AT 3:2/A P7/0/0/(550000000000

8.7.1.2 Input Pixel Register 1
Register Name: INPIX1

Access Type: Read/Write

31 30 29 28 27 26 25 24

| NG |
23 22 21 20 19 18 17 16

| N5 |
15 14 13 12 11 10 9 8

| IN6 |
7 6 5 4 3 2 1 0

| N7 |

¢ INO: Input Pixel 4
Input Pixel number 4 to the Input Pixel Selector Unit.

e IN1: Input Pixel 5
Input Pixel number 5 to the Input Pixel Selector Unit.

¢ IN2: Input Pixel 6
Input Pixel number 6 to the Input Pixel Selector Unit.

¢ IN3: Input Pixel 7
Input Pixel number 7 to the Input Pixel Selector Unit.

ATMEL 55

32003E-AVR32-05/06

ATMEL

8.7.1.3 Input Pixel Register 2
Register Name: INPIX2

Access Type: Read/Write

31 30 29 28 27 26 25 24

| IN8 |
23 22 21 20 19 18 17 16

| IN9 |
15 14 13 12 11 10 9 8

| IN10 |
7 6 5 4 3 2 1 0

| IN11 |

¢ INO: Input Pixel 8
Input Pixel number 8 to the Input Pixel Selector Unit.

¢ IN1: Input Pixel 9
Input Pixel number 9 to the Input Pixel Selector Unit.

¢ IN2: Input Pixel 10
Input Pixel number 10 to the Input Pixel Selector Unit.

¢ IN3: Input Pixel 11
Input Pixel number 11 to the Input Pixel Selector Unit.

36 /AT 32 /A P70 O/ () 50000000000

8.7.1.4 Output Pixel Register 0
Register Name: OUTPIX0

Access Type: Read

31 30 29 28 27 26 25 24

| OouTo |
23 22 21 20 19 18 17 16

| OouT1 |
15 14 13 12 11 10 9 8

| OouT2 |
7 6 5 4 3 2 1 0

| OuT3 |

e OUTO: Output Pixel 0
Output Pixel number 0 from the Output Pixel Inserter Unit.

e OUT1: Output Pixel 1
Output Pixel number 1 from the Output Pixel Inserter Unit.

e OUT2: Output Pixel 2
Output Pixel number 2 from the Output Pixel Inserter Unit.

e OUT3: Output Pixel 3
Output Pixel number 3 from the Output Pixel Inserter Unit.

ATMEL 5

32003E-AVR32-05/06

ATMEL

8.7.1.5 Output Pixel Register 1
Register Name: OUTPIX1

Access Type: Read

31 30 29 28 27 26 25 24

| ouT4 |
23 22 21 20 19 18 17 16

| OUT5 |
15 14 13 12 11 10 9 8

| OouTe |
7 6 5 4 3 2 1 0

| OUT? |

e OUT4: Output Pixel 4
Output Pixel number 4 from the Output Pixel Inserter Unit.

e OUTS5: Output Pixel 5
Output Pixel number 5 from the Output Pixel Inserter Unit.

e OUT6: Output Pixel 6
Output Pixel number 6 from the Output Pixel Inserter Unit.

e OUT7: Output Pixel 7
Output Pixel number 7 from the Output Pixel Inserter Unit.

38 /AT 32 /A P70 O/ () 50000000000

8.7.1.6 Output Pixel Register 2
Register Name: OUTPIX2

Access Type: Read

31 30 29 28 27 26 25 24

| ouTs |
23 22 21 20 19 18 17 16

| OouT9 |
15 14 13 12 11 10 9 8

| OuUT10 |
7 6 5 4 3 2 1 0

| OuT11 |

e OUTS: Output Pixel 8
Output Pixel number 8 from the Output Pixel Inserter Unit.

e OUT9: Output Pixel 9
Output Pixel number 9 from the Output Pixel Inserter Unit.

e OUT10: Output Pixel 10
Output Pixel number 10 from the Output Pixel Inserter Unit.

e OUT11: Output Pixel 11
Output Pixel number 11 from the Output Pixel Inserter Unit.

ATMEL s

32003E-AVR32-05/06

ATMEL

8.7.1.7 Coefficient Register A for VMUO
Register Name: COEFFO_A

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - [- | - - COEFF0_0 |
23 22 21 20 19 18 17 16
| COEFF0_0 |
15 14 13 12 11 10 9 8
| - - N - COEFFO_1 |
7 6 5 4 3 2 1 0
| COEFFO_1 |

e COEFFO0_0: Coefficient 0 for VMUO

Coefficient 0 input to VMUOQ. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFFO _0/2CCEFF-FRACBITS
where the COEFFO0_0 value is interpreted as a 2’s complement integer. When reading this register, COEFF0_O0 is S|gn-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e COEFFO0_1: Coefficient 1 for VMUO

Coefficient 1 input to VMUO. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF0_1,/2CCFFF-FRACBITS
where the COEFFO0_1 value is interpreted as a 2’s complement integer. When reading this register, COEFFO0_1 is sign-

extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

40 AT32AP7000 m——

32003E-AVR32-05/06

8.7.1.8 Coefficient Register B for VMUO
Register Name: COEFF0_B

Access Type: Read/Write

31 30 29 28 27 26 25 24

| : | - [: : COEFF0_2 |
23 22 21 20 19 18 17 16

| COEFFQ_2 |
15 14 13 12 11 10 9 8

| n - - - [OFFSETO |
7 6 5 4 3 2 1 0

| OFFSETO |

e COEFFO0_2: Coefficient 2 for VMUO

Coefficient 2 input to VMUOQ. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFFO _2/pCOEFF_FRACBITS
where the COEFFO0_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF0_2 is S|gn-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e OFFSETO: Offset for VMUO

Offset input to VMUO in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to
OFFSET0,/20FFSET-FRACBITS '\here the OFFSETO value is interpreted as a 2’s complement integer. When reading this reg-
ister, OFFSETO is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

ATMEL i

32003E-AVR32-05/06

ATMEL

8.7.1.9 Coefficient Register A for VMU1
Register Name: COEFF1_A

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - | - [- - COEFF1_0 |
23 22 21 20 19 18 17 16
| COEFF1_0 |
15 14 13 12 11 10 9 8
| - - 5 - COEFF1_1 |
7 6 5 4 3 2 1 0
| COEFF1_1 |

e COEFF1_0: Coefficient 0 for VMU1

Coefficient 0 input to VMU1. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF1_0,/2CCFFF-FRACBITS
where the COEFF1_0 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_0 is sign-

extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e COEFF1_1: Coefficient 1 for VMU1

Coefficient 1 input to VMUO. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF1_1,/2C0FFF-FRACBITS
where the COEFF1_1 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_1 is sign-

extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

42 /AT 3:2/A P7/0/0/(550000000000

32003E-AVR32-05/06

8.7.1.10 Coefficient Register B for VMU1
Register Name: COEFF1_B

Access Type: Read/Write

31 30 29 28 27 26 25 24

| - | - | - - COEFF1_2 |
23 22 21 20 19 18 17 16

| COEFF1_2 |
15 14 13 12 11 10 9 8

| - - - - | OFFSET1 |
7 6 5 4 3 2 1 0

| OFFSET1 |

e COEFF1_2: Coefficient 2 for VMU1

Coefficient 2 input to VMU1. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF1_2,2CCFFF-FRACBITS
where the COEFF1_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_2 is sign-

extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e OFFSET1: Offset for VMU1

Offset input to VMU1 in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to
OFFSET1 /20FFSET-FRACBITS '\here the OFFSET1 value is interpreted as a 2’s complement integer. When reading this reg-
ister, OFFSET1 is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

ATMEL i

32003E-AVR32-05/06

ATMEL

8.7.1.11 Coefficient Register A for VMU2
Register Name: COEFF2_A

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - | - | : : COEFF2_0 |
23 22 21 20 19 18 17 16
| COEFF2_0 |
15 14 13 12 11 10 9 8
| - - 5 - COEFF2_1 |
7 6 5 4 3 2 1 0
| COEFF2_1 |

e COEFF2_0: Coefficient 0 for VMU2

Coefficient 0 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF2 _0/2CCEFF-FRACBITS
where the COEFF2_0 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_0 is S|gn-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e COEFF2_1: Coefficient 1 for VMU2

Coefficient 1 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF2_1,/2C0FFF-FRACBITS
where the COEFF2_1 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_1 is sign-

extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

44 AT32AP7000 m——

32003E-AVR32-05/06

8.7.1.12 Coefficient Register B for VMU2
Register Name: COEFF2_B

Access Type: Read/Write

31 30 29 28 27 26 25 24

| - [- | - - COEFF2_2 |
23 22 21 20 19 18 17 16

| COEFF2_2 |
15 14 13 12 11 10 9 8

| - . - - | OFFSET2 |
7 6 5 4 3 2 1 0

| OFFSET2 |

e COEFF2_2: Coefficient 2 for VMU2

Coefficient 2 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF2 0 /pCOEFF_FRACBITS
where the COEFF2_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_2 is S|gn-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

e OFFSET2: Offset for VMU2

Offset input to VMU2 in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to
OFFSET2,/20FFSET-FRACBITS '\ here the OFFSET2 value is interpreted as a 2’s complement integer. When reading this reg-
ister, OFFSET2 is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

ATMEL s

32003E-AVR32-05/06

ATMEL

8.7.1.13 VMUO Output Register
Register Name: VMUO_OUT

Access Type: Read/Write

31 30 29 28 27 26 25 24
T T - - - - —
23 22 21 20 19 18 17 16
| - | - | VMUO_OUT |
15 14 13 12 11 10 9 8
| VMUO_OUT |
7 6 5 4 3 2 1 0
| VMUO_OUT |

e VMUO_OUT: Output from VMUO

This register is used for directly accessing the output from VMUO or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMUO is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

46 AT32AP7000 m——

8.7.1.14 VMUT Output Register
Register Name: VMU1_OUT

Access Type: Read/Write

31 30 29 28 27 26 25 24
T T — : : : :]
23 22 21 20 19 18 17 16
| - | - | VMU1_OUT |
15 14 13 12 11 10 9 8
| VMU1_OUT |
7 6 5 4 3 2 1 0
| VMU1_OUT |

e VMU1_OUT: Output from VMU1

This register is used for directly accessing the output from VMU1 or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMU1 is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

ATMEL i

32003E-AVR32-05/06

ATMEL

8.7.1.15 VMUZ2 Output Register
Register Name: VMU2_OUT

Access Type: Read/Write

31 30 29 28 27 26 25 24
T T - - - - —
23 22 21 20 19 18 17 16
| - | - | VMU2_OUT |
15 14 13 12 11 10 9 8
| VMU2_OUT |
7 6 5 4 3 2 1 0
| VMU2_OUT |

e VMU2_OUT: Output from VMU2

This register is used for directly accessing the output from VMU2 or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMU2 is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

48 AT32AP7000 m——

8.7.1.16 PiCo Configuration Register
Register Name: CONFIG

Access Type: Read/Write

31 30 29 28 27 26 25 24
| X | - | X | X | X | - | X | X |
23 22 21 20 19 18 17 16
| X | - | X | X | X | - | X | X |
15 14 13 12 11 10 9 8
| X | - | X | X | X | oM | ISM |
7 6 5 4 3 2 1 0
| OFFSET_FRAC_BITS | COEFF_FRAC_BITS |

¢ OIM: Output Insertion Mode

The OIM bit specifies the semantics of the OUTd output pixel address parameter to the pico(s)v(mul/mac) instructions. The
OIM together with the output pixel address parameter specify which of the 12 output bytes (OUTn) of the OUTPIXn regis-
ters will be updated with the results from the VMUs. Table 8-2 on page 49 describes the different Output Insertion Modes.
See Section 8.6 "Output Pixel Inserter” on page 31 for a description of the Output Pixel Inserter.

Table 8-2. Output Insertion Modes

OIM | Mode Description

{OUTPIX0, OUTPIX1, OUTPIX2} is treated as one large register containing 4 sequential 24-
bit pixel triplets. The DST_ADR field specifies which of the sequential triplets will be updated.

0 Packed Insertion Mode OUT(d*3 + 0) < Scaled and saturated output from VMUO
OUT(d*3 + 1) « Scaled and saturated output from VMU 1
OUT(d*3 + 2) < Scaled and saturated output from VMU2
Each of the OUTPIXn registers will get one of the resulting pixels. The triplet address
specifies what byte in each of the OUTPIXn registers the results will be written to.
1 Planar Insertion Mode

OUT(d + 0) < Scaled and saturated output from VMUO
OUT(d+ 4) < Scaled and saturated output from VMU1
OUT(d + 8) < Scaled and saturated output from VMUZ2

¢ ISM: Input Selection Mode

The ISM field specifies the semantics of the input pixel address parameters INx, INy and INz to the
pico(s)v(mul/mac) instructions. Together with the three input pixel addresses the ISM field specifies to the Input Pixel
Selector which of the input pixels (INn) that should be selected as inputs to the VMUs.Table 8-3 on page 50 describes the

ATMEL 1

32003E-AVR32-05/06

ATMEL

different Input Selection Modes. See Section 8.5 "Input Pixel Selector” on page 29 for a description of the Input Pixel

Table 8-3. Input Selection Modes

ISM Mode

0 0 Transformation Mode VMUO, VMU1 and VMU2 get the same pixel inputs. These three pixels can be
freely selected from the INPIXn registers.

0 1 Horizontal Filter Mode P|xgl tnpletg are §elected for input to each Qf the VMUs by addressing
horizontal pixel triplets from the INPIXn registers.

1 0 Vertical Filter Mode Pllxel tr.lplets are selected for |npqt to each of the VMUs by addressing vertical
pixel triplets from the INPIXn registers.

1 1 Reserved N.A

Selector.

e OFFSET_FRAC_BITS: Offset Fractional Bits
Specifies the number of fractional bits in the fixed-point offsets input to each VMU. Must be in the range from 0 to
COEFF_FRAC_BITS. Other values gives undefined results.This value is used for scaling the OFFSETn values before
being input to VMUn so that the offset will have the same fixed-point format as the outputs from the multiplication stages
before performing the vector addition in the VMU.

e COEFF_FRAC_BITS: Coefficient Fractional Bits

Specifies the number of fractional bits in the fixed-point coefficients input to each VMU. Must be in the range from 0 to 11,
since at least one bit of the coefficient must be used for the sign. Other values gives undefined results.
COEFF_FRAC_BITS is used in the Output Pixel Inserter to scale the fixed-point results from the VMUs back to unsigned 8-
bit integers.

50 /AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

8.8 PiCo Instructions

[i]
[i:]]

8.8.1 PiCo Instructions Nomenclature
8.8.1.1 Registers and Operands

R{d, s, ...} The uppercase ‘R’ denotes a 32-bit (word) register.

Rd The lowercase ‘d’ denotes the destination register number.

Rs The lowercase ‘s’ denotes the source register number.

Rb The lowercase ‘b’ denotes the base register number for indexed addressing modes.

Ri The lowercase ‘i’ denotes the index register number for indexed addressing modes.

Rp The lowercase ‘p’ denotes the pointer register number.

IN{x, y, z} The uppercase ‘IN’ denotes a pixel in the INPIXn registers.

INx The lowercase ‘X’ denotes the first input pixel number for the PiCo operation instructions.

INy The lowercase ‘y’ denotes the second input pixel number for the PiCo operation instructions.

INz The lowercase ‘Zz’ denotes the third input pixel number for the PiCo operation instructions.

OUTd The uppercase ‘OUT’ denotes a pixel in the OUTPIXn registers.

OuTd The lowercase ‘d’ denotes the destination pixel number for the PiCo operation instructions.

Pr PiCo register. See Section 8.7.1 ”Register File” on page 33 for a complete list of registers.

PrHi:PrLo PiCo register pair. Only register pairs corresponding to valid coprocessor double registers are valid.
E.g. INPIX1:INPIX2 (cr1:cr0). The low part must correspond to an even coprocessor register number
n and the high part must then correspond to coprocessor register n+1. See Table 8-1 on page 33
for a mapping between PiCo register names and coprocessor register numbers.

PC Program Counter, equal to R15

LR Link Register, equal to R14

SP Stack Pointer, equal to R13

PiCoRegList Register List used in the picoldm and picostm instructions. See instruction description for which
register combinations are allowed in the register list.

disp Displacement

sa Shift amount

Denotes bit i in a immediate value. Example: imm6[4] denotes bit 4 in an 6-bit immediate value.

Denotes bit i to j in an immediate value.

Some instructions access or use doubleword operands. These operands must be placed in two consecutive register
addresses where the first register must be an even register. The even register contains the least significant part and
the odd register contains the most significant part. This ordering is reversed in comparison with how data is
organized in memory (where the most significant part would receive the lowest address) and is intentional.

32003E-AVR32-05/06

ATMEL s

ATMEL

The programmer is responsible for placing these operands in properly aligned register pairs. This is also specified in
the "Operands" section in the detailed description of each instruction. Failure to do so will result in an undefined

behavior.
8.8.1.2 Operations
ASR(x, n) SE(x, Bits(x) + n) >>n

SATSU(x, n) Signed to Unsigned Saturation (x is treated as a signed value):

If (x > (2"-1)) then (2"'-1); elseif (x < 0) then 0; else x;

SE(x, n) Sign Extend x to an n-bit value
8.8.1.3 Data Type Extensions

d Double (64-bit) operation.

W Word (32-bit) operation.

32003E-AVR32-05/06

8.8.2 PiCo Instruction Summary
Table 8-4. PiCo instruction summary
Mnemonics Operands / Syntax Description Operation
picosvmac E | OUTd, INx, INy, INz zécég;:}gifofdor multiplication and See PiCo instruction set reference
picosvmul E | OUTd, INXx, INy, INz PiCo single vector multiplication See PiCo instruction set reference
picovmac E | OUTd, INx, INy, INz :L%Sr;/iggg::ltiplications and See PiCo instruction set reference
picovmul OUTd, INx, INy, INz PiCo vector multiplications. See PiCo instruction set reference
PrHi:PrLo, Rp[disp] Load PiCo register pair PrHi:PrLo « *(Rp+ZE(disp8<<2))

picold.d PrHi:PrLo, --Rp Load PiCo register pair with pre-decrement PrHi:PrLo « *(--Rp)

E ;LI?';I:I;SOA] I;gzgel;’é%c; register pair with indexed PrHi:PrLo < *(Rb+(Ri << sa2))

E | Pr, Rp[disp] Load PiCo register Pr « *(Rp+ZE(disp8<<2))
picold.w E | Pr,--Rp Load PiCo register with pre-decrement Pr « *(--Rp)

E | Pr, Rb[Ri<<sa] Load PiCo register with indexed addressing Pr « *(Rb+(Ri << sa2))
picoldm E | Rp{++}, PiCoRegList | Load multiple PiCo registers See PiCo instruction set reference

E | Rd, PrHi-PrLo IF\)/Iaoi:/e from PiCo register pair to CPU register Rd+1:Rd < PrHi-PrLo
picomv.d - - : :

E | PrHi:PrLo, Rd g/laci):/e from CPU register pair to PiCo register PrHi-PrLo < Rd+1-Rd

] E | Rd, Pr Move from PiCo register to CPU register Rd « Pr

pleomi-w E | Pr,Rd Move from CPU register to PiCo register Pr«< Rd

E | Rpl[disp], PrHi:PrLo Store PiCo register pair *(Rp+ZE(disp8<<2)) « PrHi:PrLo
picost.d E | Rp++, PrHi:PrLo Store PiCo register pair with post-increment *(Rp--) <« PrHi:PrLo

E Eﬁ_[lli::tli:riza], :ﬂigﬁ; register pair with indexed *(Rb+(Ri << sa2)) « PrHi:PrLo

E | Rpldisp], Pr Store PiCo register *(Rp+ZE(disp8<<2)) < Pr
picost.w E | Rp++, Pr Store PiCo register with post-increment *(Rp--) « Pr

E | Rb[Ri<<sa], Pr Store PiCo register with indexed addressing *(Rb+(Ri << sa2)) « Pr
picostm E | {--}Rp, PiCoRegList Store multiple PiCo registers See PiCo instruction set reference

32003E-AVR32-05/06

ATMEL

53

ATMEL

PICOSVMAC - PiCo Single Vector Multiplication and Accumulation

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The values in the VMUn_OUT registers are then accumulated
with the new results from the vector multiplications. The results from each Vector Multiplication Unit (VMU) are then added
together for one of the outputs to the Output Pixels Inserter to form the result of a single vector multiplication of two 9-ele-
ment vectors. The results from the VMUs are then scaled and saturated to unsigned 8-bit values before being inserted into
the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend upon the Output Insertion Mode and the
output pixel address given in the instruction.

Operation:
l. if (Input Selection Mode == Horizontal Filter Mode) then

VMUO_OUT = [COEFF0_0 COEFF0_1 COEFFO_2] | IN(x+1)| + YMUO_OUT

VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2| [IN(z+1)| + VMU2_OUT

)
)
)]
)
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] |IN(y+1)| + VMU1_OUT
)
)
)
)]

else if (Input Selection Mode == Vertical Filter Mode) then

[IN((x+0)%11)]
VMUO_OUT = [COEFFO_0 COEFF0_1 COEFFO_2] | IN((x+4)%11)| + VMUO_OUT
[IN((x+8)%11)|

[IN((y+0)%11)|
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2]|IN((y+4)%11)| + VMU1_OUT
[IN((y+8)%11),

[IN((z+0)%11)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2||IN((z+4)%11)| + VMU2_OUT
[IN((z+8)%11),

else if (Input Selection Mode == Transformation Mode) then

VMUO_OUT COEFF0_0 COEFFO_1 COEFF0_2| [INx| |VMUO_OUT
VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| * |VMU1_OUT
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2|[INz| |VMU2_OUT

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT + VMU2_OUT, COEFF_FRAC_BITS) , 8);
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT+ VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

54 /AT 3:2/A P7/0/0/(550000000000

Syntax:
l. picosvmac OUTd, INx, INy, INz
Operands:
l. de{0,1,2,3}
X, y,ze{0,1,..,11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
. ouT
PiCo CP# d[o] INX INy INz
Example:
/*
Inner loop of a 16-tap symmetric FIR filter with coefficients {c0, c1, ¢2, ¢3, c4, ¢5, ¢6, c7, c7, ..., c0} set to filter the
pixels pointed to by r12 storing the result to the memory pointed to by r11. The coefficients in the PiCo are already
set to the following values: COEFFO_0 = c0, COEFF0_1 =cl1, COEFF0_2 =c2, COEFF1_0=c3, COEFF1 1 =c4,
COEFF1_2 =c5, COEFF2_0 =c6, COEFF2_1 = ¢c7, COEFF2_2 =0, OFFSETO = 0.5 (For rounding the result),
OFFSET1 =0, OFFSET2 = 0.
The Input Selection Mode is set to Horizontal Filter Mode while the Output Insertion Mode is set to Planar Insertion
Mode.
The input image pointer might be unaligned, hence the use of Id.w instead of picold.w.
*/
ld.w rl, r12[0] /*rl =*((int *)src) */
ld.w ro, r12[4] /*r0 =*(((int *)src) + 1) */
ld.w r2, r12[8] 1*r2 =*(((int *)src) + 2) */
ld.w r3, r12[12] /*r3 =*(((int *)src) + 3) */
picomv.d INPIX1:INPIX2, r0 /* INPIX1={src[0],src[1],src[2],src[3]}, INPIX2={src[4],src[5],src[6],src[7]}*/
swap.b r2 /* r2 = {src[11],src[10],src[9],src[8]}*/
swap.b r3 /* r3 = {src[15],src[14],src[13],src[12]}*/
picosvmul OUTS3, IN4, IN7,IN10 /* VMUQ_OUT = c0*src[0]+cl*src[1]+c2*src[2] + 0.5
VMUL _OUT = ¢3*src[3]+cd*src[4]+c5*src[5]
VMU2_OUT = c6*src[6]+c7*src[7] */
picomv.d INPIX1:INPIX2, r2 I* INPIX1={src[15],src[14],src[13],src[12]},
INPIX2 ={src[11],src[10],src[9],src[8]} */
picosvmac OUTS3, IN4, IN7,IN10 /* VMUQ_OUT += c0*src[15]+c1*src[14]+c2*src[13]
VMUL OUT += ¢3*src[12]+c4*src[11]+c5*src[10]
VMU2_OUT += c6*src[9]+c7*src[8]
OUT3 = satscaled(VMUO_OUT+VMUL1_OUT+VMU2_OUT)*/
sub riz, -1 [* src++ */
picomv.w r4, OUTPIXO0 /*r4 ={ OUTO, OUTL, OUT2, OUT3 }
st.b ril++, r4 /* *dst = QUT3 */

32003E-AVR32-05/06

ATMEL 55

AIMEL
PICOSVMUL - PiCo Single Vector Multiplication

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The results from each Vector Multiplication Unit (VMU) are then
added together for one of the outputs to the Output Pixels Inserter to form the result of a single vector multiplication of two
9-element vectors. The results from the VMUSs are then scaled and saturated to unsigned 8-bit values before being inserted
into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend upon the Output Insertion Mode and
the output pixel address given in the instruction.

Operation:
l. OFFSET_SCALE = COEFF_FRAC_BITS - OFFSET_FRAC_BITS
if (Input Selection Mode == Horizontal Filter Mode) then

VMUO_OUT = [COEFFO_O COEFFO0_1 COEFFO_ZJ IN(x+1)| + OFFSETO << OFFSET_SCALE

+ OFFSET2 << OFFSET_SCALE

0)
)
2)]
0)
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] IN(y+1)| + OFFSET1 << OFFSET_SCALE
2)]
0)
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFFz_z] IN(z+1)
2)]

else if (Input Selection Mode == Vertical Filter Mode) then

[IN((x+0)%11)|
VMUO_OUT = [COEFF0_0 COEFFO_1 COEFFO_2]|IN((x+4)%11)| + OFFSET0 << OFFSET_SCALE
[IN((x+8)%11)|

[IN((y+0)%11)|
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2||IN((y+4)%11)| + OFFSET1 << OFFSET_SCALE
[IN((y+8)%11),

[IN((z+0)%11)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2||IN((z+4)%11)| + OFFSET2 << OFFSET_SCALE
[IN((z+8)%11),

else if (Input Selection Mode == Transformation Mode) then

VMUO_OUT COEFF0_0 COEFF0_1 COEFFO0_2| |INx| |OFFSETO << OFFSET_SCALE
VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| + |OFFSET1 << OFFSET_SCALE
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2| |INz OFFSE20 << OFFSET_SCALE

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT + VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT+ VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

56 /AT 32 /A P70 O/ () 50000000000

Syntax:
l. picosvmul OUTd, INXx, INy, INz
Operands:
l. de{0,1,2,3}
x,yze{0,1,..,11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
. ouT
PiCo CP# d[o] INX INy INz
Example:
/~k
Excerpt from inner loop of bilinear interpolation filter operating on image component stored in an array pointed to by
r12. The width of the image is stored in r11 while the resulting filtered image is pointed to by r10. The coefficients of
the filter: A, B, C, D are already set before this code is executed. COEFFO_0 = A, COEFF0_1 = B, COEFF0_2 =0,
COEFF1_0=C, COEFF1_1=D, COEFF1_2 =0, COEFF2_0=0, COEFF2_1=0, COEFF2_2 =0, OFFSET0=0.5
(For rounding the result), OFFSET1 = 0, OFFSET2 = 0.
The Input Selection Mode is set to Horizontal Filter Mode while the Output Insertion Mode is set to Planar Insertion
Mode.
The input image pointer might be unaligned, hence the use of Id.w instead of picold.w, while the output image pointer
is word aligned.
Four output pixels are computed in this example which show an example of a bilinear interpolation filter found in
the Motion Compensation used in the H.264 Video Standard.
*
/
ld.w r1, r12[0] /*rl =*((int *)src) */
ld.w r0, ri2[r11] * 10 =*((int *)(src + width)) */
sub ri2, -2 [* src+=2 */
ld.w r3, r12[0] /*r3 =*((int *)src) */
ld.w r2, ri2[rii] [* r2 =*((int *)(src + width)) */
picomv.d INPIX1:INPIX2, r0 [* INPIX1 =r1, INPIX2 =10 */
picosvmul OUTO, IN4, IN8, INO /* OUTO = A*src[j][i+0] + B*src[j][i+1] C*src[j+1][i] + D*src[j+1][i+1] */
picosvmul OUTL, IN5, IN9, INO /* OUT1 = A*src[j][i+1] + B*src[j][i+2] C*src[j+1][i+1] + D*src[j+1][i+2] */
picomv.d INPIX1:INPIX2, r2 /* INPIX1 =3, INPIX2 =r2 */
picosvmul OUT2, IN4, IN8, INO /* OUT2 = A*src[j][i+2] + B*src[j][i+3] C*src[j+1][i+2] + D*src[j+1][i+3] */
picosvmul OUTS3, IN5, IN9, INO /* OUT3 = A*src[j][i+3] + B*src[j][i+4] C*src[j+1][i+3] + D*src[j+1][i+4] */
sub ri2, -2 [* src+=2 */
picost.w r10++, OUTPIXO0 /* *((int *)src) = { OUTO, OUT1, OUT2, OUT3 } */

32003E-AVR32-05/06

ATMEL 5

AIMEL
PICOVMAC - PiCo Vector Multiplication and Accumulation

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The values in the VMUn_OUT registers are then accumulated
with the new results from the vector multiplications. The results from the VMUs are then scaled and saturated to unsigned
8-bit values before being inserted into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend
upon the Output Insertion Mode and the output pixel address given in the instruction.

Operation:
l. if (Input Selection Mode == Horizontal Filter Mode) then

VMUO_OUT = [COEFF0_0 COEFF0_1 COEFFO_2] | IN(x+1)| + YMUO_OUT

VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2| [IN(z+1)| + VMU2_OUT

)
)
)]
)
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] |IN(y+1)| + VMU1_OUT
)
)
)
)]

else if (Input Selection Mode == Vertical Filter Mode) then
[IN((x+0)%11)]
VMUO_OUT = [COEFFO_0 COEFF0_1 COEFFO_2] | IN((x+4)%11)| + VMUO_OUT
[IN((x+8)%11)]

[IN((y+0)%11)|
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2]|IN((y+4)%11)| + VMU1_OUT
[IN((y+8)%11),

[IN((z+0)%11)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2||IN((z+4)%11)| + VMU2_OUT
[IN((z+8)%11),

else if (Input Selection Mode == Transformation Mode) then

VMUO_OUT COEFF0_0 COEFFO_1 COEFF0_2| [INx| |VMUO_OUT
VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| * |VMU1_OUT
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2|[INz| |VMU2_OUT

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8)
else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) « SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8
OUT(d + 8) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8

);
);
);

58 /AT 32 /A P70 O/ () 50000000000

Syntax:
l. picovmac OUTd, INXx, INy, INz
Operands:
l. de{0,1,2,3}
X, y,ze{0,1,..,11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
. ouT
PiCo CP# d[o] INX INy INz
Example:
/~k
Inner loop of a 6-tap symmetric FIR filter with coefficients {c0, c1, c2, c2, c1, c0 } set to filter in the vertical direction
of the image pointed to by r12 with the width of the image stored in r11 and the destination image stored in r10. The
coefficients in the PiCo are already set to the following values: COEFFQ_0 = c0, COEFFO_1 =c1, COEFF0_2 = c2,
COEFF1_0 =c0, COEFF1_1 =cl, COEFF1_2 =c2, COEFF2_0 = c0, COEFF2_1 = c1, COEFF2_2 =2,
OFFSETO0 = OFFSET1 = OFFSET2 = 0.5 (For rounding the result).
The Input Selection Mode is set to Vertical Filter Mode while the Output Insertion Mode is set to Packed Insertion
Mode.
The input image is assumed to be word aligned.
*/
picold.w INPIXO, r12[0] /* INP1X0 = {src[0][0], src[0][1], src[O][2], src[O][3] }*/
picold.w INPIX1, r12[r11] /* INPIX1 = {src[1][0], src[1][1], src[1][2], src[1][3] }*/
picold.w INPIX2, r12[r11 << 1] /* INPIX2 = {src[2][0], src[2][1], src[2][2], src[2][3] }*/
add ro, ri2, ril /* 19 = src + width */
picovmul OUTO, INO, IN1, IN2 I* VMUOQ_OUT = c0*src[0][0]+c1*src[1][0]+c2*src[2][0] + 0.5
VMU1 OUT = cO0*src[0][1]+c1*src[1][1]+c2*src[2][1] + 0.5
VMU2_OUT = c0*src[0][2]+c1*src[1][2]+c2*src[2][2] + 0.5*/
picold.w INPIX2, r9[r1l << 1] I* INP1X2 = {src[3][0], src[3][1], src[3][2], src[3][3] }*/
picold.w INPIXZ1, r12[r11 << 2] /* INPIX1 = {src[4][0], src[4][1], src[4][2], src[4][3] }*/
picold.w INPIXO, r9[r1l << 2] /* INPIXO0 = {src[5][0], src[5][1], src[5][2], src[5]1[3] }*/
picovmac OUTO, INO, IN1, IN2 I* VMUO_OUT += c0*src[5][0]+c1*src[4][0]+c2*src[3][0]

32003E-AVR32-05/06

VMU1L OUT += cO0*src[5][1]+cl*src[4][1]+c2*src[3][1]
VMU2_OUT += cO0*src[5][2]+c1*src[4][2]+c2*src[3][2]

OUTO = satscale(VMUO_OUT), OUT1 = satscale(VMU1_OUT),
OUT2 = satscale(VMU2_OUT) */

ATMEL s

AIMEL
PICOVMUL - PiCo Vector Multiplication

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The results from the VMUs are then scaled and saturated to
unsigned 8-bit values before being inserted into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers
depend upon the Output Insertion Mode and the output pixel address given in the instruction.

Operation:
l. OFFSET_SCALE = COEFF_FRAC_BITS - OFFSET_FRAC_BITS
if (Input Selection Mode == Horizontal Filter Mode) then

VMUO_OUT = [COEFFO_O COEFFO0_1 COEFFO_ZJ IN(x+1)| + OFFSETO << OFFSET_SCALE

+ OFFSET2 << OFFSET_SCALE

0)
)
2)]
0)
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2] IN(y+1)| + OFFSET1 << OFFSET_SCALE
2)]
0)
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFFz_z] IN(z+1)
2)]

else if (Input Selection Mode == Vertical Filter Mode) then

[IN((x+0)%11)|
VMUO_OUT = [COEFFO0_0 COEFFO_1 COEFFO_2]|IN((x+4)%11)| + OFFSET0 << OFFSET_SCALE
[IN((x+8)%11)|

[IN((y+0)%11)|
VMU1_OUT = [COEFF1_0 COEFF1_1 COEFF1_2||IN((y+4)%11)| + OFFSET1 << OFFSET_SCALE
[IN((y+8)%11),

[IN((z+0)%11)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2||IN((z+4)%11)| + OFFSET2 << OFFSET_SCALE
[IN((z+8)%11),

else if (Input Selection Mode == Transformation Mode) then

VMUO_OUT COEFF0_0 COEFFO0_1 COEFFO0_2| |INx| |OFFSETO << OFFSET_SCALE
VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| + |OFFSET1 << OFFSET_SCALE
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2| |INz OFFSE20 << OFFSET_SCALE

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8)
else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) « SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

60 /AT 32 /A P70 O/ () 50000000000

Syntax:
l. picovmul OUTd, INXx, INy, INz
Operands:
l. de{0,1,2,3}
x,yze{0,1,..,11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
. ouT
PiCo CP# d[o] INX INy INz
Example:
/~k
Excerpt from inner loop of YCrCb 4:2:2 planar format to RGB packed format image color conversion. The
coefficients of the transform is already set before this code is executed. In transforms like this, the inputs Y, Cr and
Cb are often offsetted with a given amount. This offset can be factored out and included in the offsets like this:
1.164*(Y - 16) = 1.164*Y - 18.625.
The pointer to the Y component is in r12, the pointer to the Cr component in r11 and the pointer to the Cb component
in r10. The pointer to the RGB output image is in r9.
The Input Selection Mode is set to Transform Mode while the Output Insertion Mode is set to Packed Insertion
Mode.
It is assumed that all the input and output pointers are word aligned.
Four RGB triplets are computed in this example. */
picold.w INP1XO0, r12++ /* INPIX0= { Y[O], Y[1], Y[2], Y[3] }*/
picold.w INPIXZ, rll++ [* INPIX1= { Cr[0], Cr[1], Cr[2], Cr[3] }*/
picold.w INPIX2, r10++ I* INPIX2= { Cb[0], Cb[1], Cb[2], Cb[3] }*/
picovmul OUTO, INO, IN4, IN8 /* OUTO =r[0], OUT1 = g[0], OUT2 = b[0] */
picovmul OUT1, IN1, IN4, IN8 [* OUT3 =r[1], OUT4 = g[1], OUT5 = b[1] */
picovmul OUT2, IN2, IN5, IN9 [* OUT6 =r[2], OUT7 = g[2], OUT8 = b[2] */
picovmul OUTS3, IN3, IN5, IN9 /* OUT9 =r[3], OUT10 = g[3], OUT11 = b[3] */
picostm r9, OUTPIX2, OUTPIX1, OUTPIX0/* RGB = {r[0],9[0],b[0],r[1],9[1],b[1],r[2],9[2],b[2],r[3],9[3],b[3]} */

32003E-AVR32-05/06

ATMEL o

AIMEL
PICOLD.{D,W} - Load PiCo Register(s)

Description
Reads the memory location specified into the given coprocessor register(s).

Operation:
l. PrHi:PrLo < *(Rp + (ZE(disp8) << 2));
Il. Rp < Rp-8;
PrHi:PrLo « *(Rp);
Il PrHi:PrLo < *(Rb + (Ri << sa2));
IV. Pr < *(Rp + (ZE(disp8) << 2));

V. Rp < Rp-4;
Pr <« *(Rp);
VI. Pr <« *(Rb + (Ri << sa2));
Syntax:
l. picold.d PrHi:PrLo, Rp[disp]
Il. picold.d PrHi:PrLo, --Rp
[l picold.d PrHi:PrLo, Rb[Ri<<sa]
IV. picold.w Pr, Rp[disp]
V. picold.w Pr, --Rp
VI. picold.w Pr, Rb[Ri<<sa]
Operands:
[-11l. PrHi:PrLo € { INPIX1:INPIX2, COEFFO_B:COEFFO0_A, COEFF1_B:COEFF1_A, COEFF2_B:COEFF2_A,
VMU1_OUT:VMUO_OUT, CONFIG:VMU2_OUT}
IV-VI. Pre{ INPIXO, INPIX1, INPIX2, COEFFO_A, COEFF0_B, COEFF1_A, COEFF1_B, COEFF2_A,

COEFF2_B, VMUO_OUT, VMU1_OUT, VMU2_OUT, CONFIG}
-1, IV-Vp € {0, 1, ..., 15}
I, IV. disp € {0, 4, ..., 1020}

L, VI. {b,i}e{0,1,..,15)
I, VI. sae{0,1,2, 3}
Opcode
.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 0 0 ‘ 1 1 0 1 0 Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 1 ‘ PrLo[3:1] | 0 ‘ disp8 ‘
I,
31 30 29 28 27 26 25 24 23 22 24 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
\ PiCo CP# \ 0 \ PrLo[3:1] \ 0 \ o 1 0 1 \ 0 o 0 0 \
62 AT 32 /A P77 O/ 0 5000000000

32003E-AVR32-05/06

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 1 ‘ PrLo[3:1] ‘ 0 ‘ 0 1 Shamt ‘ Ri ‘
IV.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 0 0 ‘ 1 1 0 1 0 Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 0 ‘ Pr ‘ disp8 ‘
V.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 0 ‘ Pr ‘ 0 0 ‘ 0 0 0 ‘
VI.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 1 ‘ Pr ‘ 0 0 Shamt ‘ Ri ‘
Example:
picold.d COEFF0_B:COEFFO_A, r12[4]
63

32003E-AVR32-05/06

ATMEL

AIMEL
PICOLDM - Load Multiple PiCo Registers

Description
Reads the memory locations specified into the given PiCo registers. The pointer register can optionally be updated after the
operation.

Operation:
I. Il. 1ll. Loadaddress <«Rp;

if (PiCoRegList contains CONFIG)
CONFIG « *(Loadaddress++);

if (PiCoRegList contains VMU2_OUT)
VMU2_OUT <« *(Loadaddress++);

if (PiCoRegList contains VMU1_OUT)
VMU1_OUT <« *(Loadaddress++);

if (PiCoRegList contains VMUO_OUT)
VMUO_OUT <« *(Loadaddress++);

if (PiCoRegList contains COEFF2_B)
COEFF2_B <« *(Loadaddress++);

if (PiCoRegList contains COEFF2_A)
COEFF2_A « *(Loadaddress++);

if (PiCoRegList contains COEFF1_B)
COEFF1_B « *(Loadaddress++);

if (PiCoRegList contains COEFF1_A)
COEFF1_A « *(Loadaddress++);

if (PiCoRegList contains COEFFO0_B)
COEFFO0_B <« *(Loadaddress++);

if (PiCoRegList contains COEFFO0_A)
COEFFO_A « *(Loadaddress++);

if (PiCoRegList contains OUTPIX0)
Loadaddress++;

if (PiCoRegList contains OUTPIX1)
Loadaddress++;

if (PiCoRegList contains OUTPIX2)
Loadaddress++;

if (PiCoRegList contains INPI1X0)
INPIX0 « *(Loadaddress++);

if (PiCoRegList contains INPIX1)
INPIX1 « *(Loadaddress++);

if (PiCoRegList contains INPIX2)
INPIX2 « *(Loadaddress++);

if Opcode[++] == 1 then
Rp <« Loadaddress;

Syntax:

l. picoldm Rp{++}, PiCoRegList
Il. picoldm Rp{++}, PiCoRegList
[l. picoldm Rp{++}, PiCoRegList
Operands:

l. PiCoRegList € { {INPIX1, INPIX2}, {OUTPIX2, INPIX0}, {OUTPIX0, OUTPIX1}, {COEFF0_B, COEFFO_A},
{COEFF1_B, COEFF1_A}, {COEFF2_B, COEFF2_A}, {(VMU1_OUT, VMUO_OUT},

64 /AT 3:2/A P7/0/0/(550000000000

{CONFIG, VMU2_OUT} }

I. PiCoRegList € { INPIXO0, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFFO_A, COEFFO_B }

[l PiCoRegList € { COEFF1_A, COEFF1_B, COEFF2_A,COEFF2_B, VMUO_OUT,VMU1_OUT,

VMU2_OUT, CONFIG, }

I-111. pef{0,1,..., 15}
Opcode
.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
1 1 1 0 1 1 0 1 1 0 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PiCOCP# | W | 0 1 0 0 | i | WMuooUr | GOEFFaa | GOEFFIZA | GOEFFOA | OUTPXG | NP | INmbe
1.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# | W | 0 ‘ 0 ‘ 0 ‘ 0 ‘ COEFF0_B ‘ COEFFO_A ‘ OUTPIX0 ‘ OUTPIX1 ‘ OUTPIX2 ‘ INPIXO | INPIX1 | INPIX2 ‘
.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| picocrs [w | oo [o [1] cowe |

VMU2_0OUT ‘ VMU1_OUT ‘ VMUO_OUT ‘ COEFF2_B ‘ COEFF2_A | COEFF1_B | COEFF1_A ‘

Example:

l. picoldm
Il picoldm
1. picoldm

r7++, COEFFO_A, COEFF0_B, COEFF1_A, COEFF1_B, COEFF2_A, COEFF2_B

r0, INPIXO, INPIX1, INPIX2

r12, VMUO_OUT, VMU1_OUT, VMU2_OUT

32003E-AVR32-05/06

ATMEL

65

AIMEL
PICOMV.{D,W} — Move between PiCo Register(s) and Register File

Description
Move the specified PiCo register(s) to register(s) in the Register File or move register(s) in the Register File to PiCo regis-
ter(s).

Operation:

I PrHi:PrLo < (Rs+1:Rs);

I. Pr < Rs;

Il (Rd+1:Rd) « PrHi:PrLo;

V. Rd « Pr;

Syntax:

l. picomv.d PrHi:PrLo, Rs
Il. picomv.w Pr, Rs

. picomv.d Rd, PrHi:PrLo
V. picomv.w Rd, Pr
Operands:

I,Il. PrHi:PrLo € { INPIX1:INPIX2, OUTPIX2:INPIX0, OUTPIX0:0UTPIX1, COEFFO_B:COEFFO_A,
COEFF1_B:COEFF1_A, COEFF2_B:COEFF2_A, VMU1_OUT:VMUO_OUT,
CONFIG:VMU2_OUT }

IILIV. Pre{ INPIXO, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFFO_A, COEFFO_B, COEFF1_A,

COEFF1_B, COEFF2_A, COEFF2_B, VMUO_OUT, VMU1_OUT, VMU2_OUT, CONFIG}

. sef{0,2 4,..,14)

. de{0,2 4,..,14)

I, sef{0,1,.., 15}

IV, de{01, ..., 15)

Opcode
l.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rs | 0 ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 0 ‘ PrLo[3:1] | 0 ‘ 0 0 1 1 0 0 0 0 ‘
Il.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 0 ‘ Pr ‘ 0 0 1 0 0 0 0 0 ‘

66 /AT 32 /A P70 O/ () 50000000000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rd ‘ 0 ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 0 ‘ PrLo[3:1] ‘ 0 ‘ 0 0 0 1 0 0 0 0 ‘
IV.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rd ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 0 ‘ Pr ‘ 0 0 0 0 0 0 0 0 ‘
Example:
picomv.d r2, OUTPIX0:OUTPIX1
picomv.w CONFIG, Ir
67

32003E-AVR32-05/06

ATMEL

AIMEL
PICOST.{D,W} — Store PiCo Register(s)

Description
Stores the PiCo register value(s) to the memory location specified by the addressing mode.

Operation:
l. *(Rp + (ZE(disp8) << 2)) « PrHi:PrLo;
Il. *(Rp) « PrHi:PrLo;
Rp < Rp+8;
Il. *(Rb + (Ri << sa2)) « PrHi:PrLo;
IV. *(Rp + (ZE(disp8) << 2)) « Pr;

V. *(Rp) < Pr;

Rp < Rp-4;
VI. *(Rb + (Ri << sa2)) « Pr;
Syntax:
l. picost.d Rpldisp], PrHi:PrLo
Il. picost.d Rp++, PrHi:PrLo
Il. picost.d Rb[Ri<<sa], PrHi:PrLo
IV. picost.w Rpl[disp], Pr
V. picost.w Rp++, Pr
VI. picost.w Rb[Ri<<sa], Pr
Operands:

I-l. PrHi:PrLo € { INPIX1:INPIX2, OUTPIX2:INPIX0, OUTPIX0:OUTPIX1, COEFFO_B:COEFFO_A,
COEFF1_B:COEFF1_A, COEFF2_B:COEFF2_A, VMU1_OUT:VMUO_OUT,
CONFIG:VMU2_OUT }

IV-VI. Pre{ INPIXO, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFFO_A, COEFFO_B, COEFF1_A,

COEFF1_B, COEFF2_A, COEFF2_B, VMUO_OUT, VMU1_OUT, VMU2_OUT, CONFIG}

-II, IV-V.p € {0, 1, ..., 15}

,IV. disp € {0, 4, ..., 1020}

I, VI. {b,i}e{0,1,.., 15}

I, VI. sae{0,1,2,3)

Opcode
l.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 0 1 ‘ 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 1 ‘ PrLo[3:1] | 0 ‘ disp8
Il.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 0 ‘ PrLo[3:1] ‘ 0 ‘ 0 1 1 1 ‘ 0 0 0

68 /AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 1 ‘ PrLo[3:1] ‘ 0 ‘ 1 1 Shamt ‘ Ri ‘
IV.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 0 1 ‘ 1 1 0 1 0 Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 0 ‘ Pr ‘ disp8 ‘
V.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 0 ‘ Pr ‘ 0 0 ‘ 0 0 0 0 ‘
VI.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# ‘ 1 ‘ Pr ‘ 1 0 Shamt ‘ Ri ‘
Example:
picost.w rl0++, OUTPIXO0

32003E-AVR32-05/06

ATMEL

69

AIMEL
PICOSTM - Store Multiple PiCo Registers

Description
Writes the PiCo registers specified in the register list into the specified memory locations.

Operation:
I 1. 1.
if Opcode[--] == 1 then
Rp < Rp - 4*RegistersinList;
Storeaddress <« Rp;

if (PiCoRegList contains CONFIG)
*(Storeaddress++) «<— CONFIG;

if (PiCoRegList contains VMU2_OUT)
*(Storeaddress++) < VMU2_OUT;

if (PiCoRegList contains VMU1_OUT)
*(Storeaddress++) < VMU1_OUT;

if (PiCoRegList contains VMUO_OUT)
*(Storeaddress++) < VMUO_OUT;

if (PiCoRegList contains COEFF2_B)
*(Storeaddress++) « COEFF2_B;

if (PiCoRegList contains COEFF2_A)
*(Storeaddress++) < COEFF2_A;

if (PiCoRegList contains COEFF1_B)
*(Storeaddress++) <« COEFF1_B;

if (PiCoRegList contains COEFF1_A)
*(Storeaddress++) < COEFF1_A;

if (PiCoRegList contains COEFF0_B)
*(Storeaddress++) « COEFFO_B;

if (PiCoRegList contains COEFF0_A)
*(Storeaddress++) « COEFFO_A;

if (PiCoRegList contains OUTPIX0)
*(Storeaddress++) «<— OUTPIXO0;

if (PiCoRegList contains OUTPIX1)
*(Storeaddress++) «<— OUTPIX1;

if (PiCoRegList contains OUTPIX2)
*(Storeaddress++) «<— OUTPIX2;

if (PiCoRegList contains INPIX0)
*(Storeaddress++) < INPIXO0 ;

if (PiCoRegList contains INPIX1)
*(Storeaddress++) < INPIX1 ;

if (PiCoRegList contains INPIX2)
*(Storeaddress++) < INPIX2 ;

Syntax:

l. picostm {--}Rp, PiCoRegList
Il. picostm {--}Rp, PiCoRegList
Il. picostm {--}Rp, PiCoRegList
Operands:

l. PiCoRegList € { {INPIX1, INPIX2}, {OUTPIX2, INPIX0}, {OUTPIX0, OUTPIX1}, {COEFFO0_B, COEFFO_A},
{COEFF1_B, COEFF1_A}, {COEFF2_B, COEFF2_A}, {(VMU1_OUT, VMUO_OUT},

70 /AT 32 /A P70 O/ () 50000000000

[l PiCoRegList € { COEFF1_A, COEFF1_B, COEFF2_A,COEFF2_B, VMUO_OUT,VMU1_OUT,

{CONFIG, VMU2_OUT} }
I. PiCoRegList € { INPIXO0, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFFO_A, COEFFO_B }

VMU2_OUT, CONFIG, }

I-111. pef{0,1,..., 15}
Opcode
.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
1 1 1 0 1 1 0 1 1 0 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PicocPt w0 1 o 1| |weer| e | e | comme | g | oume | o
1.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PiCo CP# | W | 0 ‘ 0 ‘ 1 ‘ 0 ‘ COEFF0_B ‘ COEFFO_A ‘ OUTPIX0 ‘ OUTPIX1 ‘ OUTPIX2 ‘ INPIXO | INPIX1 | INPIX2 ‘
.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| picocrs [w | oo [1 [1] cowe |

VMU2_0OUT ‘ VMU1_OUT ‘ VMUO_OUT ‘ COEFF2_B ‘ COEFF2_A | COEFF1_B | COEFF1_A ‘

Example:

l. picostm
Il picostm
M. picostm

-7, COEFFO_A, COEFF0_B, COEFF1_A, COEFF1_B, COEFF2_A, COEFF2_B
r2, OUTPIX0, OUTPIX1, OUTPIX2
rl1, VMUO_OUT, VMUL_OUT, VMU2_OUT

32003E-AVR32-05/06

ATMEL

71

ATMEL

8.9 Data Hazards

Data hazards are caused by data dependencies between instructions which are in different
stages of the pipeline and reads/writes registers which are common to several pipeline stages.
Because of the 3-stage pipeline employed in the PiCo data hazards might exist between instruc-
tions. Data hazards are handled by hardware interlocks which can stall a new read command
from or write command to the PiCo register file.

Table 8-5. Data Hazards

Next Stall
Instruction Instruction Condition Cycles

Write-After-Read (WAR) or Write-After-Write (WAW)
Hazard will occur if writing COEFFn_A/B, VMUn_OUT

picomv.x Pr,... | or CONFIG since these are accessed when the PiCo
picovmul P!CO|d-X command is in Pipeline Stage 2 and Pipeline Stage 3.
picovmac picoldm : . .

. Writes to INPIXn registers produces no hazard since
picosvmul Lo 0
picosvmac they are only accessed in Pipeline Stage 1.

picomv.x Rd,... | Read-After-Write Hazard (RAW) will occur if reading
picost.x the PiCo register file while a command is in the 2
picostm pipeline.

72 /AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

9. Memories

9.1 Embedded Memories

¢ 32 Kbyte SRAM
— Implemented as two 16Kbyte blocks
— Single cycle access at full bus speed

9.2 Physical Memory Map

The system bus is implemented as an AHB bus matrix. All system bus addresses are fixed, and
they are never remapped in any way, not even in boot. Note that AVR32AP7000 by default uses
segment translation, as described in the AVR32 Architecture Manual. The 32 bit physical
address space is mapped as follows:

Table 9-1. AVR32AP7000 Physical Memory Map

Start Address Size Device
0x0000_0000 64 Mbyte EBI SRAM CS0
0x0400_0000 64 Mbyte EBI SRAM CS4
0x0800_0000 64 Mbyte EBI SRAM CS2
0x0C00_0000 64 Mbyte EBI SRAM CS3
0x1000_0000 256 Mbyte EBI SRAM/SDRAM CS1
0x2000_0000 64 Mbyte EBI SRAM CS5
0x2400_0000 16 Kbyte Internal SRAM 0
0x2400_4000 16 Kbyte Internal SRAM1
0xFF00_0000 4 Kbyte LCDC configuration
0xFF20_0000 1 KByte DMAC configuration
0xFF30_0000 1 MByte USB Data
OxFFEO_0000 1 MByte APBA
0xFFFO0_0000 1 MByte APBB

Accesses to unused areas returns an error result to the master requesting such an access.

The bus matrix has the several masters and slaves. Each master has its own bus and its own
decoder, thus allowing a different memory mapping per master. The master number in the table
below can be used to index the HMATRIX control registers. For example, MCFG2 is associated
with the AHB-AHB bridge.

ATMEL 7s

32003E-AVR32-05/06

ATMEL

Table 9-2. AHB masters

Master 0 CPU Dcache

Master 1 CPU Icache

Master 2 AHB-AHB Bridge

Master 3 IS| DMA

Master 4 USB DMA

Master 5 LCD Controller DMA
Master 6 Ethernet MACO DMA
Master 7 Ethernet MAC1 DMA
Master 8 DMAC Master Interface 0
Master 9 DMAC Master Interface 1

Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number
in the table below can be used to index the HMATRIX control registers. For example, SCFG3 is
associated with APBB.

Table 9-3. AHB slaves

Slave 0 Internal SRAM 0
Slave 1 Internal SRAM1
Slave 2 APBA
Slave 3 APBB
Slave 4 EBI
Slave 5 USB data
Slave 6 LCDC configuration
Slave 7 DMAC configuration
74 /AT 32 /A P70 /() 5000000

32003E-AVR32-05/06

10. Peripherals

10.1 Peripheral address map

Table 10-1. Peripheral Address Mapping

Address Peripheral Name Bus
0xFF000000
LCDC LCD Controller Slave Interface - LCDC AHB
0xFF200000
DMAC DMA Controller Slave Interface- DMAC AHB
0xFF300000
USB USB 2.0 Slave Interface - USB AHB
0xFFE00000
SPIO Serial Peripheral Interface - SPIO APB A
0xFFE00400
SPI1 Serial Peripheral Interface - SPI1 APB A
0xFFE00800
TWI Two-wire Interface - TWI APB A
0xFFE00CO00 i i
USARTO Universal Synchronous Asynchronous Receiver APB A

Transmitter - USARTO

0xFFE01000 Universal Synchronous Asynchronous Receiver
USARTH Transmitter - USART1 APB A
0xFFE01400 Universal Synchronous Asynchronous Receiver
USART2 Transmitter - USART2 APB A
0xFFE01800 Universal Synchronous Asynchronous Receiver
USART3 Transmitter - USART3 APB A
0xFFE01C00 .
SSCO Synchronous Serial Controller - SSCO APB A
0xFFE02000 .
SSCH1 Synchronous Serial Controller - SSC1 APB A
0xFFE02400 .
SSC2 Synchronous Serial Controller - SSC2 APB A
0xFFE02800
PIOA Parallel Input/Output 2 - PIOA APB A
0xFFE02C00
PIOB Parallel Input/Output 2 - PIOB APB A
0xFFE03000
PIOC Parallel Input/Output 2 - PIOC APB A

ATMEL 7

32003E-AVR32-05/06

ATMEL

Table 10-1. Peripheral Address Mapping (Continued)

Address Peripheral Name Bus

0xFFE03400
PIOD Parallel Input/Output 2 - PIOD APB A

0xFFE03800
PIOE Parallel Input/Output 2 - PIOE APB A

0xFFE03C00
PSIF PS2 Interface - PSIF APB A

0xFFF00000
SM System Manager - SM APB B

0xFFF00400
INTC Interrupt Controller - INTC APB B

0xFFF00800
HMATRIX AHB Matrix - HMATRIX APB B

0xFFF00CO00
TCO Timer/Counter - TCO APB B

0xFFF01000
TC1 Timer/Counter - TC1 APB B

0xFFF01400
PWM Pulse Width Modulation Controller - PWM APB B

0xFFF01800
MACBO Ethernet MAC - MACBO APB B

0xFFF01C00
MACB1 Ethernet MAC - MACB1 APB B

0xFFF02000
DAC DAC - Audio DAC APB B

0xFFF02400
MCI Mulitmedia Card Interface - MCI APB B

0xFFF02800
AC97C AC97 Controller - AC97C APB B

0xFFF02C00
ISI Image Sensor Interface - I1SI APB B

0xFFF03000
uSB USB 2.0 Configuration Interface - USB APB B

0xFFF03400
SMC Static Memory Controller - SMC APB B

0xFFF03800
SDRAMC SDRAM Controller - SDRAMC APB B

32003E-AVR32-05/06

Table 10-1. Peripheral Address Mapping (Continued)

Address Peripheral Name Bus

0xFFF03C00
ECC Error Correcting Code Controller - ECC APB B

10.2 Interrupt Request Signal Map

The various modules may output interrupt request signals. These signals are routed to the Inter-
rupt Controller (INTC), see Section 13. "Interrupt Controller” on page 128. The Interrupt
Controller supports up to 64 groups of interrupt requests. Each group can have up to 32 interrupt
request signals. All interrupt signals in the same group share the same autovector address and
priority level. Refer to the documentation for the individual submodules for a description of the
semantic of the different interrupt requests.

The interrupt request signals in AVR32AP7000 are connected to the INTC as follows:

Table 10-2. Interrupt Request Signal Map

Group Line Signal

0 0 COUNT-COMPARE match
1 Performance Counter Overflow
1 0 LCDC EOF
LCDC LN
LCDC LSTLN
LCDC MER
LCDC OWR
LCDC UFLW
DMAC BLOCK
DMAC DSTT
DMAC ERR
DMAC SRCT
DMAC TFR
SPI O

SPI 1

TWI

USART 0
USART 1
USART 2
USART 3
SSCO

—

oo |~ W N

—

© | 00| N O 0|~ W

O|lojlojo oo~ |N

ATMEL L

32003E-AVR32-05/06

78

ATMEL

Table 10-2. Interrupt Request Signal Map
Group Line Signal
11 0 SSC 1
12 0 SSC 2
13 0 PIO A
14 0 PIOB
15 0 PIOC
16 0 PIOD
17 0 PIO E
18 0 PSIF
19 0 EIM O

1 EIM 1
2 EIM 2
3 EIM 3
20 0 PM
21 0 RTC
22 0 TCOO
1 TCO 1
2 TCO2
23 0 TC10
1 TC11
2 TC12
24 0 PWM
25 0 MACBO
26 0 MACB1
27 0 DAC
28 0 MCI
29 0 AC97C
30 0 ISI
31 0 uSB
32 0 HEBI

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

10.3 DMAC Handshake Interface Map

The following table details the hardware handshake map between the DMAC and the peripher-
als attached to it: :

Table 10-3. Hardware Handshaking Connection

Request Hardware Handshaking Interface
MCI RX 0

MCI TX

DAC TX

AC97C CHANNEL A RX
AC97C CHANNEL A TX
AC97C CHANNEL B RX
AC97C CHANNEL B TX
EXTERNAL DMA REQUEST 0
EXTERNAL DMA REQUEST 1
EXTERNAL DMA REQUEST 2
EXTERNAL DMA REQUEST 3

—_

© |00 | N O O~ WN

—_
o

ATMEL 7

32003E-AVR32-05/06

10.4 Clock Connections

10.4.1

10.4.2

80

Timer/Counters

Each Timer/Counter channel can independently select an internal or external clock source for its

counter:

ATMEL

Table 10-4. Timer/Counter clock connections

Timer/Counter Source Name Connection
0 Internal TIMER_CLOCK1 clk_slow
TIMER_CLOCK2 clk_apbb /4
TIMER_CLOCKS3 clk_apbb /8
TIMER_CLOCK4 clk_apbb /16
TIMER_CLOCK5 clk_apbb /32
External XCO0 See Section 10.7
XC1
XC2
1 Internal TIMER_CLOCK1 clk_slow
TIMER_CLOCK2 clk_apbb /4
TIMER_CLOCKS3 clk_apbb /8
TIMER_CLOCK4 clk_apbb /16
TIMER_CLOCKS5 clk_apbb /32
External XCo See Section 10.7
XC1
XC2

USARTs

Each USART can be connected to an internally divided clock:

Table 10-5. USART clock connections

USART Source Name Connection
0 Internal CLK_DIV clk_apba/8
1
2
3

/AT 32 /A P70 O/ () 50000000000

10.4.3 SPls
Each SPI can be connected to an internally divided clock:

Table 10-6. SPI clock connections

SPI Source Name Connection
0 Internal CLK_DIV clk_apba /32
1

10.5 External Interrupt Pin Mapping
External interrupt requests are connected to the following pins::

Table 10-7. External Interrupt Pin Mapping

Source Connection
NMI_N PB24
EXTINTO PB25
EXTINT1 PB26
EXTINT2 PB27
EXTINT3 PB28

10.6 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spectively of the PIO configuration. Two different OCD trace pin mappings are possible,
depending on the configuration of the OCD AXS register. For details, see the AVR32 AP Techni-
cal Reference Manual.

Table 10-8. Nexus OCD AUX port connections

Pin AXS=0 AXS=1
EVTI_N EVTLLN EVTI_N
MDOJ[5] PB09 PC18
MDO[4] PB08 PC14
MDOJ[3] PBO7 PC12
MDOJ[2] PB06 PC11
MDOJ[1] PBO5 PC06
MDOI0] PBO4 PCO5
EVTO_N PB03 PB28
MCKO PB02 PCO2
MSEO[1] PBO1 PCO1
MSEO[0] PB00 PCO0

ATMEL o

32003E-AVR32-05/06

ATMEL

10.7 Peripheral Multiplexing on IO lines

The AT32AP7000 features five PIO controllers, PIOA to PIOE, that multiplex the I/O lines of the
peripheral set. Each PIO Controller controls up to thirty-two lines.

Each line can be assigned to one of two peripheral functions, A or B. The tables in the following
pages define how the 1/O lines of the peripherals A and B are multiplexed on the PIO
Controllers.

Note that some output only peripheral functions might be duplicated within the tables.

10.7.1 PIO Controller A Multiplexing

Table 10-9. PIO Controller A Multiplexing

I/O Line Peripheral A Peripheral B
PAOO SPIO - MISO[0] SSC1 - RX_FRAME_SYNC[0]
PAO1 SPI0 - MOSI[0] SSC1 - TX_FRAME_SYNC[0]
PAO2 SPIO - SCKI0] SSC1 - TX_CLOCK[0]
PAO3 SPIO - NPCSJ[0] SSC1 - RX_CLOCK]0]
PAO4 SPI0 - NPCS[1] SSC1 - TX_DATA[0]
PAO5 SPI0 - NPCS[2] SSC1 - RX_DATA[0]
PA06 TWI - SDA[0] USARTO - RTS[0]
PAO7 TWI - SCL[0] USARTO - CTS[0]
PAOS PSIF - CLOCKIO] USARTO - RXD[0]
PA09 PSIF - DATA[O] USARTO - TXD[0]
PA10 MCI - CLKIO] USARTO - CLK[0]
PA11 MCI - CMD[0] TCO - CLKO[0]
PA12 MCI - DATA[0] TCO - A0[0]
PA13 MCI - DATA[1] TCO - A1[0]
PA14 MCI - DATA[2] TCO - A2[0]
PA15 MCI - DATA[3] TCO - BO[0]
PA16 USART1 - CLK[0] TCO - B1[0]
PA17 USART1 - RXD[0] TCO - B2[0]
PA18 USART1 - TXD[0] TCO - CLK2[0]
PA19 USART1 - RTS[0] TCO - CLK1[0]
PA20 USART1 - CTS[0] SPI0 - NPCS[3]
PA21 SSCO0 - RX_FRAME_SYNC|0] PWM - PWMI[2]
PA22 SSCO - RX_CLOCK[0] PWM - PWM[3]
PA23 SSCO - TX_CLOCK]0] TC1 - AO[0]
PA24 SSCO - TX_FRAME_SYNC[0] TC1 - A1[0]
PA25 SSCO - TX_DATA[0] TC1 - BO[0]
PA26 SSCO - RX_DATA[0] TC1 - B1[0]
PA27 SPI1 - NPCS[3] TC1 - CLKO[0]
PA28 PWM - PWM[O] TC1 - A2[0]

82 /AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

10.7.2 PIO Controller B Multiplexing

32003E-AVR32-05/06

Table 10-9. PIO Controller A Multiplexing
PA29 PWM - PWM[1] TC1 - B2[0]
PA30 SM - GCLK][0] TC1 - CLK1[0]
PA31 SM - GCLK][1] TC1 - CLK2[0]

Table 10-10. PIO Controller B Multiplexing
I/O Line Peripheral A Peripheral B
PB0O ISI - DATA[0] SPI1 - MISO[0]
PBO1 ISI - DATA[1] SPI1 - MOSI[0]
PB02 ISI - DATA[2] SPI1 - NPCS[0]
PB03 ISI - DATA[3] SPI1 - NPCS[1]
PB04 ISI - DATA[4] SPI1 - NPCS[2]
PBO5 ISI - DATA[5] SPI1 - SCK[0]
PB06 ISI - DATA[6] MCI - CMDI[1]
PBO7 ISI - DATA[7] MCI - DATA[4]
PB08 ISI - HSYNCJ0] MCI - DATA[5]
PB09 ISI - VSYNCIO0] MCI - DATA[6]
PB10 ISI - PCLK[0] MCI - DATA[7]
PB11 PSIF - CLOCK]1] ISI - DATA[8]
PB12 PSIF - DATA[1] ISI - DATA[9]
PB13 SSC2 - TX_DATA[0] ISI - DATA[10]
PB14 SSC2 - RX_DATA[0] ISI - DATA[11]
PB15 SSC2 - TX_CLOCK]0] USARTS - CTS[0]
PB16 SSC2 - TX_FRAME_SYNCI0] USARTS - RTS[0]
PB17 SSC2 - RX_FRAME_SYNCI0] USARTS - TXDI0]
PB18 SSC2 - RX_CLOCK]0] USARTS3 - RXDI0]
PB19 SM - GCLK[2] USARTS3 - CLKI0]
PB20 DAC - DATA[1] AC97C - SDOI0]
PB21 DAC - DATA[0] AC97C - SYNCI0]
PB22 DAC - DATAN[1] AC97C - SCLKIO0]
PB23 DAC - DATAN[O] AC97C - SDI[0]
PB24 NMI_N DMAC - DMARQI0]
PB25 EXTINTO DMAC - DMARQI[1]
PB26 EXTINT1 USART2 - RXDI0]
PB27 EXTINT2 USART2 - TXDI0]
PB28 EXTINT3 USART2 - CLK[0]
PB29 SM - GCLK[3] USART2 - CTSJ[0]
PB30 SM - GCLK[4] USART?2 - RTS[0]

ATMEL

83

AIMEL
10.7.3 PIO Controller C Multiplexing

Table 10-11. PIO Controller C Multiplexing

84

I/O Line Peripheral A Peripheral B
PCO00 MACBO - COL[0]

PCO1 MACBO - CRS[0]

PCO2 MACBO - TX_ER[0]

PCo03 MACBO - TXD[0]

PCO04 MACBO - TXD[1]

PCO05 MACBO - TXD[2] DMAC - DMARQJ[2]
PCO6 MACBO - TXD[3] DMAC - DMARQJ[3]
PCO7 MACBO - TX_ENIO0]

PCO08 MACBO - TX_CLK[0]

PC09 MACBO - RXD[0]

PC10 MACBO - RXDI[1]

PC11 MACBO - RXD[2]

PC12 MACBO - RXD[3]

PC13 MACBO - RX_ER][0]

PC14 MACBO - RX_CLK][0]

PC15 MACBO - RX_DV[0]

PC16 MACBO - MDC[0]

PC17 MACBO - MDIO[0]

PC18 MACBO - SPEED[0]

PC19 LCDC - CC[0] MACB1 - COL[0]
PC20 LCDC - HSYNCI0]

PC21 LCDC - PCLK[0]

PC22 LCDC - VSYNC[0]

PC23 LCDC - DVAL[0] MACB1 - CRS[0]
PC24 LCDC - MODE[0] MACB1 - RX_CLK[0]
PC25 LCDC - PWR[0]

PC26 LCDC - DATA[Q] MACB1 - TX_ERI0]
pPC27 LCDC - DATA[1] MACB1 - TXD[2]
PC28 LCDC - DATA[2] MACB1 - TXD[3]
PC29 LCDC - DATA[3] MACB1 - RXD[2]
PC30 LCDC - DATA[4] MACB1 - RXD[3]
PC31 LCDC - DATA[5]

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

10.7.4 PIO Controller D Multiplexing

32003E-AVR32-05/06

Table 10-12. PIO Controller D Multiplexing
I/O Line Peripheral A Peripheral B
PD00 LCDC - DATA[6]
PDO1 LCDC - DATA[7]
PD02 LCDC - DATA[8] MACB1 - MDIO[0]
PD03 LCDC - DATA[9] MACB1 - MDC[0]
PD04 LCDC - DATA[10] MACB1 - RX_DVI[0]
PD05 LCDC - DATA[11] MACB1 - RX_ER[0]
PD06 LCDC - DATA[12] MACB1 - RXD[1]
PD07 LCDC - DATA[13]
PD08 LCDC - DATA[14]
PD09 LCDC - DATA[15]
PD10 LCDC - DATA[16] MACB1 - RXD[0]
PD11 LCDC - DATA[17] MACB1 - TX_EN[O0]
PD12 LCDC - DATA[18] MACB1 - TX_CLK][0]
PD13 LCDC - DATA[19] MACB1 - TXDI[0]
PD14 LCDC - DATA[20] MACB1 - TXD[1]
PD15 LCDC - DATA[21] MACB1 - SPEEDI0]
PD16 LCDC - DATA[22]
PD17 LCDC - DATA[23]

ATMEL

85

10.7.5

86

ATMEL

PIO Controller E Multiplexing

Table 10-13. PIO Controller E Multiplexing
I/0 Line Peripheral A Peripheral B
PEOO HEBI - DATA[16] LCDC - CC[0]
PEO1 HEBI - DATA[17] LCDC - DVALJ[0]
PE02 HEBI - DATA[18] LCDC - MODEJ0]
PEO3 HEBI - DATA[19] LCDC - DATA[0]
PEO4 HEBI - DATA[20] LCDC - DATA[1]
PEO5 HEBI - DATA[21] LCDC - DATA[2]
PEO6 HEBI - DATA[22] LCDC - DATA[3]
PEO7 HEBI - DATA[23] LCDC - DATA[4]
PE08 HEBI - DATA[24] LCDC - DATA[8]
PE09 HEBI - DATA[25] LCDC - DATA[9]
PE10 HEBI - DATA[26] LCDC - DATA[10]
PE11 HEBI - DATA[27] LCDC - DATA[11]
PE12 HEBI - DATA[28] LCDC - DATA[12]
PE13 HEBI - DATA[29] LCDC - DATA[16]
PE14 HEBI - DATA[30] LCDC - DATA[17]
PE15 HEBI - DATA[31] LCDC - DATA[18]
PE16 HEBI - ADDR[23] LCDC - DATA[19]
PE17 HEBI - ADDR[24] LCDC - DATA[20]
PE18 HEBI - ADDR[25] LCDC - DATA[21]
PE19 HEBI - CFCE1[0]
PE20 HEBI - CFCE2[0]
PE21 HEBI - NCS[4]
PE22 HEBI - NCSJ[5]
PE23 HEBI - CFRNWI[0]
PE24 HEBI - NWAIT[0]
PE25 HEBI - NCS[2]
PE26 HEBI - SDCSI0]

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

10.7.6 10 Pins Without Multiplexing
Many of the external EBI pins are not controlled by the PIO modules, but directly driven by the
EBI. These pins have programmable pullup resistors. These resistors are controlled by Special
Function Register 4 (SFR4) in the HMATRIX. The pullup on the lines multiplexed with PIO is
controlled by the appropriate PIO control register.
This SFR can also control CompactFlash, SmartMedia or NandFlash Support, See Section “16.”
on page 155.
10.7.6.1 HMatrix SFR4 EBI Control Register
Name: HMATRIX_SFR4
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
I - - I - I - I - I - I - - |
15 14 13 12 11 10 9 8
| - - | - | - | - | - | - | EBI_DBPUC |
7 6 5 4 3 2 1 0
| - - | EBI_CS5A | EBI_CS4A | EBI_CS3A | - | EBI_CS1A | - |

32003E-AVR32-05/06

CS1A: Chip Select 1 Assignment
0 = Chip Select 1 is assigned to the Static Memory Controller.

1 = Chip Select 1 is assigned to the SDRAM Controller.

e CS3A: Chip Select 3 Assignment
0 = Chip Select 3 is only assigned to the Static Memory Controller and NCS3 behaves as
defined by the SMC.

1 = Chip Select 3 is assigned to the Static Memory Controller and the NAND Flash/SmartMedia
Logic is activated.

e CS4A: Chip Select 4 Assignment
0 = Chip Select 4 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6
behave as defined by the SMC.

1 = Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic is
activated.

e CS5A: Chip Select 5 Assignment
0 = Chip Select 5 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6
behave as defined by the SMC.

1 = Chip Select 5 is assigned to the Static Memory Controller and the CompactFlash Logic is
activated.

ATMEL o

ATMEL

Accessing the address space reserved to NCS5 and NCS6 may lead to an unpredictable
outcome.

e EBI_DBPUC: EBI Data Bus Pull-up Control
0: EBI D[15:0] are internally pulled up to the VDDIO power supply. The pull-up resistors are
enabled after reset.

1: EBI D[15:0] are not internally pulled up.

Table 10-14. 10 Pins without multiplexing

/0 Line Function
PX00 HEBI - DATA[O]
PX01 HEBI - DATA[1]
PX02 HEBI - DATA[2]
PX03 HEBI - DATA[3]
PX04 HEBI - DATA[4]
PX05 HEBI - DATA[S]
PX06 HEBI - DATA[6]
PX07 HEBI - DATA[7]
PX08 HEBI - DATA[8]
PX09 HEBI - DATA[9]
PX10 HEBI - DATA[10]
PX11 HEBI - DATA[11]
PX12 HEBI - DATA[12]
PX13 HEBI - DATA[13]
PX14 HEBI - DATA[14]
PX15 HEBI - DATA[15]
PX16 HEBI - ADDRI0]
PX17 HEBI - ADDR[1]
PX18 HEBI - ADDR[2]
PX19 HEBI - ADDR[3]
PX20 HEBI - ADDRI[4]
PX21 HEBI - ADDR[5]
PX22 HEBI - ADDR[6]
PX23 HEBI - ADDR[7]
PX24 HEBI - ADDR[8]
PX25 HEBI - ADDRI9]
PX26 HEBI - ADDR[10]
PX27 HEBI - ADDR[11]
PX28 HEBI - ADDRJ[12]
PX29 HEBI - ADDR[13]
PX30 HEBI - ADDR[14]
PX31 HEBI - ADDRJ[15]
88 AT 32 /A P "7/ (0 () 15500000000

32003E-AVR32-05/06

Table 10-14. 10 Pins without multiplexing (Continued)

PX32 HEBI - ADDR[16]
PX33 HEBI - ADDR[17]
PX34 HEBI - ADDR[18]
PX35 HEBI - ADDR[19]
PX36 HEBI - ADDR[20]
PX37 HEBI - ADDR[21]
PX38 HEBI - ADDR[22]
PX39 HEBI - NCS[0]
PX40 HEBI - NCS[1]
PX41 HEBI - NCS[3]
PX42 HEBI - NRDI[0]
PX43 HEBI - NWEO[0]
PX44 HEBI - NWE1[0]
PX45 HEBI - NWES[0]
PX46 HEBI - SDCK[0]
PX47 HEBI - SDCKE[0]
PX48 HEBI - RAS[0]
PX49 HEBI - CAS[0]
PX50 HEBI - SDWEJ0]
PX51 HEBI - SDA10[0]
PX52 HEBI - NANDOE[0]
PX53 HEBI - NANDWE0]
PX46 HEBI - SDCK[0]

ATMEL 5

32003E-AVR32-05/06

ATMEL

10.8 Peripheral overview
10.8.1 External Bus Interface

¢ Optimized for Application Memory Space support
¢ Integrates Three External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
— ECC Controller
Additional Logic for NAND Flash/SmartMedia™ and CompactFlash™ Support
— SmartMedia support: 8-bit as well as 16-bit devices are supported
— CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are
supported but the signals _I0IS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode)
are not handled.
Optimized External Bus:
— 16- or 32-bit Data Bus
— Up to 26-bit Address Bus, Up to 64-Mbytes Addressable
— Optimized pin multiplexing to reduce latencies on External Memories
Up to 6 Chip Selects, Configurable Assignment:
— Static Memory Controller on NCS0
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS2
— Static Memory Controller on NCS3, Optional NAND Flash/SmartMedia™ Support
— Static Memory Controller on NCS4 - NCS5, Optional CompactFlash™ Support
10.8.2 Static Memory Controller

* 6 Chip Selects Available

* 64-Mbyte Address Space per Chip Select

® 8-, 16- or 32-bit Data Bus

¢ Word, Halfword, Byte Transfers

¢ Byte Write or Byte Select Lines

* Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select

* Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select

* Programmable Data Float Time per Chip Select

¢ Compliant with LCD Module

¢ External Wait Request

¢ Automatic Switch to Slow Clock Mode

* Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes
10.8.3 SDRAM Controller

* Numerous Configurations Supported
— 2K, 4K, 8K Row Address Memory Parts
— SDRAM with Two or Four Internal Banks
— SDRAM with 16- or 32-bit Data Path
* Programming Facilities
— Word, Half-word, Byte Access
— Automatic Page Break When Memory Boundary Has Been Reached
— Multibank Ping-pong Access
— Timing Parameters Specified by Software
— Automatic Refresh Operation, Refresh Rate is Programmable

90 /AT 32 /A P70 O/ () 50000000000

* Energy-saving Capabilities
— Self-refresh, Power-down and Deep Power Modes Supported
— Supports Mobile SDRAM Devices
Error Detection
— Refresh Error Interrupt
SDRAM Power-up Initialization by Software
CAS Latency of 1, 2, 3 Supported
¢ Auto Precharge Command Not Used
10.8.4 Error Corrected Code Controller

¢ Hardware Error Corrected Code (ECC) Generation
— Detection and Correction by Software
* Supports NAND Flash and SmartMedia™ Devices with 8- or 16-bit Data Path.
¢ Supports NAND Flash/SmartMedia with Page Sizes of 528, 1056, 2112 and 4224 Bytes, Specified
by Software
10.8.5 Serial Peripheral Interface

* Supports communication with serial external devices
— Four chip selects with external decoder support allow communication with up to 15
peripherals
— Serial memories, such as DataFlash™ and 3-wire EEPROMs
— Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
— External co-processors
* Master or slave serial peripheral bus interface
— 8- to 16-bit programmable data length per chip select
— Programmable phase and polarity per chip select
— Programmable transfer delays between consecutive transfers and between clock and data
per chip select
— Programmable delay between consecutive transfers
— Selectable mode fault detection
¢ Very fast transfers supported
— Transfers with baud rates up to MCK
— The chip select line may be left active to speed up transfers on the same device
10.8.6 Two-wire Interface

¢ Compatibility with standard two-wire serial memory
* One, two or three bytes for slave address
¢ Sequential read/write operations

ATMEL o

32003E-AVR32-05/06

10.8.7 USART

ATMEL

Programmable Baud Rate Generator

¢ 5- to 9-bit full-duplex synchronous or asynchronous serial communications

— 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
— Parity generation and error detection
— Framing error detection, overrun error detection
— MSB- or LSB-first
— Optional break generation and detection
— By 8 or by-16 over-sampling receiver frequency
— Hardware handshaking RTS-CTS
— Receiver time-out and transmitter timeguard
— Optional Multi-drop Mode with address generation and detection
— Optional Manchester Encoding
RS485 with driver control signal
1SO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
— NACK handling, error counter with repetition and iteration limit
IrDA modulation and demodulation
— Communication at up to 115.2 Kbps
Test Modes 46
— Remote Loopback, Local Loopback, Automatic Echo

10.8.8 Serial Synchronous Controller

10.8.9 AC97 Controller

10.8.10 Audio DAC

Provides serial synchronous communication links used in audio and telecom applications (with
CODECs in Master or Slave Modes, 12S, TDM Buses, Magnetic Card Reader, etc.)

Contains an independent receiver and transmitter and a common clock divider

Offers a configurable frame sync and data length

Receiver and transmitter can be programmed to start automatically or on detection of different
event on the frame sync signal

Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

Compatible with AC97 Component Specification V2.2
Capable to Interface with a Single Analog Front end
Three independent RX Channels and three independent TX Channels
— One RX and one TX channel dedicated to the AC97 Analog Front end control
— One RX and one TX channel for data transfers, associated with a PDC
— One RX and one TX channel for data transfers with no PDC
Time Slot Assigner allowing to assign up to 12 time slots to a channel
Channels support mono or stereo up to 20 bit sample length - Variable sampling rate AC97 Codec
Interface (48KHz and below)

TBD

92 /AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

10.8.11 Timer Counter

* Three 16-bit Timer Counter Channels
* Wide range of functions including:
- Frequency Measurement
— Event Counting
— Interval Measurement
— Pulse Generation
— Delay Timing
— Pulse Width Modulation
— Up/down Capabilities
¢ Each channel is user-configurable and contains:
— Three external clock inputs
— Five internal clock inputs
— Two multi-purpose input/output signals
* Two global registers that act on all three TC Channels
10.8.12 Pulse Width Modulation Controller

* 4 channels, one 16-bit counter per channel
¢ Common clock generator, providing Thirteen Different Clocks
— A Modulo n counter providing eleven clocks
— Two independent Linear Dividers working on modulo n counter outputs
¢ Independent channel programming
— Independent Enable Disable Commands
— Independent Clock
— Independent Period and Duty Cycle, with Double Bufferization
— Programmable selection of the output waveform polarity
— Programmable center or left aligned output waveform
10.8.13 Multimedia Card Interface

¢ 2 double-channel Multimedia Card Interface, allowing concurrent transfers with 2 cards
¢ Compatibility with MultiMedia Card Specification Version 2.2
¢ Compatibility with SD Memory Card Specification Version 1.0
* Compatibility with SDIO Specification Version V1.0.
¢ Cards clock rate up to Master Clock divided by 2
* Embedded power management to slow down clock rate when not used
¢ Each MCI has two slot, each supporting
— One slot for one MultiMediaCard bus (up to 30 cards) or
— One SD Memory Card
* Support for stream, block and multi-block data read and write

ATMEL s

32003E-AVR32-05/06

ATMEL

10.8.14 PS/2 Keyboard Interface

¢ System Bus APB slave

PS/2 Host
* Receive and transmit capability
¢ Parity generation and error detection
* Overrun error detection

10.8.15 USB Device Port

* USB V2.0 high-speed compliant, 480 Mbits per second
* Embedded USB V2.0 high-speed transceiver
* Embedded dual-port RAM for endpoints
¢ Suspend/Resume logic
* Ping-pong mode (two memory banks) for isochronous and bulk endpoints
¢ Six general-purpose endpoints
— Endpoint 0, Endpoint 3: 8 bytes, no ping-pong mode
— Endpoint 1, Endpoint 2: 64 bytes, ping-pong mode
— Endpoint 4, Endpoint 5: 256 bytes, ping-pong mode
10.8.16 LCD Controller

* Single and Dual scan color and monochrome passive STN LCD panels supported
¢ Single scan active TFT LCD panels supported
* 4-bit single scan, 8-bit single or dual scan, 16-bit dual scan STN interfaces supported
¢ Up to 24-bit single scan TFT interfaces supported
¢ Up to 16 gray levels for mono STN and up to 4096 colors for color STN displays
* 1, 2 bits per pixel (palletized), 4 bits per pixel (non-palletized) for mono STN
* 1,2, 4, 8 bits per pixel (palletized), 16 bits per pixel (non-palletized) for color STN
* 1,2, 4, 8 bits per pixel (palletized), 16, 24 bits per pixel (non-palletized) for TFT
¢ Single clock domain architecture
¢ Resolution supported up to 2048x2048
¢ 2D-DMA Controller for management of virtual Frame Buffer
— Allows management of frame buffer larger than the screen size and moving the view over this
virtual frame buffer
¢ Automatic resynchronization of the frame buffer pointer to prevent flickering
¢ Configurable coefficients with flexible fixed-point representation.

94 /AT 3:2/A P7/0/0/(550000000000

10.8.17 Ethernet 10/100 MAC

¢ Compatibility with IEEE Standard 802.3
* 10 and 100 Mbits per second data throughput capability
¢ Full- and half-duplex operations
¢ Mil or RMII interface to the physical layer
* Register Interface to address, data, status and control registers
* DMA Interface, operating as a master on the Memory Controller
* Interrupt generation to signal receive and transmit completion
¢ 28-byte transmit and 28-byte receive FIFOs
¢ Automatic pad and CRC generation on transmitted frames
* Address checking logic to recognize four 48-bit addresses
* Support promiscuous mode where all valid frames are copied to memory
¢ Support physical layer management through MDIO interface control of alarm and update
time/calendar data in
10.8.18 Image Sensor Interface

* ITU-R BT. 601/656 8-bit mode external interface support

¢ Support for ITU-R BT.656-4 SAV and EAV synchronization

¢ Vertical and horizontal resolutions up to 2048 x 2048

* Preview Path up to 640*480

* Support for packed data formatting for YCbCr 4:2:2 formats
* Preview scaler to generate smaller size image 50

* Programmable frame capture rate

ATMEL 5

32003E-AVR32-05/06

ATMEL

11. Power Manager

11.1 Features

11.2 Description

Rev: 1.0.2

¢ Controls oscillators and PLLs

* Generates clocks and resets for digital logic

* Supports 2 crystal oscillators 10 to 27 MHz

* Supports 2 PLL's 80 to 133 MHz

* Supports 32KHz ultra-low power oscillator

* On-the fly frequency change of CPU, AHB, and APB frequency
* Sleep modes allow simple disabling of logic clocks, PLLs and oscillators
* Module-level clock gating through maskable peripheral clocks
¢ Wake-up from interrupts or external pin

* Generic clocks with wide frequency range provided

¢ Automatic identification of reset sources

The Power Manager (PM) controls the oscillators, PLL’s, and generates the clocks and resets in
the device. The PM controls two fast crystal oscillators, as well as two PLL’s, which can multiply
the clock from either oscillator to provide higher frequencies. Additionally, a low-power 32KHz
oscillator is used to generate a slow clock for real-time counters.

The provided clocks are divided into synchronous and generic clocks. The synchronous clocks
are used to clock the main digital logic in the device, namely the CPU, and the modules and
peripherals connected to the AHB, APBA, and APBB buses. The generic clocks are asynchro-
nous clocks, which can be tuned precisely within a wide frequency range, which makes them
suitable for peripherals that require specific frequencies, such as timers and communication
modules.

The PM also contains advanced power-saving features, allowing the user to optimize the power
consumption for an application. The synchronous clocks are divided into four clock domains, for
the CPU, and modules on the AHB, APBA, and APBB buses. The four clocks can run at different
speeds, so the user can save power by running peripherals at a relatively low clock, while main-
taining a high CPU performance. Additionally, the clocks can be independently changed on-the
fly, without halting any peripherals. This enables the user to adjust the speed of the CPU and
memories to the dynamic load of the application, without disturbing or re-configuring active
peripherals.

Each module also has a separate clock, enabling the user to switch off the clock for inactive
modules, to save further power. Additionally, clocks and oscillators can be automatically swith-
ced off during idle periods by using the sleep instruction on the CPU. The system will return to
normal on occurence of interrupts or an event on the WAKE_N pin.

The Power Manager also cointains a Reset Controller, which collects all possible reset sources,
generates hard and soft resets, and allows the reset source to be identifed by software.

96 /AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

11.3 Block Diagram

™| Synchronous | Synchroneu
. Clock Generator clocks
Oscillator 0 >
»| PLLO
Oscillator 1 »| PLLL
. .
Generic Clock)
> Generator —Generic clocks
32 KHz
OSC/PLL Oscillator
Control signals
Slow clock——
\
E ﬂ Oscillator and Startup
OSCEN_N PLL Control Counter
A
Sleep
WAKE_N &—» Sleep Controller fe—, o
A
RESET_N &—»
Power-On »| Reset Controll ts—p
Detector » Reset Controller resets
Soft reset
sources

32003E-AVR32-05/06

ATMEL

97

ATMEL

11.4 Product Dependencies

11.41

11.4.2

I/0 Lines

Interrupt

The PM provides a number of generic clock outputs, which can be connected to output pins,
multiplexed with PIO lines. The programmer must first program the PIO controller to assign
these pins to their peripheral function. If the I/O pins of the PM are not used by the application,
they can be used for other purposes by the PIO controller.

The PM also has a dedicated WAKE_N pin, as well as a number of pins for oscillators and
PLL’s, which do not require the PIO controller to be programmed.

The PM interrupt line is connected to one of the internal sources of the interrupt controller. Using
the PM interrupt requires the interrupt controller to be programmed first.

11.5 Functional Description

11.5.1

11.5.2

98

Oscillator 0 and 1 operation

The two main oscillators are designed to be used with an external 10 to 27 MHz crystal, as
shown in Figure 11-1. The main oscillators are enabled by default after reset, and are only
switched off in sleep modes, as described in Section 11.5.6 on page 103. After a power-on
reset, or when waking up from a sleep mode that disabled the main oscillators, the oscillators
need 128 slow clock cycles to stabilize on the correct frequency. The PM masks the main oscil-
lator outputs during this start-up period, to ensure that no unstable clocks propagate to the
digital logic.

The oscillators can be bypassed by pulling the OSCEN_N pin high. This disables the oscillators,
and an external clock must be applied on XIN. No start-up time applies to this clock.

Figure 11-1. Oscillator connections

XOUT |||

XIN |||

32 KHz oscillator operation

The 32 KHz oscillator operates similarly to Oscillator 0 and 1 described above, and is used to
generate the slow clock in the device. A 32768 Hz crystal must be connected between XIN32
and XOUT32 as shown in Figure 11-1. The 32 KHz oscillator is is an ultra-low power design, and
remains enabled in all sleep modes except static mode, as described in Section 11.5.6 on page
103. The oscillator has a rather long start-up time of 32768 clock cycles, and no clocks will be
generated in the device during this start-up time.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

Pulling OSCEN_N low will also disable the 32 KHz oscillator, and a 32 KHz clock must be
applied on the XIN32 pin. No start-up time applies to this clock.

1153 PLL operation

The device contains two PLL’s, PLLO and PLL1. These are disabled by default, but can be
enabled to provide high frequency source clocks for synchronous or generic clocks. The PLL’s
can take either Oscillator 0 or 1 as clock source. Each PLL has an input divider, which divides
the source clock, creating the reference clock for the PLL. The PLL output is divided by a user-
defined factor, and the PLL compares the resulting clock to the reference clock. The PLL will
adjust its output frequency until the two compared clocks are equal, thus locking the output fre-
quency to a multiple of the reference clock frequency.

When the PLL is switched on, or when changing the clock source or multiplication or division
factor for the PLL, the PLL is unlocked and the output frequency is undefined. The PLL clock for
the digital logic is automatically masked when the PLL is unlocked, to prevent connected digital
logic from receiving a too high frequency and thus become unstable.

Figure 11-2. PLL with control logic and filters

PLLMUL
O'u'Fput «—F—p»| Mask |—PLL clock—®
Divider
A
PLLDIV LOCK—
-
——0sc0 clock Input PLL > Lock _
L > Suppression
Divider
——0Oscl1 clock *
PLLEN PLLCOUNT
PLLOSC PLLOPT |

EEIX

L
Rl
ClI _— C

2

T

ATMEL 5

32003E-AVR32-05/06

11.5.3.1

11.5.3.2

11.5.3.3

11.5.4

100

ATMEL

Enabling the PLL

PLLn is enabled by writing the PLLEN bit in the PM_PLLn register. PLLOSC selects Oscillator 0
or 1 as clock source. The PLLDIV and PLLMUL bitfields must be written with the division and
multiplication factor, respectively, creating the PLL frequency:

foLL = (PLLMUL+1)/(PLLDIV+1) ® fogc

The LOCKn flag in PM_ISR is set when PLLn becomes locked. The bit will stay high until
cleared by writing 1 to PM_ICR:LOCKn. The Power Manager interrupt can be triggered by writ-
ing PM_IER:LOCKn to 1.

Lock suppression

When using high division or multiplication factors, there is a possibility that the PLL can give
false lock indications while sweeping to the correct frequency. To prevent false lock indications
from setting the LOCKn flag, the lock indication can be suppressed for a number of slow clock
cycles indicated in the PM_PLLN:COUNT field. Typical start-up times can be found using the
Atmel filter caluclator (see below).

Operating range selection

To use PLLn, a passive RC filter should be connected to the LFTn pin, as shown in Figure 11-2.
Filter values depend on the PLL reference and output frequency range. Atmel provides a tool
named “Atmel PLL LFT Filter Calculator AT91” available for download at the Atmel web site. The
PLL for AT32AP7000 can be selected in this tool by selecting “AT91RM9200 (58A07F)” and
leave “lcp = ‘1" (default).

Similarly, the PM_PLLn:PLLOPT field should be set to proper values according to the PLL oper-
ating frequency, as described in Section 11.6.4 on page 112.

Synchronous clocks

Oscillator 0 (default) or PLLO provides the source for the main clocks, which is the common root
for the synchronous clocks for the CPU, and AHB, APBA, and APBB modules. The main clock is
divided by an 8-bit prescaler, and each of these four synchronous clocks can run from any tap-
ping of this prescaler, or the undivided main clock, as long as fopy > fayg = fapga - The
synchronous clock source can be changed on-the fly, responding to varying load in the applica-
tion. The clock domains can be shut down in sleep mode, as described in "Sleep modes” on
page 103. Additionally, the clocks for each module in the four domains can be individually
masked, to avoid power consumption in inactive modules.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

Figure 11-3. Synchronous clock generation

Sleep
instruction

Sleep
Controller

Mai”:::D—> Mask 1= CPU clocks—
clock |

I
1
I
—0sc0 clock 0 I 1 I _
» Prescaler B [AHB clocks—
——PLLO clock L I CPUMASK | | I_| APBAclocks ™™
| CPUDIV | | I |APBB clocks ’
PLLSEL | CPUSEL | B : I
I
I I] ||
I_ ________________ I | |
- ___ I |
- I
e I
11.5.4.1 Selecting PLL or oscillator for the main clock

The common main clock can be connected to Oscillator 0 or PLLO. By default, the main clock will
be connected to the Oscillator 0 output. The user can connect the main clock to the PLLO output
by writing the PLLSEL bit in the Main Clock Control Register (PM_MCCTRL) to 1. This must only
be done after PLLO has been enabled, otherwise a deadlock will occur. Care should also be
taken that the new frequency of the synchronous clocks does not exceed the maximum fre-
quency for each clock domain.

11.5.4.2 Selecting synchronous clock division ratio

The main clock feeds an 8-bit prescaler, which can be used to generate the synchronous clocks.
By default, the synchronous clocks run on the undivided main clock. The user can select a pres-
caler division for the CPU clock by writing PM_CKSEL:CPUDIV to 1 and CPUSEL to the
prescaling value, resulting in a CPU clock frequency:

fCPU — fmain / 2(CPUSEL+1)

Similarly, the clock for AHB, APBA, and APBB can be divided by writing their respective bitfields.
To ensure correct operation, frequencies must be selected so that fopy > fayg > fapga g- AlSO, fre-
quencies must never exceed the specified maximum frequency for each clock domain.

PM_CKSEL can be written without halting or disabling peripheral modules. Writing PM_CKSEL
allows a new clock setting to be written to all synchronous clocks at the same time. It is possible
to keep one or more clocks unchanged by writing the same value a before to the xxxDIV and
xxxSEL bitfields. This way, it is possible to e.g. scale CPU and AHB speed according to the
required performance, while keeping the APBA and APBB frequency constant.

A IIIEI% 101

32003E-AVR32-05/06

11.5.4.3

11.5.5

11.5.5.1

11.5.5.2

102

ATMEL

Clock Ready flag

There is a slight delay from PM_CKSEL is written and the new clock setting becomes effective.
During this interval, the Clock Ready (CKRDY) flag in PM_ISR will read as 0. If PM_IER:CKRDY
is written to 1, the Power Manager interrupt can be triggered when the new clock setting is effec-
tive. PM_CKSEL must not be re-written while CKRDY is 0, or the system may become unstable
or hang.

Peripheral clock masking

By default, the clock for all modules are enabled, regardless of which modules are actually being
used. It is possible to disable the clock for a module in the CPU, AHB, APBA, or APBB clock
domain by writing the corresponding bit in the Clock Mask register (PM_CPU/AHB/APBA/APBB)
to 0. When a module is not clocked, it will cease operation, and its registers cannot be read or
written. The module can be re-enabled later by writing the corresponding mask bit to 1.

A module may be connected to several clock domains, in which case it will have several mask
bits.

Table 11-1 contains a list of implemented maskable clocks.

Cautionary note

Note that clocks should only be switched off if it is certain that the module will not be used.
Switching off the clock for the internal RAM will cause a problem if the stack is mapped there.
Switching off the clock to the System Manager (SM), which contains the mask registers, or the
corresponding APB bridge, will make it impossible to write the mask registers again. In this case,
they can only be re-enabled by a system reset.

Mask Ready flag

Due to synchronization in the clock generator, there is a slight delay from a mask register is writ-
ten until the new mask setting goes into effect. When clearing mask bits, this delay can usually
be ignored. However, when setting mask bits, the registers in the corresponding module must
not be written until the clock has actually be re-enabled. The status flag MSKRDY in PM_ISR
provides the required mask status information. When writing either mask register with any value,
this bit is cleared. The bit is set when the clocks have been enabled and disabled according to
the new mask setting. Optionally, the Power Manager interrupt can be enabled by writing the
MSKRDY bit in PM_IER.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

11.5.6

11.5.6.1

Sleep modes

Table 11-1. Maskable module clocks in AT32AP7000.

Bit CPUMASK AHBMASK APBAMASK APBBMASK
0 PICO EBI SPIO SM

1 - APBA SPI1 INTC

2 - APBB TWI HMATRIX
3 - HRAMC USARTO TCO

4 - AHB-AHB Bridge USART1 TC1

5 - ISI USART2 PWM

6 - UsB USART3 MACBO
7 - LCDC SSCo MACBH1
8 - MACBO SSCH DAC

9 - MACB1 SSC2 MCI
10 - DMA PIOCA AC97C
11 - - PIOB ISI

12 - - PIOC UsB
13 - - PIOD SMC
14 - - PIOE SDRAMC
15 - - PIOF ECC
16 - - PDC -
31: - - - -

17

In normal operation, all clock domains are active, allowing software execution and peripheral
operation. When the CPU is idle, it is possible to switch off the CPU clock and optionally other
clock domains to save power. This is activated by the sleep instruction, which takes the sleep
mode index number as argument.

Entering and exiting sleep modes

32003E-AVR32-05/06

The sleep instruction will halt the CPU and all modules belonging to the stopped clock domains.
The modules will be halted regardless of the bit settings of the mask registers.

Oscillators and PLL’s can also be switched off to save power. These modules have a relatively
long start-up time, and are only switched off when very low power consumption is required.

The CPU and affected modules are restarted when the sleep mode is exited. This occurs when
an interrupt triggers, or the WAKE_N pin is asserted. Note that even though an interrupt is
enabled in sleep mode, it may not trigger if the source module is not clocked.

A mEI% 103

11.5.6.2

11.5.6.3

104

ATMEL

Supported sleep modes

The following sleep modes are supported. These are detailed in Table 11-2.

e|ldle: The CPU is stopped, the rest of the chip is operating. Wake-up sources are any interrupt,
or WAKE_N pin.

*Frozen: The CPU and AHB modules are stopped, peripherals are operating. Wake-up sources
are any interrupt from APB modules, or WAKE_N pin.

*Standby: All synchronous clocks are stopped, but oscillators and PLL’s are running, allowing
quick wake-up to normal mode. Wake-up sources are RTC or external interrupt, or WAKE_N

pin.

*Stop: As Standby, but Oscillator 0 and 1, and the PLL’s are stopped. 32 KHz oscillator and
RTC/WDT still operates. Wake-up sources are RTC or external interrupt, or WAKE_N pin.

eStatic: All oscillators and clocks are stopped. Wake-up sources are external interrupt or
WAKE_N pin.e

Table 11-2. Sleep modes

APBAB + Osc0,1 + Osc32 +
Index | Sleep Mode | CPU AHB GCLK PLLO,1 RTC/WDT
0 Idle Off On On On On
1 Frozen Off Off On On On
2 Standby Off Off Off On On
3 Stop Off Off Off Off On
5 Static Off Off Off Off Off

Precautions when entering sleep mode

Modules communicating with external circuits should normally be disabled before entering a
sleep mode that will stop the module operation. This prevents erratic behavior when entering or
exiting sleep mode. Please refer to the relevant module documentation for recommended
actions.

Communication between the synchronous clock domains is disturbed when entering and exiting
sleep modes. This means that bus transactions are not allowed between clock domains affected
by the sleep mode. The system may hang if the bus clocks are stopped in the middle of a bus
transaction.

The CPU and caches are automatically stopped in a safe state to ensure that all CPU bus oper-
ations are complete when the sleep mode goes into effect. Thus, when entering Idle mode, no
further action is necessary.

When entering a deeper sleep mode than ldle mode, all other AHB masters must be stopped
before entering the sleep mode. Also, if there is a chance that any APB write operations are
incomplete, the CPU should perform a read operation from any register on the APB bus before
executing the sleep instruction. This will stall the CPU while waiting for any pending APB opera-
tions to complete.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

11.5.7

11.5.7.1

11.5.7.2

32003E-AVR32-05/06

Generic clocks

Timers, communication modules, and other modules connected to external circuitry may require
specific clock frequencies to operate correctly. The Power Manager contains an implementation
defined number of generic clocks, that can provide a wide range of accurate clock frequencies.

Each generic clock module runs from either Oscillator 0 or 1, or PLLO or 1. The selected source
can optionally be divided by any even integer up to 512. Each clock can be independently
enabled and disabled, and is also automatically disabled along with peripheral clocks by the
Sleep Controller.

Sleep
Controller
——0sc0 clock Mask [—Generic Clock—
—0Osc1 clock I e
—PLLO clock Divider
—PLL1 clock ?
f DIVEN CEN
PLLSEL
OSCSEL DIV |

Figure 11-4. Generic clock generation

Enabling a generic clock

A generic clock is enabled by writing the CEN bit in PM_GCCTRL to 1. Each generic clock can
use either Oscillator 0 or 1 or PLLO or 1 as source, as selected by the PLLSEL and OSCSEL
bits. The source clock can optionally be divided by writing DIVEN to 1 and the division factor to
DIV, resulting in the output frequency:

facik = fsre / (27(DIV+1))

Disabling a generic clock

The generic clock can be disabled by writing CEN to 0 or entering a sleep mode that disables
the APB clocks. In either case, the generic clock will be switched off on the first falling edge after
the disabling event, to ensure that no glitches occur. If CEN is written to 0, the bit will still read as
1 until the next falling edge occurs, and the clock is actually switched off. When writing CEN to O,
the other bits in PM_GCCTRL should not be changed until CEN reads as 0, to avoid glitches on
the generic clock.

When the clock is disabled, both the prescaler and output are reset.

A IIIEI% 105

11.5.7.3

11.5.7.4

11.5.8

11.5.9

106

ATMEL

Changing clock frequency

When changing generic clock frequency by writing PM_GCCTRL, the clock should be switched
off by the procedure above, before being re-enabled with the new clock source or division set-
ting. This prevents glitches during the transition.

Generic clock implementation

In AT32AP7000, there are 8 generic clocks. These are allocated to different functions as shown
in Table 11-3.

Table 11-3. Generic clock allocation

Clock number Function
0 GCLKO pin
1 GCLK1 pin
GCLK2 pin
GCLK3 pin
GCLK4 pin

Reserved for internal use
DAC
LCD Controller

N o o~ W N

Divided APB clocks

The clock generator in the Power Manager provides divided APBA and APBB clocks for use by
peripherals that require a prescaled APB clock. This is described in the documentation for the
relevant modules.

The divided clocks are not directly maskable, but are stopped in sleep modes where the APB
clocks are stopped.

Debug operation

During a debug session, the user may need to halt the system to inspect memory and CPU reg-
isters. The clocks normally keep running during this debug operation, but some peripherals may
require the clocks to be stopped, e.g. to prevent timer overflow, which would cause the program
to fail. For this reason, peripherals on the APBA and APBB buses may use “debug qualified”
APB clocks. This is described in the documentation for the relevant modules. The divided APB
clocks are always debug qualified clocks.

Debug qualified APB clocks are stopped during debug operation. The debug system can option-
ally keep these clocks running during the debug operation. This is described in the
documentation for the On-Chip Debug system.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

11.5.10 Reset Controller

The Reset Controller collects the various reset sources in the system and generates hard and
soft resets for the digital logic.

The device contains a Power-On Detector, which keeps the system reset until power is stable.
This eliminates the need for external reset circuitry to guarantee stable operation when powering
up the device.

It is also possible to reset the device by asserting the RESET_N pin. This pin has an internal pul-
lup, and does not need to be driven externally when negated.

Table 11-4 lists these and other reset sources supported by the Reset Controller.

i

RC_RCAUSE
RESET_N &—»
Soft Rese CPU, AHB,
Power-On — SoftReset— APBA, APBB
Detector Reset
Controller
NTAE - ——Hard Reset—#> OCD, RTC/WDT,
ararese Clock Generator
DBR -
Watchdog Reset———»

Figure 11-5. Reset Controller block diagram

Reset sources are divided into hard and soft resets. Hard resets imply that the system could
have become unstable, and virtually all logic will be reset. The clock generator, which also con-
trols the oscillators, will also be reset. If the device is reset due to a power-on reset, or reset
occurred when the device was in a sleep mode that disabled the oscillators, the normal oscillator
startup time will apply.

A soft reset will reset most digital logic in the device, such as CPU, AHB, and APB modules, but
not the OCD system, clock generator, Watchdog Timer and RTC, allowing some functions,
including the oscillators, to remain active during the reset. The startup time from a soft reset is
thus negligible. Note that all APB registers are reset, except those in the RTC/WDT. The
PM_MCCTRL and PM_CKSEL registers are reset, and the device will restart using Oscillator 0
as clock source for all synchronous clocks.

In addition to the listed reset types, the JTAG can keep parts of the device statically reset
through the JTAG Reset Register. See JTAG documentation for details.

A IIIEI% 107

32003E-AVR32-05/06

ATMEL

The cause of the last reset can be read from the RC_RCAUSE register. This register contains
one bit for each reset source, and can be identified during the boot sequence of an application to
determine the proper action to be taken.

Table 11-4. Reset types

Reset source Description Type
Power-on Reset Supply voltage below the power-on reset detector threshold Hard
voltage

External RESET_N pin asserted Hard
NanoTrace Access See On-Chip Debug documentation. Soft
Error

Watchdog Timer See watchdog timer documentation. Soft
OCD See On-Chip Debug documentation Soft

108 /AT '32/A P70/ () 10—

11.6 User Interface

Offset Register Register Name Access Reset
0x00 Main Clock Control PM_MCCTRL Read/Write 0x0
0x04 Clock Select PM_CKSEL Read/Write 0x0
0x08 CPU Clock Mask PM_CPUMASK Read/Write Impl. defined
0x0C AHB Clock Mask PM_AHBMASK Read/Write Impl. defined
0x10 APBA Clock Mask PM_APBAMASK Read/Write Impl. defined
0x14 APBB Clock Mask PM_APBBMASK Read/Write Impl. defined
0x20 PLLO Control PM_PLLO Read/Write 0x0
0x24 PLL1 Control PM_PLLA1 Read/Write 0x0
0x40 Interrupt Enable PM_IER Write-only 0x0
Ox44 Interrupt Disable PM_IDR Write-only 0x0
0x48 Interrupt Mask PM_IMR Read-only 0x0
0x4C Interrupt Status PM_ISR Read-only 0x0
0x50 Interrupt Clear PM_ICR Write-only 0x0
0x60 Generic Clock Control PM_GCCTRL Read/Write 0x0

11.6.1 Main Clock Control

Name: PM_MCCTRL
Access Type: Read/Write
31 30 29 28 27 26 25 24
. - r - - 7*r - {r - rr - [- [- |
23 22 21 20 19 18 17 16
. - r - - 7r -t - [- [-} - |
15 14 13 12 11 10 9 8
- - r - r - r - ;- -} - |
7 6 5 4 3 2 1 0
I e e e e
* PLLSEL: PLL Select
0: Oscillator 0 is source for the main clock
1: PLLO is source for the main clock
O A mEl 109
32003E-AVR32-05/06 I—

ATMEL

11.6.2 Clock Select

Name: PM_CKSEL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ APBBDIV ‘ - ‘ - ‘ - ‘ - ‘ APBBSEL ‘
23 22 21 20 19 18 17 16

‘ APBBDIV ‘ - ‘ - ‘ - ‘ - ‘ APBBSEL ‘
15 14 13 12 11 10 9 8

‘ AHBDIV ‘ - ‘ - ‘ - ‘ - ‘ AHBSEL ‘
7 6 5 4 3 2 1 0

‘ CPUDIV ‘ - ‘ - ‘ - ‘ - ‘ CPUSEL ‘

APBBDIV, APBBSEL: APBB Division and Clock Select

APBBDIV = 0: APBB clock equals main clock.

APBBDIV = 1: APBB clock equals main clock divided by 2(APBBSEL+1),
APBADIV, APBASEL: APBA Division and Clock Select

APBADIV = 0: APBA clock equals main clock.

APBADIV = 1: APBA clock equals main clock divided by 2(APBASEL+1)
AHBDIV, AHBSEL: AHB Division and Clock Select

AHBDIV = 0: AHB clock equals main clock.

AHBDIV = 1: AHB clock equals main clock divided by 2(AHBSEL+1),
CPUDIV, CPUSEL: CPU Division and Clock Select

CPUDIV = 0: CPU clock equals main clock.

CPUDIV = 1: CPUclock equals main clock divided by 2(CPUSEL+1),

Note that if xxxDIV is written to 0, xxxSEL should also be written to 0 to ensure correct operation.

Also note that writing this register clears PM_ISR:CKRDY. The register must not be re-written until CKRDY goes high.

110 /AT 32/A P70/ () 10—

11.6.3 Clock Mask

Name: PM_CPU/AHB/APBA/APBBMASK

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ MASK[31:24] ‘
23 22 21 20 19 18 17 16

‘ MASK[23:16] ‘

15 14 13 12 11 10 9 8

| MASK([15:8] |

‘ MASK[7:0] ‘

* MASK: Clock Mask
If bit n is cleared, the clock for module n is stopped. If bit n is set, the clock for module n is enabled according to the current
power mode. The number of implemented bits in each mask register, as well as which module clock is controlled by each bit, is
implementation dependent.

A IIIEI% 111

32003E-AVR32-05/06

ATMEL

11.6.4 PLL Control

Name: PM_PLLO,1

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ PLLTEST - PLLCOUNT ‘
23 22 21 20 19 18 17 16

‘ PLLMUL ‘
15 14 13 12 11 10 9 8

‘ PLLDIV ‘
7 6 5 4 3 2 1 0

‘ - - - PLLOPT PLLOSC PLLEN ‘

* PLLTEST: PLL Test
Reserved for internal use. Always write to 0.
¢ PLLCOUNT: PLL Count
Specifies the number of slow clock cycles before PM_ISR:LOCKn will be set after PM_PLLn has been written, or after PLLn has
been automatically re-enabled after exiting a sleep mode.
¢ PLLMUL: PLL Multiply Factor
¢ PLLDIV: PLL Division Factor
These bitfields determine the ratio of the PLL output frequency to the source oscillator frequency:
for L = (PLLMUL+1)/(PLLDIV+1) ® fogc
e PLLOPT: PLL Option
Select the operating range for the PLL. Note: Operation beyond the speed indicated in “Electrical Characteristics - TBD” is not
implied.
100: 80-160 MHz
110: 150-200MHz
Other values: Reserved
* PLLOSC: PLL Oscillator Select
0: Oscillator 0 is the source for the PLL.
1: Oscillator 1 is the source for the PLL.
¢ PLLOPT: PLL Option
0: PLL is disabled.
1: PLL is enabled.

112 AT 32 /A P70/ () 10—

11.6.5 Interrupt Enable/Disable/Mask/Status/Clear

Name: PM_IER/IDR/IMR/ISR/ICR
Access Type: PM_IER/IDR/ICR: Write-only
PM_IMR/ISR: Read-only

31 30 29 28 27 26 25 24
- r - r-r - r - ;- [- [- |
23 22 21 20 19 18 17 16
- - r-r - r - f;r - [- [- |
15 14 13 12 11 10 9 8
- r - r - r - +r - - [- 7 - |
7 6 5 4 3 2 1 0
‘ - ‘MSKRDY‘ CKRDY ‘ VMRDY‘ VOK ‘ WAKE ‘ LOCK1 ‘ LOCKO ‘

MSKRDY: Mask Ready
0: Either PM_xxxMASK register has been written, and clocks are not yet enabled or disabled according to the new mask value.
1: Clocks are enabled and disabled as indicated in the PM_xxxMASK registers.
Note: Writing PM_ICR:MSKRDY to 1 has no effect.
CKRDY: Clock Ready
0: The PM_CKSEL register has been written, and the new clock setting is not yet effective.
1: The synchronous clocks have frequencies as indicated in the PM_CKSEL register.
Note: Writing PM_ICR:CKRDY to 1 has no effect.
VMRDY, VOK
These bits are for internal use only. In PM_ISR, the value of these bits is undefined. In PM_IER, these bits should be written to
0.
WAKE: Wake Pin Asserted
0: The WAKE_N pin is not asserted, or has been asserted for less than one APB clock period.
1: The WAKE_N pin is asserted for longer than one APB clock period.
LOCK1: PLL1 locked
LOCKO: PLLO locked
0: The PLL is unlocked, and cannot be used as clock source.
1: The PLL is locked, and can be used as clock source.

The effect of writing or reading the bits listed above depends on which register is being accessed:

¢ IER (Write-only)

0: No effect

1: Enable Interrupt
¢ IDR (Write-only)

0: No effect

A IIIEI% 113

32003E-AVR32-05/06

ATMEL

1: Disable Interrupt
¢ IMR (Read-only)

0: Interrupt is disabled

1: Interrupt is enabled
* ISR (Read-only)

0: An interrupt event has occurred

1: An interrupt even has not occurred
* ICR (Write-only)

0: No effect

1: Clear interrupt event

114 AT32AP7000 m—

11.6.6 Generic Clock Control

Name: PM_GCCTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - - r - r - r - ;- ;- §; - |
23 22 21 20 19 18 17 16

. - - - +r - +r - - [- [- |
15 14 13 12 11 10 9 8

| DIV[7:0] |
7 6 5 4 3 2 1 0

‘ - - - DIVEN - CEN PLLSEL OSCSEL ‘

There is one PM_GCCTRL register per generic clock in the design.

¢ DIV: Division Factor
DIVEN: Divide Enable
0: The generic clock equals the undivided source clock.
1: The generic clock equals the source clock divided by 2*(DIV+1).
CEN: Clock Enable
0: Clock is stopped.
1: Clock is running.
PLLSEL: PLL Select
0: Oscillator is source for the generic clock.
1: PLL is source for the generic clock.
OSCSEL: Oscillator Select
0: Oscillator (or PLL) 0 is source for the generic clock.
1: Oscillator (or PLL) 1is source for the generic clock.

A IIIEI% 115

32003E-AVR32-05/06

ATMEL

11.6.7 Reset Cause

Name: RC_RCAUSE

Access Type: Read-only
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | R | | |
15 14 13 12 11 10 9 8

| | | | R | | |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ NTAE ‘ WDT ‘ EXT ‘ - ‘ POR ‘

* NTAE: NanoTrace Access Error
This bit is set if a reset occurred due to a NanoTrace access error.
e WDT: Watchdog Timer
This bit is set if a reset occurred due to a timeout of the Watchdog Timer.
¢ EXT: External Reset
This bit is set if a reset occurred due to assertion of the RESET_N pin.
* POR: Power-On Detector
This bit is set if a reset was caused by the Power-On Detector.

116 AT 32 /A P70/ () 1ms—

12. Real Time Counter

Rev: 1.0.1
12.1 Features

* 32-bit real-time counter with 16-bit prescaler
¢ Clocked from 32 kHz oscillator
¢ High resolution: Max count frequency 16KHz
* Long delays
— Max timeout 272 years
* Extremely low power consumption
¢ Available in all sleep modes except Deepdown
¢ Optional wrap at max value
¢ Interrupt on wrap
* Watchdog timer support

12.2 Description

The Real Time Counter (RTC) enables periodic interrupts at long intervals, or accurate mea-
surement of real-time sequences. The RTC is fed from a 16-bit prescaler, which is clocked from
the 32 kHz oscillator. Any tapping of the prescaler can be selected as clock source for the RTC,
enabling both high resolution and long timeouts. The prescaler cannot be written directly, but
can be cleared by the user.

The RTC can generate an interrupt when the counter wraps around the top value of
OxFFFFFFFF. Optionally, the RTC can wrap at a lower value, producing accurate periodic
interrupts.

The RTC prescaler also feeds an independent Watchdog Timer (WDT), which uses any tapping
of the prescaler as timeout period. The watchdog timer must be periodically reset by software
within the timeout period, otherwise, the device is reset and starts executing from the boot vec-
tor. This allows the device to recover from a condition that has caused the system to be
unstable.

A IIIEI% 117

32003E-AVR32-05/06

ATMEL

12.3 Block Diagram

Figure 12-1. Real Time Counter module block diagram

RTC_TOP

!

—»| 32-bit counter —» TOP| —IRQ—»

!

RTC_VAL

——32 KHz—p 16-bit Prescaler

WDT_CLR

!

Watchdog Watchdog
L —>
Detector reset

i

WDT_CTRL

118 AT 32/A P70/ () 15—

12.4 Product Dependencies

12.41

12.4.2

12.4.3

12.4.4

32003E-AVR32-05/06

I/0 Lines

The RTC can optionally be connected to an output pin, multiplexed with PIO lines. The program-
mer must first program the PIO controller to assign the RTC pin to its peripheral function. If the
I/0 pin of the RTC is not used by the application, it can be used for other purposes by the PIO
controller.

Power Management

The RTC is continously clocked, and remains operating in all sleep modes except Deepdown.

Interrupt

The RTC interrupt line is connected to one of the internal sources of the interrupt controller.
Using the RTC interrupt requires the interrupt controller to be programmed first.

Debug Operation

The RTC prescaler and watchdog timer are frozen during debug operation, unless the OCD sys-
tem keeps peripherals running in debug operation.

A mEl% 119

ATMEL

12.5 Functional Description
12.5.1 RTC operation
12.5.1.1 Source clock

The RTC is enabled by writing the EN bit in the RTC_CTRL register. This also enables the clock
for the prescaler. The PSEL bitfield in the same register selects the prescaler tapping, selecting
the source clock for the RTC:

forg = 2-PSELH) * 3oKHZ
12.5.1.2 Counter operation
The RTC count value can be read from or written to the register RTC_VAL. The prescaler can-
not be written directly, but can be reset by writing the strobe PCLR in RTC_CTRL.
When enabled, the RTC will then up-count until it reaches OxFFFFFFFF, and then wrap to 0xO.

Writing RTC_CTRL:TOPEN to one causes the RTC to wrap at the value written to RTC_TOP.
The status bit TOPI in RTC_ISR is set when this occurs.

12.5.1.3 RTC Interrupt

Writing the TOPI bit in RTC_IER enables the RTC interrupt, while writing the corresponding bit in
RTC_IDR disables the RTC interrupt. RTC_IMR can be read to see whether or not the interrupt
is enabled. If enabled, an interrupt will be generated if the TOPI flag in RTC_ISR is set. The flag
can be cleared by writing TOPI in RTC_ICR to one.

12.5.2 Watchdog Timer

The WDT is enabled by writing the EN bit in the WDT_CTRL register. This also enables the
clock for the prescaler. The prescaler is the same as for the RTC. The PSEL bitfield in the same
register selects the watchdog timeout period:

Twor = 2PSEX1 * 30.518us

To avoid accidental disabling of the watchdog, the WDT_CTRL register must be written twice,
first with the KEY field set to 0x55, then 0xAA without changing the other bitfields. Failure to do
so will cause the write operation to be ignored, and WDT_CTRL does not change value.

The WDT_CLR register must be written with any value with regular intervals shorter than the
watchdog timeout period. Otherwise, the device will receive a soft reset, and the code will start
executing from the boot vector.

120 /AT '32/A P70/ () 1mms—

12.6 User Interface

Offset Register Register Name Access Reset
0x00 RTC Control RTC_CTRL Read/Write 0x0
0x04 RTC Value RTC_VAL Read/Write 0x0
0x08 RTC Top RTC_TOP Read/Write 0x0
0x10 RTC Interrupt Enable RTC_IER Write-only 0x0
0x14 RTC Interrupt Disable RTC_IDR Write-only 0x0
0x18 RTC Interrupt Mask RTC_IMR Read-only 0x0
0x1C RTC Interrupt Status RTC_ISR Read-only 0x0
0x20 RTC Interrupt Clear RTC_ICR Write-only 0x0
0x30 WDT Control WDT_CTRL Read/Write 0x0
0x34 WDT Clear WDT_CLR Write-only 0x0

A IIIEI% 121

32003E-AVR32-05/06

ATMEL

12.6.1 RTC Control

Name: RTC_CTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | I | | |
15 14 13 12 11 10 9 8

| : | : | : | i | PSEL[3:0] |
7 6 5 4 3 2 1 0

| i | i | i | i | i TOPEN PCLR EN |

* PSEL: Prescale Select
Selects prescaler bit PSEL as source clock for the RTC.
¢ TOPEN: Top Enable
0: RTC wraps at OxFFFFFFFF
1: RTC wraps at RTC_TOP
* PCLR: Prescaler Clear
Writing this strobe clears the prescaler. Note that this also resets the watchdog timer.
¢ EN: Enable
0: RTC is disabled
1: RTC is enabled

122 AT 32/A P70/ () 10—

12.6.2 RTC Value

Name: RTC_VAL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ VAL[31:24] ‘
23 22 21 20 19 18 17 16

| VAL[23:16] |
15 14 13 12 11 10 9 8

‘ VAL[15:8] ‘
7 6 5 4 3 2 1 0

‘ VAL[7:0] ‘

¢ VAL: RTC Value
This value is incremented on every rising edge of the source clock.

A IIIEI% 123

32003E-AVR32-05/06

ATMEL

12.6.3 RTC Top

Name: RTC_TOP

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ TOP[31:24] ‘
23 22 21 20 19 18 17 16

| TOP[23:16] |
15 14 13 12 11 10 9 8

\ TOP[15:8] \
7 6 5 4 3 2 1 0

‘ TOP[7:0] ‘

¢ TOP: RTC Top Value
RTC_VAL wraps at this value if RTC_CTRL:TOPEN is 1.

124 AT32AP7000 m—

12.6.4 RTC Interrupt Enable/Disable/Mask/Status/Clear

Name: RTC_IER/IDR/IMR/ISR/ICR

Access Type: RTC_IER/IDR/ICR: Write-only
RTC_IMR/ISR: Read-only

31 30 29 28 27 26 25 24
.- - r - r - - - [- [- |
23 22 21 20 19 18 17 16
. - - r - r - - - [- [- |
15 14 13 12 11 10 9 8
. - r - r - r -+ - ;r - ;@ - [- |
7 6 5 4 3 2 1 0
e e e s O S

¢ TOPI: Top Interrupt
RTC_VAL has wrapped at its RTC_TOP.

The effect of writing or reading this bit depends on which register is being accessed:

IER (Write-only)
0: No effect
1: Enable Interrupt
IDR (Write-only)
0: No effect
1: Disable Interrupt
IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
ISR (Read-only)
0: An interrupt event has not occurred
1: An interrupt event has occurred. Note that this is only set when the RTC is configured to wrap at RTC_TOP.
ICR (Write-only)
0: No effect
1: Clear interrupt event

A mEl% 125

32003E-AVR32-05/06

ATMEL

12.6.5 WDT Control

Name: WDT_CTRL
Access Type: Read/Write
31 30 29 28 27 26 25 24
‘ KEY[7:0] ‘
23 22 21 20 19 18 17 16
[N R B - -]
15 14 13 12 11 10 9 8
‘] ‘] \] \] \ PSEL[3:0] \
7 6 5 4 3 2 1 0
R R R - -]
* KEY

This bitfield must be written twice, first with key value 0x55, then 0xAA, for a write operation to be effective. This bitfield always
reads as zero.
* PSEL: Prescale Select
Prescaler bit PSEL is used as watchdog timeout period.
* EN: WDT Enable
0: WDT is disabled.
1: WDT is enabled.

126 /AT 32 /A P70/ () 15—

32003E-AVR32-05/06

12.6.6 WDT Clear
Name: WDT_CLR
Access Type: Write-only

When the watchdog timer is enabled, this register must be periodically written, with any value, within the watchdog timeout
period, to prevent a watchdog reset.

A mEl% 127

32003E-AVR32-05/06

ATMEL

13. Interrupt Controller

13.1

Description

Rev: 1.0.0

The INTC collects interrupt requests from the peripherals, prioritizes them, and delivers an inter-
rupt request and an autovector to the CPU. The AVR32 architecture supports 4 priority levels for
regular, maskable interrupts, and a Non-Maskable Interrupt (NMI).

The INTC supports up to 64 groups of interrupts. Each group can have up to 32 interrupt request
lines, these lines are connected to the peripherals. Each group has an Interrupt Priority Register
(IPR) and an Interrupt Request Register (IRR). The IPRs are used to assign a priority level and
an autovector to each group, and the IRRs are used to identify the active interrupt request within
each group. If a group has only one interrupt request line, an active interrupt group uniquely
identifies the active interrupt request line, and the corresponding IRR is not needed. The INTC
also provides one Interrupt Cause Register (ICR) per priority level. These registers identify the
group that has a pending interrupt of the corresponding priority level. If several groups have an
pending interrupt of the same level, the group with the highest number takes priority.

13.2 Block Diagram

128

Figure 13-1 on page 128 gives an overview of the INTC. The grey boxes represent registers that
can be accessed via the APB bus. The interrupt requests from the peripherals (IREQn) and the
NMI are input on the left side of the figure. Signals to and from the CPU are on the right side of
the figure.

Figure 13-1. Overview of the Interrupt Controller

Interrupt Controller CPU
NMIREQ
< Masks || SREG
< masks
y 1[3-0]M
GM
o ValRegN
GrgRegN. »
| > OR
=
[]| ®rn INTLEVEL
Request - >
IREQ63 » maskin &
OR [oEEedly 9| varen: =:>, =
IREQ34 - @
IREQ33 I » e
IRE§32 T IPRL AUTOVECTOR
| ree -
IREQ31 > ValReq0 o
GrpReq0 L
IRES: <
- T
IRR registers IPR registers ICR registers

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

13.3 Operation

All of the incoming interrupt requests (IREQs) are sampled into the corresponding Interrupt
Request Register (IRR). The IRRs must be accessed to identify which IREQ within a group that
is active. If several IREQs within the same group is active, the interrupt service routine must pri-
oritize between them. All of the input lines in each group are logically-ORed together to form the
GrpRegN lines, indicating if there is a pending interrupt in the corresponding group.

The Request Masking hardware maps each of the GrpReq lines to a priority level from INTO to
INT3 by associating each group with the INTLEVEL field in the corresponding IPR register. The
GrpReq inputs are then masked by the IOM, 11M, I12M, I3M and GM mask bits from the CPU sta-
tus register. Any interrupt group that has a pending interrupt of a priority level that is not masked
by the CPU status register, gets its corresponding ValReq line asserted.

The Prioritizer hardware uses the ValReq lines and the INTLEVEL field in the IPRs to select the
pending interrupt of the highest priority. If a NMI interrupt is pending, it automatically gets high-
est priority of any pending interrupt. If several interrupt groups of the highest pending interrupt
level have pending interrupts, the interrupt group with the highest number is selected.

Interrupt level (INTLEVEL) and handler autovector offset (AUTOVECTOR) of the selected inter-
rupt are transmitted to the CPU for interrupt handling and context switching. The CPU doesn't
need to know which interrupt is requesting handling, but only the level and the offset of the han-
dler address. The IRR registers contain the interrupt request lines of the groups and can be read
via APB for checking which interrupts of the group are actually active.

Masking of the interrupt requests is done based on five interrupt mask bits of the CPU status
register, namely interrupt level 3 mask (I3M) to interrupt level 0 mask (I0OM), and Global interrupt
mask (GM). An interrupt request is masked if either the Global interrupt mask or the correspond-
ing interrupt level mask bit is set.

13.3.1 Non maskable interrupts

13.3.2 CPU response

32003E-AVR32-05/06

A NMI request has priority over all other interrupt requests. NMI has a dedicated exception vec-
tor address defined by the AVR32 architecture, so AUTOVECTOR is undefined when
INTLEVEL indicates that an NMI is pending.

When the CPU receives an interrupt request it checks if any other exceptions are pending. If no
exceptions of higher priority are pending, interrupt handling is initiated. When initiating interrupt
handling, the corresponding interrupt mask bit is set automatically for this and lower levels in sta-
tus register. E.g, if interrupt on level 3 is approved for handling the interrupt mask bits I3M, 12M,
I1TM, and IOM are set in status register. If interrupt on level 1 is approved the masking bits 11M,
and I0OM are set in status register. The handler offset is calculated from AUTOVECTOR and
EVBA and a change-of-flow to this address is performed.

Setting of the interrupt mask bits prevents the interrupts from the same and lower levels to be
passed trough the interrupt controller. Setting of the same level mask bit prevents also multiple
request of the same interrupt to happen.

It is the responsibility of the handler software to clear the interrupt request that caused the inter-
rupt before returning from the interrupt handler. If the conditions that caused the interrupt are not
cleared, the interrupt request remains active.

A IIIEI% 129

ATMEL

13.3.3 Clearing an interrupt request
Clearing of the interrupt request is done by writing to registers in the corresponding peripheral
module, which then clears the corresponding NMIREQ/IREQ signal.

The recommended way of clearing an interrupt request is a store operation to the controlling
peripheral register, followed by a dummy load operation from the same register. This causes a
pipeline stall, which prevents the interrupt from accidentally re-triggering in case the handler is
exited and the interrupt mask is cleared before the interrupt request is cleared.

130 /AT 32/A P70/ () 15—

13.4 User Interface

This chapter lists the INTC registers are accessible through the APB bus. The registers are used

to control the behaviour and read the status of the INTC.

13.4.1 Memory Map

The following table shows the address map of the INTC registers, relative to the base address of

the INTC.

Table 13-1. INTC address map
Offset Register Name Access Reset Value
0 Interrupt Priority Register O IPRO Read/Write 0x0000_0000
4 Interrupt Priority Register 1 IPR1 Read/Write 0x0000_0000
252 Interrupt Priority Register 63 IPR63 Read/Write 0x0000_0000
256 Interrupt Request Register 0 IRRO Read-only N/A
260 Interrupt Request Register 1 IRR1 Read-only N/A
508 Interrupt Request Register 63 | IRR63 Read-only N/A
512 Interrupt Cause Register 0 ICR3 Read-only N/A
516 Interrupt Cause Register 1 ICR2 Read-only N/A
520 Interrupt Cause Register 2 ICR1 Read-only N/A
524 Interrupt Cause Register 3 ICRO Read-only N/A

13.4.2 Interrupt Request Map

The mapping of interrupt requests from peripherals to INTREQs is presented in the Peripherals

Section.

32003E-AVR32-05/06

ATMEL

131

ATMEL

13.4.3 Interrupt Request Registers

Register Name: IRRO...IRR63
Access Type: Read-only
31 30 29 28 27 26 25 24

[TRR(32°x+31) | IRR(32°x+30) | IRR(32°x+29) | IRR(32'x+28) | IRR(32'x+27) | IRR(32'x+26) | IRR(32'x+25) | IRR(32'x+24) |

23 22 21 20 19 18 17 16
[TRR(32"x+23) | IRR(32'x+22) | IRR(32'x+21) | IRR(32'x+20) | IRR(32'x+19) | IRR(32'x+18) | IRR(32'x+17) | IRR(32'x+16) |

15 14 13 12 11 10 9 8
[TRR(32'x+15) | IRR(32'x+14) | IRR(32'x+13) | IRR(32'x+12) | IRR(@2'x+11) | IRR(32'x+10) | IRR(32'x+9) | IRR(32'x+8) |

7 6 5 4 3 2 1 0
[[TRR(G2'x+7) | IRR(32'x+6) | IRR(32'x+5) | IRR(32'x+4) | IRR(32'x+3) | IRR(32'x+2) | IRR@2'x+1) | IRR(3Z'x+0) |

* IRR: Interrupt Request line

0 = No interrupt request is pending on this input request input.

1 = An interrupt request is pending on this input request input.

The are 64 IRRs, one for each group. Each IRR has 32 bits, one for each possible interrupt request, for a total of 2048 pos-
sible input lines. The IRRs are read by the software interrupt handler in order to determine which interrupt request is
pending. The IRRs are sampled continuously, and are read-only.

132 /AT 32/A P70/ () 15—

13.4.4 Interrupt Priority Registers

Register Name: IPRO...IPR63

Access Type: Read/Write
31 30 29 28 27 26 25 24

| INTLEVEL[1:0] - - [- - - - |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| - [- AUTOVECTOR[13:8] |
7 6 5 4 3 2 1 0

AUTOVECTORI[7:0] |

¢ INTLEVEL: Interrupt level associated with this group

Indicates the EVBA-relative offset of the interrupt handler of the corresponding group:

INTLEVEL[1:0] Priority
0 0 INTO
0 1 INT1
1 0 INT2
1 1 INT3

e AUTOVECTOR: Autovector address for this group
Handler offset is used to give the address of the interrupt handler. The LSB should be written to zero to give halfword

alignment

32003E-AVR32-05/06

ATMEL

133

ATMEL

13.4.5 Interrupt Cause Registers

Register Name: ICRO...ICR3

Access Type: Read-only
31 30 29 28 27 26 25 24

I I - I I I I - I I |
23 22 21 20 19 18 17 16

I I - I I I I - I : I : |
15 14 13 12 11 10 9 8

I I i I I I I i I I |
7 6 5 4 3 2 1 0

| - | - | CAUSE |

e CAUSE: Interrupt group causing interrupt of priority n

ICRn identifies the group with the highest priority that has a pending interrupt of level n. If no interrupts of level n are pend-
ing, or the priority level is masked, the value of ICRn is UNDEFINED.

134 AT32AP7000 m——

32003E-AVR32-05/06

14. External Interrupts

Rev: 1.0.0
14.1 Features

Dedicated interrupt requests for each interrupt
Individually maskable interrupts

Interrupt on rising or falling edge

Interrupt on high or low level

Maskable NMI interrupt

14.2 Description

The External Interrupt Module allows 4 pins to be configured as external interrupts. Each pin has
its own interrupt request, and can be individually masked. Each pin can generate an interrupt on
rising or falling edge, or high or low level.

The module also masks the NMI_N pin, which generates the NMI interrupt for the CPU.
14.3 Block Diagram

Figure 14-1. External Interrupt Module block diagram

EIM_LEVEL EIM_IER
EIM_MODE E'Ml'CR EIM_IDR

EXTINTN ®—> Sync —» Edge/Level —{ INTh —»{ Mask [—IRQn»
Detector

EIM_ISR EIM_IMR

' '
|

EIM_NMIC

Y

NMI_N ®—> Sync —»| Mask [—NML_IRQ-»

A IIIEI% 135

32003E-AVR32-05/06

ATMEL

14.4 Product Dependencies

14.41

14.4.2

14.4.3

14.5

14.5.1

14.5.1.1

136

I/0 Lines

The External Interrupt and NMI pins are multiplexed with PIO lines. To act as external interrupts,
these pins must be configured as inputs pins by the PIO controller. It is also possible to trigger
the interrupt by driving these pins from registers in the PIO controller, or another peripheral out-
put connected to the same pin.

Power Management

Interrupt

Edge triggered interrupts are available in all sleep modes except Deepdown. Level triggered
interrupts and the NMI interrupt are available in all sleep modes.

The EIM interrupt lines are connected to internal sources of the interrupt controller. Using the
External Interrutps requires the interrupt controller to be programmed first.

Using the Non-Maskable Interrupt does not require the interrupt controller to be programmed.

Functional Description

External Interrupts

Each external interrupt pin EXTINTN can be configured to produce an interrupt on rising or fall-
ing edge, or high or low level. External interrupts are configured by the EIM_MODE, EIM_EDGE,
and EIM_LEVEL registers. Each interrupt n has a bit INTn in each of these registers.

Similarly, each interrupt has a corresponding bit in each of the interrupt control and status regis-
ters. Writing 1 to the INTn strobe in EIM_IER enables the external interrupt on pin EXTINTn,
while writing 1 to INTn in EIM_IDR disables the external interrupt. EIM_IMR can be read to
check which interrupts are enabled. When the interrupt triggers, the corresponding bit in
EIM_ISR will be set. For edge triggered interrupts, the flag remains set until the corresponding
strobe bit in EIM_ICR is written to 1. For level triggered interrupts, the flag remains set for as
long as the interrupt condition is present on the pin.

Writing INTn in EIM_MODE to 0 enables edge triggered interrupts, while writing the bit to 1
enables level triggered interrupts.

If EXTINTN is configured as an edge triggered interrupt, writing INTn in EIM_EDGE to 0 will trig-
ger the interrupt on falling edge, while writing the bit to 1 will trigger the interrupt on rising edge.

If EXTINTN is configured as a level triggered interrupt, writing INTn in EIM_LEVEL to 0 will trig-
ger the interrupt on low level, while writing the bit to 1 will trigger the interrupt on high level.

Synchronization of external interrupts

The pin value of the EXTINTn pins is normally synchronized to the CPU clock, so spikes shorter
than a CPU clock cycle are not guaranteed to produce an interrupt. In Stop mode, spikes shorter
than a 32KHz clock cycle are not guaranteed to produce an interrupt. In Deepdown mode, only
unsynchronized level interrupts remain active, and any short spike on this interrupt will wake up
the device.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

14.5.2 NMI Control

32003E-AVR32-05/06

The Non-Maskable Interrupt of the CPU is connected to the NMI_N pin through masking logic in
the External Interrupt Module. This masking ensures that the NMI will not trigger before the CPU
has been set up to handle interrupts. Writing the EN bit in the EIM_NMIC register enables the
NMI interrupt, while writing EN to O disables the NMI interrupt. When enabled, the interrupt trig-
gers whenever the NMI_N pin is negated.

The NMI_N pin is synchronized the same way as external level interrupts.

A mEl% 137

ATMEL

14.6 User Interface

Offset Register Register Name Access Reset
0x00 EIM Interrupt Enable EIM_IER Write-only 0x0
0x04 EIM Interrupt Disable EIM_IDR Write-only 0x0
0x08 EIM Interrupt Mask EIM_IMR Read-only 0x0
0x0C EIM Interrupt Status EIM_ISR Read-only 0x0
0x10 EIM Interrupt Clear EIM_ICR Write-only 0x0
0x14 External Interrupt Mode EIM_MODE Read/Write 0x0
0x18 External Interrupt Edge EIM_EDGE Read/Write 0x0
0x1C External Interrupt Level EIM_LEVEL Read/Write 0x0
0x24 External Interrupt NMI Control EIM_NMIC Read/Write 0x0

138 /AT '32/A P70/ () 15—

14.6.1 EIM Interrupt Enable/Disable/Mask/Status/Clear

Name: EIM_IER/IDR/IMR/ISR/ICR
Access Type: EIM_IER/IDR/ICR: Write-only
EIM_IMR/ISR: Read-only

31 30 29 28 27 26 25 24
- r - r - r - r - ;- [- [- |
23 22 21 20 19 18 17 16
- r - r - r - r - ;- [- [- |
15 14 13 12 11 10 9 8
- r - r-r - r - ;- [- [- |
7 6 5 4 3 2 1 0
‘ - ‘ - ‘ - ‘ - ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

¢ INTn: External Interrupt n
0: External Interrupt has not triggered
1: External Interrupt has triggered

The effect of writing or reading the bits listed above depends on which register is being accessed:

IER (Write-only)
0: No effect
1: Enable Interrupt
IDR (Write-only)
0: No effect
1: Disable Interrupt
IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
ISR (Read-only)
0: An interrupt event has occurred
1: An interrupt even has not occurred
ICR (Write-only)
0: No effect
1: Clear interrupt event

A mElg 139

32003E-AVR32-05/06

ATMEL

14.6.2 External Interrupt Mode/Edge/Level

Name: EIM_MODE/EDGE/LEVEL

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | |- | | |
7 6 5 4 3 2 1 0

‘] ‘] \] \ . \ INT3 ‘ INT2 \ INTA \ INTO ‘

¢ INTn: External Interrupt n

The bit interpretation is register specific:

¢ EIM_MODE
0: Interrupt is edge triggered
1: Interrupt is level triggered
e EIM_EDGE
0: Interrupt triggers on falling edge
1: Interrupt triggers on rising edge
e EIM_LEVEL
0: Interrupt triggers on low level
1: Interrupt triggers on high level

140 AT32AP7000 m—

14.6.3 NMI Control

Name: EIM_NMIC

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | R | | |
7 6 5 4 3 2 1 0

I e e e I I D -

¢ EN: Enable

0: NMI disabled. Asserting the NMI_N pin does not generate an NMI request.
1: NMI enabled. Asserting the NMI_N pin generate an NMI request.

A IIIEI% 141

32003E-AVR32-05/06

ATMEL

15. AHB Bus Matrix (HMATRIX)

15.1 Features

15.2 Description

Rev: 6029A

¢ System Bus Advanced High-performance Bus (AHB Lite) Compliant Interfaces
* APB Compliant User Interface
¢ Configurable Number of Masters (Up to sixteen)
¢ Configurable Number of Slaves (Up to sixteen)
* One Decoder for Each Master
* Three Different Memory Mappings for Each Master (Internal and External boot, Remap)
¢ One Remap Function for Each Master
* Programmable Arbitration for Each Slave
— Round-Robin
— Fixed Priority
* Programmable Default Master for Each Slave
— No Default Master
— Last Accessed Default Master
— Fixed Default Master
* One Cycle Latency for the First Access of a Burst
¢ Zero Cycle Latency for Default Master
* One Special Function Register for Each Slave (Not dedicated)

The Bus Matrix implements a multi-layer AHB, based on the AHB-Lite protocol, that enables par-
allel access paths between multiple AHB masters and slaves in a system, thus increasing the
overall bandwidth. The Bus Matrix interconnects up to 16 AHB Masters to up to 16 AHB Slaves.
The normal latency to connect a master to a slave is one cycle except for the default master of
the accessed slave which is connected directly (zero cycle latency). The Bus Matrix user inter-
face is compliant with ARM® Advance Peripheral Bus and provides 16 Special Function
Registers (SFR) that allow the Bus Matrix to support application specific features.

15.3 Memory Mapping

The Bus Matrix provides one decoder for every AHB Master Interface. The decoder offers each
AHB Master several memory mappings. In fact, depending on the product, each memory area
may be assigned to several slaves. Booting at the same address while using different AHB
slaves (i.e. external RAM, internal ROM or internal Flash, etc.) becomes possible.

The Bus Matrix user interface provides Master Remap Control Register (MRCR) that performs
remap action for every master independently.

15.4 Special Bus Granting Mechanism

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism reduces latency at first access of a burst or single
transfer. This bus granting mechanism sets a different default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

142 AT32AP7000 m—

32003E-AVR32-05/06

15.5 No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low-power mode.

15.6 Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

15.7 Fixed Default Master

15.8 Arbitration

At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master does not change unless the user
modifies it by a software action (field FIXED_DEFMSTR of the related SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that set a default master for each slave. The
Slave Configuration Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The
2-bit DEFMSTR_TYPE field selects the default master type (no default, last access master, fixed
default master), whereas the 4-bit FIXED_DEFMSTR field selects a fixed default master pro-
vided that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user
interface description.

The Bus Matrix provides an arbitration mechanism that reduces latency when conflict cases
occur, i.e. when two or more masters try to access the same slave at the same time. One arbiter
per AHB slave is provided, thus arbitrating each slave differently.

The Bus Matrix provides the user with the possibility of choosing between 2 arbitration types for
each slave:

1. Round-Robin Arbitration (default)

2. Fixed Priority Arbitration
This choice is made via the field ARBT of the Slave Configuration Registers (SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration must be done, specific conditions apply. See Section 15.8.1 ”Arbitration
Rules” on page 143.

15.8.1 Arbitration Rules

32003E-AVR32-05/06

Each arbiter has the ability to arbitrate between two or more different master requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: When a slave is not connected to any master or is connected to a master
which is not currently accessing it.
2. Single Cycles: When a slave is currently doing a single access.

3. End of Burst Cycles: When the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst. See Section “15.8.1.1” on page 144.

A IIIEI% 143

ATMEL

4. Slot Cycle Limit: When the slot cycle counter has reached the limit value indicating that
the current master access is too long and must be broken. See Section “15.8.1.2” on
page 144.

15.8.1.1 Undefined Length Burst Arbitration

In order to avoid long slave handling during undefined length bursts (INCR), the Bus Matrix pro-
vides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end
of burst is used as a defined length burst transfer and can be selected from among the following
five possibilities:
1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will
never be broken.
2. One beat bursts: Predicted end of burst is generated at each single transfer inside the
INCP transfer.
3. Four beat bursts: Predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.
4. Eight beat bursts: Predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.
5. Sixteen beat bursts: Predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.
This selection can be done through the field ULBT of the Master Configuration Registers
(MCFG).

15.8.1.2 Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a
very slow slave (e.g., an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (SCFG) and decreased at each clock cycle. When the counter reaches
zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or word
transfer.

15.8.2 Round-Robin Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master requests arise at the same time,
the master with the lowest number is first serviced, then the others are serviced in a round-robin
manner.

There are three round-robin algorithms implemented:

* Round-Robin arbitration without default master

¢ Round-Robin arbitration with last default master

¢ Round-Robin arbitration with fixed default master
15.8.2.1 Round-Robin Arbitration without Default Master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

144 AT32AP7000 m—

15.8.2.2 Round-Robin Arbitration with Last Default Master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performed the access. Other non privileged masters still get one latency cycle if
they want to access the same slave. This technique can be used for masters that mainly perform
single accesses.

15.8.2.3 Round-Robin Arbitration with Fixed Default Master

This is another biased round-robin algorithm. It allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

15.8.3 Fixed Priority Arbitration

32003E-AVR32-05/06

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master requests are
active at the same time, the master with the highest priority number is serviced first. If two or
more master requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (PRAS and PRBS).

A IIIEI% 145

ATMEL

15.9 AHB Generic Bus Matrix User Interface

Table 15-1. Register Mapping
Offset Register Name Access Reset Value
0x0000 Master Configuration Register 0 MCFGO Read/Write 0x00000002
0x0004 Master Configuration Register 1 MCFG1 Read/Write 0x00000002
0x0008 Master Configuration Register 2 MCFG2 Read/Write 0x00000002
0x000C Master Configuration Register 3 MCFG3 Read/Write 0x00000002
0x0010 Master Configuration Register 4 MCFG4 Read/Write 0x00000002
0x0014 Master Configuration Register 5 MCFG5 Read/Write 0x00000002
0x0018 Master Configuration Register 6 MCFG6 Read/Write 0x00000002
0x001C Master Configuration Register 7 MCFG7 Read/Write 0x00000002
0x0020 Master Configuration Register 8 MCFG8 Read/Write 0x00000002
0x0024 Master Configuration Register 9 MCFG9 Read/Write 0x00000002
0x0028 Master Configuration Register 10 MCFG10 Read/Write 0x00000002
0x002C Master Configuration Register 11 MCFG11 Read/Write 0x00000002
0x0030 Master Configuration Register 12 MCFG12 Read/Write 0x00000002
0x0034 Master Configuration Register 13 MCFG13 Read/Write 0x00000002
0x0038 Master Configuration Register 14 MCFG14 Read/Write 0x00000002
0x003C Master Configuration Register 15 MCFG15 Read/Write 0x00000002
0x0040 Slave Configuration Register 0 SCFGO Read/Write 0x00000010
0x0044 Slave Configuration Register 1 SCFG1 Read/Write 0x00000010
0x0048 Slave Configuration Register 2 SCFG2 Read/Write 0x00000010
0x004C Slave Configuration Register 3 SCFG3 Read/Write 0x00000010
0x0050 Slave Configuration Register 4 SCFG4 Read/Write 0x00000010
0x0054 Slave Configuration Register 5 SCFG5 Read/Write 0x00000010
0x0058 Slave Configuration Register 6 SCFG6 Read/Write 0x00000010
0x005C Slave Configuration Register 7 SCFG7 Read/Write 0x00000010
0x0060 Slave Configuration Register 8 SCFG8 Read/Write 0x00000010
0x0064 Slave Configuration Register 9 SCFG9 Read/Write 0x00000010
0x0068 Slave Configuration Register 10 SCFG10 Read/Write 0x00000010
0x006C Slave Configuration Register 11 SCFG11 Read/Write 0x00000010
0x0070 Slave Configuration Register 12 SCFG12 Read/Write 0x00000010
0x0074 Slave Configuration Register 13 SCFG13 Read/Write 0x00000010
0x0078 Slave Configuration Register 14 SCFG14 Read/Write 0x00000010
0x007C Slave Configuration Register 15 SCFG15 Read/Write 0x00000010
0x0080 Priority Register A for Slave 0 PRASO Read/Write 0x00000000
0x0084 Priority Register B for Slave 0 PRBS0O Read/Write 0x00000000
0x0088 Priority Register A for Slave 1 PRAS1 Read/Write 0x00000000

146 AT32AP7000 m—

Table 15-1. Register Mapping (Continued)
Offset Register Name Access Reset Value
0x008C Priority Register B for Slave 1 PRBS1 Read/Write 0x00000000
0x0090 Priority Register A for Slave 2 PRAS2 Read/Write 0x00000000
0x0094 Priority Register B for Slave 2 PRBS2 Read/Write 0x00000000
0x0098 Priority Register A for Slave 3 PRASS3 Read/Write 0x00000000
0x009C Priority Register B for Slave 3 PRBS3 Read/Write 0x00000000
0x00A0 Priority Register A for Slave 4 PRAS4 Read/Write 0x00000000
0x00A4 Priority Register B for Slave 4 PRBS4 Read/Write 0x00000000
0x00A8 Priority Register A for Slave 5 PRAS5 Read/Write 0x00000000
0x00AC Priority Register B for Slave 5 PRBS5 Read/Write 0x00000000
0x00B0O Priority Register A for Slave 6 PRAS6 Read/Write 0x00000000
0x00B4 Priority Register B for Slave 6 PRBS6 Read/Write 0x00000000
0x00B8 Priority Register A for Slave 7 PRAS7 Read/Write 0x00000000
0x00BC Priority Register B for Slave 7 PRBS7 Read/Write 0x00000000
0x00CO0 Priority Register A for Slave 8 PRASS8 Read/Write 0x00000000
0x00C4 Priority Register B for Slave 8 PRBS8 Read/Write 0x00000000
0x00C8 Priority Register A for Slave 9 PRAS9 Read/Write 0x00000000
0x00CC Priority Register B for Slave 9 PRBS9 Read/Write 0x00000000
0x00D0 Priority Register A for Slave 10 PRAS10 Read/Write 0x00000000
0x00D4 Priority Register B for Slave 10 PRBS10 Read/Write 0x00000000
0x00D8 Priority Register A for Slave 11 PRAS11 Read/Write 0x00000000
0x00DC Priority Register B for Slave 11 PRBS11 Read/Write 0x00000000
0x00EO Priority Register A for Slave 12 PRAS12 Read/Write 0x00000000
0xO0E4 Priority Register B for Slave 12 PRBS12 Read/Write 0x00000000
0x00E8 Priority Register A for Slave 13 PRAS13 Read/Write 0x00000000
0x00EC Priority Register B for Slave 13 PRBS13 Read/Write 0x00000000
0x00FO0 Priority Register A for Slave 14 PRAS14 Read/Write 0x00000000
0x00F4 Priority Register B for Slave 14 PRBS14 Read/Write 0x00000000
0x00F8 Priority Register A for Slave 15 PRAS15 Read/Write 0x00000000
0x00FC Priority Register B for Slave 15 PRBS15 Read/Write 0x00000000
0x0100 Master Remap Control Register MRCR Read/Write 0x00000000
0x0104 - 0x010C | Reserved - -
0x0110 Special Function Register 0 SFRO Read/Write 0x00000000
0x0114 Special Function Register 1 SFR1 Read/Write 0x00000000
0x0118 Special Function Register 2 SFR2 Read/Write 0x00000000
0x011C Special Function Register 3 SFR3 Read/Write 0x00000000
0x0120 Special Function Register 4 SFR4 Read/Write 0x00000000
147

32003E-AVR32-05/06

ATMEL

Table 15-1. Register Mapping (Continued)

ATMEL

Offset Register Name Access Reset Value
0x0124 Special Function Register 5 SFR5 Read/Write 0x00000000
0x0128 Special Function Register 6 SFR6 Read/Write 0x00000000
0x012C Special Function Register 7 SFR7 Read/Write 0x00000000
0x0130 Special Function Register 8 SFR8 Read/Write 0x00000000
0x0134 Special Function Register 9 SFR9 Read/Write 0x00000000
0x0138 Special Function Register 10 SFR10 Read/Write 0x00000000
0x013C Special Function Register 11 SFR11 Read/Write 0x00000000
0x0140 Special Function Register 12 SFR12 Read/Write 0x00000000
0x0144 Special Function Register 13 SFR13 Read/Write 0x00000000
0x0148 Special Function Register 14 SFR14 Read/Write 0x00000000
0x014C Special Function Register 15 SFR15 Read/Write 0x00000000
0x0150 - 0x01F8 | Reserved - -

148 AT32AP7000 m—

15.10 Bus Matrix Master Configuration Registers

Register Name: MCFGO...MCFG15

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I ULeT |

¢ ULBT: Undefined Length Burst Type
0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access

The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR
burst.

2: Four Beat Burst

The undefined length burst is split into a four-beat burst, allowing re-arbitration at each four-beat burst end.

3: Eight Beat Burst

The undefined length burst is split into an eight-beat burst, allowing re-arbitration at each eight-beat burst end.
4: Sixteen Beat Burst

The undefined length burst is split into a sixteen-beat burst, allowing re-arbitration at each sixteen-beat burst end.

A mEl% 149

32003E-AVR32-05/06

ATMEL

15.11 Bus Matrix Slave Configuration Registers
Register Name: SCFGO...SCFG15

Access Type: Read/Write
31 30 29 28 27 26 25 24
- T - 1T - - - — 1 - ARET]
23 22 21 20 19 18 17 16
| - [- | FIXED_DEFMSTR [DEFMSTR_TYPE |
15 14 13 12 11 10 9 8
- 1 - T - - - G R —]
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

e SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.

This limit has been placed to avoid locking a very slow slave when very long bursts are used.

This limit must not be very small. Unreasonably small values break every burst and the Bus Matrix arbitrates without per-
forming any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

e DEFMSTR_TYPE: Default Master Type

0: No Default Master

At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in a one cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master
having accessed it.

This results in not having one cycle latency when the last master tries to access the slave again.
2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number that has been written in the FIXED_DEFMSTR field.

This results in not having one cycle latency when the fixed master tries to access the slave again.
e FIXED_DEFMSTR: Fixed Default Master

This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a mas-
ter which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

e ARBT: Arbitration Type
0: Round-Robin Arbitration

1: Fixed Priority Arbitration

150 /AT 32 /A P70/ () 15—

15.12 Bus Matrix Priority Registers A For Slaves

Register Name: PRASO0...PRAS15

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - [- | M7PR [- [- [M6PR |
23 22 21 20 19 18 17 16

| - [- | M5PR [- [- [M4PR |
15 14 13 12 11 10 9 8

| - [- | M3PR [- [- [M2PR |
7 6 5 4 3 2 1 0

| - [- [M1PR [- [- [MOPR |

e MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

A mEl% 151

32003E-AVR32-05/06

ATMEL

15.13 Bus Matrix Priority Registers B For Slaves

Register Name: PRBSO0...PRBS15

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - [M15PR | - | - | M14PR |
23 22 21 20 19 18 17 16

| - | - | M13PR | - | - | M12PR |
15 14 13 12 11 10 9 8

| - | - | M11PR | - | - | M10PR |
7 6 5 4 3 2 1 0

| - [- | MOPR [- [- [M8PR |

e MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

152 /AT 32 /A P70/ () 15—

32003E-AVR32-05/06

15.14 Bus Matrix Master Remap Control Register
Register Name: MRCR

Access Type: Read/Write
Reset: 0x0000_0000
31 30 29 28 27 26 25 24
- 1T - 717 - T T —"T - - — 1]
23 22 21 20 19 18 17 16
- 1T - 717 - T —"T =T - - S
15 14 13 12 11 10 9 8
| RCB15 | RCB14 | RCB13 | RCB12 | RCB11 [RCB10 RCB9 RCB8 |
7 6 5 4 3 2 1 0
| RCB7 [RCB6 | RCB5 [RCB4 [RCB3 [RCB2 RCB1 RCBO |

¢ RCB: Remap Command Bit for Master x
0: Disable remapped address decoding for the selected Master

1: Enable remapped address decoding for the selected Master

32003E-AVR32-05/06

ATMEL

153

ATMEL

15.15 Bus Matrix Special Function Registers

Register Name: SFRO...SFR15

Access Type: Read/Write

Reset: 0x0000_0000
31 30 29 28 27 26 25 24

| SFR |
23 22 21 20 19 18 17 16

| SFR |
15 14 13 12 11 10 9 8

| SFR |
7 6 5 4 3 2 1 0

| SFR |

¢ SFR: Special Function Register Fields
The SFR fields are a set of D-type Flip-flops which are only connected to outputs of the Bus Matrix.

They are readable/writable from the User Interface and may be used to implement Configuration Registers which cannot
be implemented in any of the other embedded peripherals of the product. Each bit of the SFR may be removed by hard-
ware customization at synthesis if not used.

154 AT32AP7000 m——

32003E-AVR32-05/06

16. External Bus Interface (EBI)

16.1 Features

16.2 Description

32003E-AVR32-05/06

Rev: 1.0.0

* Optimized for Application Memory Space support
¢ Integrates Three External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
— ECC Controller
Additional Logic for NAND Flash/SmartMedia™ and CompactFlash™ Support
— SmartMedia support: 8-bit as well as 16-bit devices are supported
— CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are
supported but the signals _I0IS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode)
are not handled.
¢ Optimized External Bus:
— 16- or 32-bit Data Bus
— Up to 26-bit Address Bus, Up to 64-Mbytes Addressable
— Optimized pin multiplexing to reduce latencies on External Memories
Up to 6 Chip Selects, Configurable Assignment:
— Static Memory Controller on NCS0O
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS2
— Static Memory Controller on NCS3, Optional NAND Flash/SmartMedia™ Support
— Static Memory Controller on NCS4 - NCS5, Optional CompactFlash™ Support

The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the embedded Memory Controller of an AVR32 device. The Static
Memory, SDRAM and ECC Controllers are all featured external Memory Controllers on the EBI.
These external Memory Controllers are capable of handling several types of external memory
and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash, and SDRAM.

The EBI also supports the CompactFlash and the NAND Flash/SmartMedia protocols via inte-
grated circuitry that greatly reduces the requirements for external components. Furthermore, the
EBI handles data transfers with up to six external devices, each assigned to six address spaces
defined by the embedded Memory Controller. Data transfers are performed through a 16-bit or
32-bit data bus, an address bus of up to 26 bits, up to six chip select lines (NCS[5:0]) and sev-
eral control pins that are generally multiplexed between the different external Memory
Controllers.

A IIIEI% 155

ATMEL

16.3 Block Diagram
16.3.1 External Bus Interface

Figure 16-1 shows the organization of the External Bus Interface.

Figure 16-1. Organization of the External Bus Interface

Bus Matrix External Bus Interface 0
¢ > »[] D[15:0]

AHB _,| SDRAM ¢ > »[] AO0/NBSO
Controller
»[] A1/NWR2/NBS2

o] Al15:2], Al22:18]
»[] A16/BAO

MUX

Static Logic »[] A17/BA1

Memory

¢ p| Controller | g——py »[] NCSO
»[] NCS1/SDCS0

»[] NCS3/NANDCS
NRD/NOE/CFOE
NWRO/NWE/CFWE
NWR1/NBS1/CFIOR

NWR3/NBS3/CFIOW
»[] SDcCK
[] sbcke
\4 *[] RAS
L]
L]

.| CompactFlash
Logic

| NAND Flash [€=P>| »[] CAS

SmartMedia SDWE
Logic »[] SDA10

t =g NANDOE

NANDWE

ECC
Controller

D[31:16]

» PIO

A[25:23]
CFRNW
NCS4/CFCS0
NCS5/CFCS1
NCS2
NWAIT
CFCE1
CFCE2
SDCS1

Chip Select

Address Decoders »)
Assignor

User Interface

?
—

APB

997900

156 AT 32 /A P70/ () 1mms—

16.4 1/0 Lines Description

Table 16-1. EBI I/O Lines Description

Name Function Type Active Level
EBI
DO - D31 Data Bus I/O
A0 - A25 Address Bus Output
NWAIT External Wait Signal Input Low
smMC
NCSO - NCS5 Chip Select Lines Output Low
NWRO - NWR3 Write Signals Output Low
NOE Output Enable Output Low
NRD Read Signal Output Low
NWE Write Enable Output Low
NBSO - NBS3 Byte Mask Signals Output Low
EBI for CompactFlash Support
CFCE1 - CFCE2 CompactFlash Chip Enable Output Low
CFOE CompactFlash Output Enable Output Low
CFWE CompactFlash Write Enable Output Low
CFIOR CompactFlash I/O Read Signal Output Low
CFIOW CompactFlash 1/0O Write Signal Output Low
CFRNW CompactFlash Read Not Write Signal Output
CFCSO0 - CFCS1 CompactFlash Chip Select Lines Output Low
EBI for NAND Flash/SmartMedia Support
NANDCS SmartMedia Chip Select Line Output Low
NANDOE SmartMedia Output Enable Output Low
NANDWE SmartMedia Write Enable Output Low
SDRAM Controller
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Controller Chip Select Line Output Low
BAO - BA1 Bank Select Output
SDWE SDRAM Write Enable Output Low
RAS - CAS Row and Column Signal Output Low
NWRO - NWR3 Write Signals Output Low
NBSO - NBS3 Byte Mask Signals Output Low
SDA10 SDRAM Address 10 Line Output

A mEl% 157

32003E-AVR32-05/06

ATMEL

Depending on the Memory Controller in use, all signals are not connected directly through the

Mux Logic.

Table 16-2 on page 158 details the connections between the two Memory Controllers and the

EBI pins.

Table 16-2. EBI Pins and Memory Controllers I/O Lines Connections

EBI Pins SDRAMC 1I/O Lines SMC I/O Lines

NWR1/NBS1/CFIOR NBS1 NWR1/NUB
AO/NBSO Not Supported SMC_AO/NLB
A1/NBS2/NWR2 Not Supported SMC_A1
A[11:2] SDRAMC_A[9:0] SMC_A[11:2]
SDA10 SDRAMC_A10 Not Supported
A12 Not Supported SMC_A12
A[14:13] SDRAMC_A[12:11] SMC_A[14:13]
A[22:15] Not Supported SMC_A[22:15]
A[25:23] Not Supported SMC_A[25:23]
D[31:0] D[31:0] D[31:0]

158 /AT 32 /A P70/ () 15—

32003E-AVR32-05/06

16.5 Application Example

16.5.1 Hardware Interface
Table 16-3 on page 159 details the connections to be applied between the EBI pins and the
external devices for each Memory Controller.
Table 16-3. EBI Pins and External Static Devices Connections
Pins of the Interfaced Device
8-bit Static zsxt:t'igit 16-bit Static 4 SXt :t'izn 2 gtll?i'cb” 32-bit Static
Signals Device Devices Device Devices Devices Device
Controller MC
DO - D7 Do - D7 Do - D7 DO - D7 Do - D7 DO - D7 DO - D7
D8 - D15 - D8 - D15 D8 - D15 D8 - D15 D8 - 15 D8 - 15
D16 - D23 - - - D16 - D23 D16 - D23 D16 - D23
D24 - D31 - - - D24 - D31 D24 - D31 D24 - D31
AO/NBSO A0 - NLB - NLB® BEO®
A1/NWR2/NBS2 A1 AO A0 WE® NLB®) BE2®)
A2 - A22 A[2:22] A[1:21] A[1:21] A[0:20] A[0:20] A[0:20]
A23 - A25 A[23:25] A[22:24] A[22:24] A[21:23] A[21:23] A[21:23]
NCS0 CS CS CS CS CS CS
NCS1/SDCS0 Cs Cs CS CS CS CSs
NCS2 CS CS CSs CS CSs CSs
NCS3/NANDCS CS CS CS CS CS CS
NCS4/CFCS0 Cs Cs CS CS CS CSs
NCS5/CFCSH1 CS CS CSs CS CS CSs
NRD/NOE/CFOE OE OE OE OE OE OE
NWRO/NWE WE WE® WE WE® WE WE
NWR1/NBS1 - WE® NUB WE® NUB® BE1®
NWR3/NBS3 - - - WE® NUB® BE3®
SDSCH1 - - - - - CSs
Notes: 1. NWR1 enables upper byte writes. NWRO enables lower byte writes.
2. NWRx enables corresponding byte x writes. (x = 0,1,2 or 3)
3. NBSO and NBS1 enable respectively lower and upper bytes of the lower 16-bit word.
4. NBS2 and NBS3 enable respectively lower and upper bytes of the upper 16-bit word.
5. BEx: Byte x Enable (x = 0,1,2 or 3)

32003E-AVR32-05/06

ATMEL

159

ATMEL

Table 16-4. EBI Pins and External Devices Connections

Pins of the Interfaced Device
Compact Compact Smart Media

SDRAM Flash Flash or
Signals True IDE Mode NAND Flash
Controller SDRAMC SMC
DO - D7 Do - D7 Do - D7 Do - D7 ADO-AD7
D8 - D15 D8 - D15 D8 - 15 D8 -15 AD8-AD15
D16 - D31 D16 - D31 - - -
AO/NBSO DQMO A0 A0 -
A1/NWR2/NBS2 DQM2 Al A1 -
A2-A10 A[0:8] A[2:10] A[2:10] -
A1 A9 - - -
SDA10 A10 - - -
A12 - - - -
A13 - A14 A[11:12] - - -
A15 - - - -
A16/BA0 BAO - - -
A17/BA1 BA1 - - -
A18 - A20 - - - -
A21 - - - CLE®
A22 - REG REG ALE®
A23 - A24 - - - -
A25 - CFRNW(® CFRNW(® -
NCS0 - - - -
NCS1/SDCS0 CSI[0] - - -
NCS2 - - - -
NCS2/NANDCS - - - -
NCS3/NANDCS - - - -
NCS4/CFCS0 - CFcso™ CFcso™ -
NCS5/CFCSH - CFCS1™ CFCs1™ -
NANDOE - - - OE
NANDWE - - - WE
NRD/NOE/CFOE - OE - -
NWRO/NWE/CFWE - WE WE -
NWR1/NBS1/CFIOR DQM!1 IOR IOR -
NWR3/NBS3/CFIOW DQM3 IOW IOW -
CFCE1 - CE1 CSo -
CFCE2 — CE2 CS1 -

160 AT 32 /A P70/ () 15—

32003E-AVR32-05/06

Table 16-4. EBI Pins and External Devices Connections (Continued)
Pins of the Interfaced Device
Compact Compact Smart Media
SDRAM Flash Flash or
Signals True IDE Mode NAND Flash
Controller SDRAMC SMC
SDCK CLK - - -
SDCKE CKE - - -
RAS RAS - - -
CAS CAS - - -
SDWE WE - - -
NWAIT - WAIT WAIT -
Pxx@ - CD1 or CD2 CD1 or CD2 -
Pxx®@ - - - CE
Pxx® - - - RDY
SDCS1 CS[1] - - _

32003E-AVR32-05/06

Note:

1.

Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer
between the EBI data bus and the CompactFlash slot.

Any PIO line.

The CLE and ALE signals of the SmartMedia device may be driven by any address bit. For

details, see "SmartMedia and Nand Flash Support” on page 168.

ATMEL

161

16.5.2

162

Connection Examples

ATMEL

Figure 16-2 shows an example of connections between the EBI and external devices.

Figure 16-2. EBI Connections to Memory Devices

EBI
D0-D31
N\
RAS
s\ 2M x 8 2M x 8
SDCK \ SDRAM SDRAM
SDCKE —\ DO-D7 D8-D15
D0-D7 DO-D7
SDWE N
AO/NBSO N\ cs cs
NWR1/NBS1 A CLK CLK
AUNWRZNBS2 [P A0-A9, A11|_A2-A11,A13 OkE A0-A9, A11|_A2-A11,A13
NWR3/NBS3 N WE At0["SDATO SOWE| e A10
NRONOEL -\ s BAO [CAT6/BA0 RAS BAO [_A16/BA0
NwRONWE[N CAS BA1 [_AT7/BA1 Cas BA1
——{pam e L
SDA10 —\ K
A2-A15 N
At6/BA0[_\
A17/BA1 N /
A18-A25 N N
N 2M x 8 2M x 8
D16-023 [0 o7 SDRAM D24-D31 SDRAM
- DO-D7
NCS0
NCS1/SDC: cs cs
NCS2 CLK CLK
NOS3 CKE AO-A9, AT1|-AZALLAIS 5] CE A0-A9, AT1
NOS4 ﬁm WE A0 WE A10 A2-A11,A13
NOSS5 F RAS BAO[AIOBAY RAS BAO SDA10
F CcAS BA1 CcAS BA A16/BAO
F pam DQM A17/BA1
NBS3
NBS2
d /
\ V4
((/
128K x 8 128K x 8
SRAM SRAM
A1-A17 A1-A17
D007 DO-D7 AO-A16 08-D18 D0-D7 A0-A16
cs cs
NEDNOE | o6 o
AOINWRO/NBSO) NWR1/NBST
\

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

16.6 Product Dependencies

16.6.1 I/0 Lines

The pins used for interfacing the External Bus Interface may be multiplexed with the PIO lines.
The programmer must first program the PIO controller to assign the External Bus Interface pins
to their peripheral function. If I/O lines of the External Bus Interface are not used by the applica-
tion, they can be used for other purposes by the PIO Controller.

16.7 Functional Description

The EBI transfers data between the internal AHB Bus (handled by the HMatrix) and the external
memories or peripheral devices. It controls the waveforms and the parameters of the external
address, data and control busses and is composed of the following elements:

¢ The Static Memory Controller (SMC)

* The SDRAM Controller (SDRAMC)

¢ The ECC Controller (ECC)

* A chip select assignment feature that assigns an AHB address space to the external devices

¢ A multiplex controller circuit that shares the pins between the different Memory Controllers

¢ Programmable CompactFlash support logic

* Programmable SmartMedia and NAND Flash support logic

16.7.1 Bus Multiplexing

The EBI offers a complete set of control signals that share the 32-bit data lines, the address
lines of up to 26 bits and the control signals through a multiplex logic operating in function of the
memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAM Controller without
delaying the other external Memory Controller accesses.

16.7.2 Pull-up Control

A specific HMATRIX_SFR register in the Matrix User Interface permit enabling of on-chip pull-up
resistors on the data bus lines not multiplexed with the PIO Controller lines. For details on this
register, refer to the Peripherals Section. The pull-up resistors are enabled after reset. Setting
the EBI_DBPUC bit disables the pull-up resistors on lines not muxed with PIO. Enabling the pull-
up resistor on lines multiplexed with PO lines can be performed by programming the appropri-
ate PIO controller.

16.7.3 Static Memory Controller

For information on the Static Memory Controller, refer to the Static Memory Controller Section.

16.7.4 SDRAM Controller

For information on the SDRAM Controller, refer to the SDRAM Section.

16.7.5 ECC Controller

32003E-AVR32-05/06

For information on the ECC Controller, refer to the ECC Section.

A mEI% 163

16.7.6

16.7.6.1

164

ATMEL

CompactFlash Support

The External Bus Interface integrates circuitry that interfaces to CompactFlash devices.

The CompactFlash logic is driven by the Static Memory Controller (SMC) on the NCS4 and/or
NCS5 address space. Programming the EBI_CS4A and/or EBI_CS5A bits in a HMATRIX_SFR
Register to the appropriate value enables this logic. For details on this register, refer to the
Peripherals Section. Access to an external CompactFlash device is then made by accessing the
address space reserved to NCS4 and/or NCS5 (i.e., between 0x5000 0000 and Ox5FFF FFFF
for NCS4 and between 0x6000 0000 and 0x6FFF FFFF for NCS5).

All CompactFlash modes (Attribute Memory, Common Memory, I/O and True IDE) are sup-
ported but the signals _10IS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode) are
not handled.

I/O Mode, Common Memory Mode, Attribute Memory Mode and True IDE Mode

Within the NCS4 and/or NCS5 address space, the current transfer address is used to distinguish
I/O mode, common memory mode, attribute memory mode and True IDE mode.

The different modes are accessed through a specific memory mapping as illustrated on Figure
16-3. A[23:21] bits of the transfer address are used to select the desired mode as described in
Table 16-5 on page 165.

Figure 16-3. CompactFlash Memory Mapping

A
True IDE Alternate Mode Space
Offset 0XOOEO 0000
True IDE Mode Space
Offset 0x00CO 0000
CF Address Space I/O Mode Space

Offset 0x0080 0000

Common Memory Mode Space
Offset 0x0040 0000

Attribute Memory Mode Space

v Offset 0x0000 0000

Note: The A22 pin is used to drive the REG signal of the CompactFlash Device (except in True IDE
mode).

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

Table 16-5. CompactFlash Mode Selection

A[23:21] Mode Base Address
000 Attribute Memory
010 Common Memory
100 I/O Mode

110 True IDE Mode

111 Alternate True IDE Mode

16.7.6.2 CFCE1 and CFCEZ2 signals

To cover all types of access, the SMC must be alternatively set to drive 8-bit data bus or 16-bit
data bus. The odd byte access on the D[7:0] bus is only possible when the SMC is configured to
drive 8-bit memory devices on the corresponding NCS pin (NCS4 or NCS5). The Chip Select
Register (DBW field in the corresponding Chip Select Register) of the NCS4 and/or NCS5
address space must be set as shown in Table 16-6 to enable the required access type.

NBS1 and NBSO are the byte selection signals from SMC and are available when the SMC is set
in Byte Select mode on the corresponding Chip Select.

The CFCE1 and CFCE2 waveforms are identical to the corresponding NCSx waveform. For
details on these waveforms and timings, refer to the Static Memory Controller Section.

Table 16-6. CFCE1 and CFCE2 Truth Table

Mode CFCE2 CFCE1 DBW Comment SMC Access Mode
Attribute Memory NBS1 NBSO 16 bits Access to Even Byte on D[7:0] Byte Select
A to E Byt D[7:
NBST NBSO 1ebits | ccesstoBvenByteon D70l | o oo
Common Memory Access to Odd Byte on D[15:8]
1 0 8 bits Access to Odd Byte on D[7:0]
A to E Byt D[7:0
NBS1 NBSO 16bits | ccesstoBvenByteon DI7Z:0l | o oo
1/0 Mode Access to Odd Byte on D[15:8]
1 0 8 bits Access to Odd Byte on D[7:0]
True IDE Mode
) . Access to Even Byte on D[7:0]
Task File 1 0 8 bits
! ! Access to Odd Byte on D[7:0]
, , Access to Even Byte on D[7:0]
Data Register 1 0 16 bits Byte Select
g ! Access to Odd Byte on D[15:8] 4
Alternate True IDE Mode
Control Register Don'’t . ,
Alternate Status Read 0 1 Care Access to Even Byte on D[7:0] Don’t Care
Drive Address 0 1 8 bits Access to Odd Byte on D[7:0]
Standby Mode or
Address Space is not 1 1 - - -
assigned to CF

A IIIEI% 165

32003E-AVR32-05/06

16.7.6.3

16.7.6.4

166

ATMEL

Read/Write Signals

In /0 mode and True IDE mode, the CompactFlash logic drives the read and write command
signals of the SMC on CFIOR and CFIOW signals, while the CFOE and CFWE signals are deac-
tivated. Likewise, in common memory mode and attribute memory mode, the SMC signals are
driven on the CFOE and CFWE signals, while the CFIOR and CFIOW are deactivated. Figure
16-4 on page 166 demonstrates a schematic representation of this logic.

Attribute memory mode, common memory mode and I/O mode are supported by setting the
address setup and hold time on the NCS4 (and/or NCS5) chip select to the appropriate values.
For details on these signal waveforms, please refer to the section: Setup and Hold Cycles of the
Static Memory Controller Section.

Figure 16-4. CompactFlash Read/Write Control Signals

External Bus Interface
SMC CompactFlash Logic
A23
11—\
1—|0 N
0o—>, > » CFOE
1 —>/r > » CFWE
A22 '
NRD_NOE >
NWRO_NWE »° » CFIOR
11— » CFIOW
1/
Table 16-7. CompactFlash Mode Selection
Mode Base Address CFOE CFWE CFIOR CFIOW
Attribute M
ribute Memory NRD_NOE NWRO_NWE 1 1
Common Memory
1/0 Mode 1 1 NRD_NOE NWRO_NWE
True IDE Mode 0 1 NRD_NOE NWRO_NWE

Multiplexing of CompactFlash Signals on EBI Pins

Table 16-8 on page 167 and Table 16-9 on page 167 illustrate the multiplexing of the Compact-
Flash logic signals with other EBI signals on the EBI pins. The EBI pins in Table 16-8 are strictly
dedicated to the CompactFlash interface as soon as the EBI_CS4A and/or EBI_CS5A field of a
specific HMATRIX_SFR Register is set, see the Peripherals Section for details. These pins must
not be used to drive any other memory devices.

The EBI pins in Table 16-9 on page 167 remain shared between all memory areas when the cor-
responding CompactFlash interface is enabled (EBI_CS4A = 1 and/or EBI_CS5A = 1).

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

Table 16-8. Dedicated CompactFlash Interface Multiplexing

Pins CompactFlash Signals EBI Signals
CS4A =1 CS5A =1 CS4A=0 CS5A =0
NCS4/CFCS0 CFCS0 NCS4
NCS5/CFCS1 CFCS1 NCS5
Table 16-9. Shared CompactFlash Interface Multiplexing
Access to Access to
CompactFlash Device Other EBI Devices
Pins CompactFlash Signals EBI Signals
NOE/NRD/CFOE CFOE NRD/NOE
NWRO/NWE/CFWE CFWE NWRO/NWE
NWR1/NBS1/CFIOR CFIOR NWR1/NBS1
NWR3/NBS3/CFIOW CFIOW NWR3/NBS3
A25/CFRNW CFRNW A25

16.7.6.5 Application Example

Figure 16-5 on page 168 illustrates an example of a CompactFlash application. CFCS0 and
CFRNW signals are not directly connected to the CompactFlash slot 0, but do control the direc-
tion and the output enable of the buffers between the EBI and the CompactFlash Device. The
timing of the CFCSO signal is identical to the NCS4 signal. Moreover, the CFRNW signal
remains valid throughout the transfer, as does the address bus. The CompactFlash _WAIT sig-
nal is connected to the NWAIT input of the Static Memory Controller. For details on these
waveforms and timings, refer to the Static Memory Controller Section.

32003E-AVR32-05/06

ATMEL

167

16.7.7

168

ATMEL

Figure 16-5. CompactFlash Application Example

EBI CompactFlash Connector
D[15:0] |'D || D[15:0]
DIR /OE
A25/CFRNW !
NCS4/CFCS0 ﬁ
CD (PIO) ((-1
l N\ _cD2
JOE
A[10:0] > A[10:0]
A22/REG > _REG
NOE/CFOE '|> _OE
NWE/CFWE > _WE
NWR1/CFIOR > _IORD
NWRS3/CFIOW > _IOWR
CFCE1 |l> _CEf1
CFCE2 > _CE2
NWAIT <,| _WAIT

SmartMedia and Nand Flash Support

The External Bus Interface integrates circuitry that interfaces to SmartMedia and NAND Flash
devices.

The SmartMedia logic is driven by the Static Memory Controller on the NCS3 address space.
Programming the EBI_CS3A field in a specific HMATRIX_SFR Register to the appropriate value
enables the SmartMedia logic. For details on this register, refer to the Peripherals Section.
Access to an external SmartMedia device is then made by accessing the address space
reserved to NCS3 (i.e., between 0x4000 0000 and Ox4FFF FFFF).

The SmartMedia Logic drives the read and write command signals of the SMC on the NANDOE
and NANDWE signals when the NCS3 signal is active. NANDOE and NANDWE are invalidated
as soon as the transfer address fails to lie in the NCS3 address space. See Figure "SmartMedia
Signal Multiplexing on EBI Pins” on page 169 for more informations. For details on these wave-
forms, refer to the Static Memory Controller Section.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

Figure 16-6. SmartMedia Signal Multiplexing on EBI Pins

SMC SmartMedia Logic
NANDOE
NCSx >) > NANDOE
NRD_NOE >)
ﬁ_\ NANDWE NANDWE
NWRO_NWE >]

16.7.7.1 SmartMedia Signals

The address latch enable and command latch enable signals on the SmartMedia device are
driven by address bits A22 and A21 of the EBI address bus. The user should note that any bit on
the EBI address bus can also be used for this purpose. The command, address or data words
on the data bus of the SmartMedia device are distinguished by using their address within the
NCSx address space. The chip enable (CE) signal of the device and the ready/busy (R/B) sig-
nals are connected to PIO lines. The CE signal then remains asserted even when NCSx is not
selected, preventing the device from returning to standby mode.

A mEI% 169

32003E-AVR32-05/06

ATMEL

Figure 16-7. SmartMedia Application Example

D[7:0
< [7:0] P AD[7:0]
A[22:21
[] P| ALE
» CLE
NCSx/NANDCS Not Connected
EBI
SmartMedia
NANDOE » NOE
NANDWE »| NWE
PIO » CE
PIO |« R/B

Note: The External Bus Interfaces is also able to support 16-bits devices.

170 AT '32/A P70/ () 10—

32003E-AVR32-05/06

17. DMA Controller (DMAC)

Rev: 6140B
17.1 Features

¢ 2 AHB Master Interfaces
¢ 3 Channels
¢ Software and Hardware Handshaking Interfaces
— 11 Hardware Handshaking Interfaces
* Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
¢ Single-block DMA Transfer
¢ Multi-block DMA Transfer
— Linked Lists
— Auto-Reloading
— Contiguous Blocks
* DMA Controller is Always the Flow Controller
¢ Additional Features
— Scatter and Gather Operations
— Channel Locking
— Bus Locking
— FIFO Mode
— Pseudo Fly-by Operation

17.2 Description

The DMA Controller (DMAC) is an AHB-central DMA controller core that transfers data from a
source peripheral to a destination peripheral over one or more System Bus. One channel is
required for each source/destination pair. In the most basic configuration, the DMAC has one
master interface and one channel. The master interface reads the data from a source and writes
it to a destination. Two System Bus transfers are required for each DMA data transfer. This is
also known as a dual-access transfer.

The DMAC is programmed via the AHB slave interface.

A IIIEI% 171

32003E-AVR32-05/06

ATMEL

17.3 Block Diagram

Figure 17-1. DMA Controller (DMAC) Block Diagram
DMA Controller

AHB Slfve AHB Slave | CEG Interrupt |rq_=dma
- IIF o Generator
Channel 1
Channel 0
FIFO
AHB Maiter AHB Master P o
- IIF - o
SRC | DST | |
FSM | FSM

17.4 Functional Description

17.41

172

Basic Definitions

Source peripheral: Device on a System Bus layer from where the DMAC reads data, which is
then stored in the channel FIFO. The source peripheral teams up with a destination peripheral to
form a channel.

Destination peripheral: Device to which the DMAC writes the stored data from the FIFO (previ-
ously read from the source peripheral).

Memory: Source or destination that is always “ready” for a DMA transfer and does not require a
handshaking interface to interact with the DMAC. A peripheral should be assigned as memory
only if it does not insert more than 16 wait states. If more than 16 wait states are required, then
the peripheral should use a handshaking interface (the default if the peripheral is not pro-
grammed to be memory) in order to signal when it is ready to accept or supply data.

Channel: Read/write datapath between a source peripheral on one configured System Bus
layer and a destination peripheral on the same or different System Bus layer that occurs through
the channel FIFO. If the source peripheral is not memory, then a source handshaking interface
is assigned to the channel. If the destination peripheral is not memory, then a destination hand-
shaking interface is assigned to the channel. Source and destination handshaking interfaces can
be assigned dynamically by programming the channel registers.

Master interface: DMAC is a master on the AHB bus reading data from the source and writing it
to the destination over the AHB bus.

Slave interface: The AHB interface over which the DMAC is programmed. The slave interface
in practice could be on the same layer as any of the master interfaces or on a separate layer.

Handshaking interface: A set of signal registers that conform to a protocol and handshake
between the DMAC and source or destination peripheral to control the transfer of a single or
burst transaction between them. This interface is used to request, acknowledge, and control a

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

32003E-AVR32-05/06

DMAC transaction. A channel can receive a request through one of three types of handshaking
interface: hardware, software, or peripheral interrupt.

Hardware handshaking interface: Uses hardware signals to control the transfer of a single or
burst transaction between the DMAC and the source or destination peripheral.

Software handshaking interface: Uses software registers to control the transfer of a single or
burst transaction between the DMAC and the source or destination peripheral. No special DMAC
handshaking signals are needed on the 1/O of the peripheral. This mode is useful for interfacing
an existing peripheral to the DMAC without modifying it.

Peripheral interrupt handshaking interface: A simple use of the hardware handshaking inter-
face. In this mode, the interrupt line from the peripheral is tied to the dma_req input of the
hardware handshaking interface. Other interface signals are ignored.

Flow controller: The device (either the DMAC or source/destination peripheral) that determines
the length of and terminates a DMA block transfer. If the length of a block is known before
enabling the channel, then the DMAC should be programmed as the flow controller. If the length
of a block is not known prior to enabling the channel, the source or destination peripheral needs
to terminate a block transfer. In this mode, the peripheral is the flow controller.

Flow control mode (CFGx.FCMODE): Special mode that only applies when the destination
peripheral is the flow controller. It controls the pre-fetching of data from the source peripheral.

Transfer hierarchy: Figure 17-2 on page 173 illustrates the hierarchy between DMAC transfers,
block transfers, transactions (single or burst), and System Bus transfers (single or burst) for non-
memory peripherals. Figure 17-3 on page 174 shows the transfer hierarchy for memory.

Figure 17-2. DMAC Transfer Hierarchy for Non-Memory Peripheral

DMAC Transfer DMA Transfer
| Level
Block Transfer
Block Block Block Level
\ v v ¥
Burst Burst Burst Single DMA Transaction
Transaction | [Transaction Transaction Transaction| Level

v v Y Y l

System Bus| |System Bus System Bus| [System Bus System Bus|
Y Burst Y Burst |---- Burst Single Single System Bus
Transfer Transfer Transfer Transfer Transfer Transfer Level

AIMEL 173

ATMEL

Figure 17-3. DMAC Transfer Hierarchy for Memory

DMAC Transfer DMA Transfer
| Level

v v v

Block Transfer

Block -—== Block
Block oc ocl Level
|
System Bus| |System Bus System Bus| [System Bus
Burst Burst |---{ Burst Single System Bus
Transfer Transfer Transfer Transfer Transfer Level

Block: A block of DMAC data. The amount of data (block length) is determined by the flow con-
troller. For transfers between the DMAC and memory, a block is broken directly into a sequence
of System Bus bursts and single transfers. For transfers between the DMAC and a non-memory
peripheral, a block is broken into a sequence of DMAC transactions (single and bursts). These
are in turn broken into a sequence of System Bus transfers.

Transaction: A basic unit of a DMAC transfer as determined by either the hardware or software
handshaking interface. A transaction is only relevant for transfers between the DMAC and a
source or destination peripheral if the source or destination peripheral is a non-memory device.
There are two types of transactions: single and burst.

— Single transaction: The length of a single transaction is always 1 and is converted
to a single System Bus transfer.

— Burst transaction: The length of a burst transaction is programmed into the DMAC.
The burst transaction is converted into a sequence of System Bus bursts and single
transfers. DMAC executes each burst transfer by performing incremental bursts that
are no longer than the maximum System Bus burst size set. The burst transaction
length is under program control and normally bears some relationship to the FIFO
sizes in the DMAC and in the source and destination peripherals.

DMA transfer: Software controls the number of blocks in a DMAC transfer. Once the DMA
transfer has completed, then hardware within the DMAC disables the channel and can generate
an interrupt to signal the completion of the DMA transfer. You can then re-program the channel
for a new DMA transfer.

Single-block DMA transfer: Consists of a single block.

174 AT32AP7000 m—

32003E-AVR32-05/06

Multi-block DMA transfer: A DMA transfer may consist of multiple DMAC blocks. Multi-block
DMA transfers are supported through block chaining (linked list pointers), auto-reloading of
channel registers, and contiguous blocks. The source and destination can independently select
which method to use.

— Linked lists (block chaining) — A linked list pointer (LLP) points to the location in
system memory where the next linked list item (LLI) exists. The LLI is a set of
registers that describe the next block (block descriptor) and an LLP register. The
DMAC fetches the LLI at the beginning of every block when block chaining is
enabled.

— Auto-reloading — The DMAC automatically reloads the channel registers at the end
of each block to the value when the channel was first enabled.

— Contiguous blocks — Where the address between successive blocks is selected to
be a continuation from the end of the previous block.

Scatter: Relevant to destination transfers within a block. The destination System Bus address is
incremented/decremented by a programmed amount when a scatter boundary is reached. The
number of System Bus transfers between successive scatter boundaries is under software
control.

Gather: Relevant to source transfers within a block. The source System Bus address is incre-
mented/decremented by a programmed amount when a gather boundary is reached. The
number of System Bus transfers between successive gather boundaries is under software
control.

Channel locking: Software can program a channel to keep the AHB master interface by locking
the arbitration for the master bus interface for the duration of a DMA transfer, block, or transac-
tion (single or burst).

Bus locking: Software can program a channel to maintain control of the System Bus bus by
asserting hlock for the duration of a DMA transfer, block, or transaction (single or burst). Chan-
nel locking is asserted for the duration of bus locking at a minimum.

FIFO mode: Special mode to improve bandwidth. When enabled, the channel waits until the
FIFO is less than half full to fetch the data from the source peripheral and waits until the FIFO is
greater than or equal to half full to send data to the destination peripheral. Thus, the channel can
transfer the data using System Bus bursts, eliminating the need to arbitrate for the AHB master
interface for each single System Bus transfer. When this mode is not enabled, the channel only
waits until the FIFO can transmit/accept a single System Bus transfer before requesting the
master bus interface.

Pseudo fly-by operation: Typically, it takes two System Bus cycles to complete a transfer, one
for reading the source and one for writing to the destination. However, when the source and des-
tination peripherals of a DMA transfer are on different System Bus layers, it is possible for the
DMAC to fetch data from the source and store it in the channel FIFO at the same time as the
DMAC extracts data from the channel FIFO and writes it to the destination peripheral. This activ-
ity is known as pseudo fly-by operation. For this to occur, the master interface for both source
and destination layers must win arbitration of their AHB layer. Similarly, the source and destina-
tion peripherals must win ownership of their respective master interfaces.

A IIIEI% 175

32003E-AVR32-05/06

ATMEL

17.5 Memory Peripherals

Figure 17-3 on page 174 shows the DMA transfer hierarchy of the DMAC for a memory periph-
eral. There is no handshaking interface with the DMAC, and therefore the memory peripheral
can never be a flow controller. Once the channel is enabled, the transfer proceeds immediately
without waiting for a transaction request. The alternative to not having a transaction-level hand-
shaking interface is to allow the DMAC to attempt System Bus transfers to the peripheral once
the channel is enabled. If the peripheral slave cannot accept these System Bus transfers, it
inserts wait states onto the bus until it is ready; it is not recommended that more than 16 wait
states be inserted onto the bus. By using the handshaking interface, the peripheral can signal to
the DMAC that it is ready to transmit/receive data, and then the DMAC can access the periph-
eral without the peripheral inserting wait states onto the bus.

17.6 Handshaking Interface

Handshaking interfaces are used at the transaction level to control the flow of single or burst
transactions. The operation of the handshaking interface is different and depends on whether
the peripheral or the DMAC is the flow controller.

The peripheral uses the handshaking interface to indicate to the DMAC that it is ready to trans-
fer/accept data over the System Bus. A non-memory peripheral can request a DMA transfer
through the DMAC using one of two handshaking interfaces:

* Hardware handshaking
» Software handshaking

Software selects between the hardware or software handshaking interface on a per-channel
basis. Software handshaking is accomplished through memory-mapped registers, while hard-
ware handshaking is accomplished using a dedicated handshaking interface.

17.6.1 Software Handshaking
When the slave peripheral requires the DMAC to perform a DMA transaction, it communicates
this request by sending an interrupt to the CPU or interrupt controller.

The interrupt service routine then uses the software registers to initiate and control a DMA trans-
action. These software registers are used to implement the software handshaking interface.

The HS_SEL_SRC/HS_SEL_DST bit in the CFGx channel configuration register must be set to
enable software handshaking.

When the peripheral is not the flow controller, then the last transaction registers LstSrcReg and
LstDstReg are not used, and the values in these registers are ignored.

17.6.1.1 Burst Transactions
Writing a 1 to the ReqSrcReg[x]/ReqDstReg[x] register is always interpreted as a burst transac-
tion request, where x is the channel number. However, in order for a burst transaction request to
start, software must write a 1 to the SglReqSrcReg[x]/SglRegDstReg[x] register.

You can write a 1 to the SgIReqSrcReg[x]/SgIReqDstReg[x] and ReqSrcReg[x]/ReqDstReg[x]
registers in any order, but both registers must be asserted in order to initiate a burst transaction.
Upon completion of the burst transaction, the hardware clears the SglIReqSrcReg[x]/SgIReqD-
stReg[x] and ReqSrcReg[x]/ReqDstReg[x] registers.

176 AT 32 /A P70/ () 15—

17.6.1.2 Single Transactions

Writing a 1 to the SglReqSrcReg/SglReqDstReg initiates a single transaction. Upon completion
of the single transaction, both the SglIReqSrcReg/SglReqDstReg and ReqSrcReg/RegDstReg
bits are cleared by hardware. Therefore, writing a 1 to the ReqSrcReg/ReqDstReg is ignored
while a single transaction has been initiated, and the requested burst transaction is not serviced.

Again, writing a 1 to the ReqSrcReg/ReqDstReg register is always a burst transaction request.
However, in order for a burst transaction request to start, the corresponding channel bit in the
SglReqSrcReg/SglRegDstReg must be asserted. Therefore, to ensure that a burst transaction is
serviced, you must write a 1 to the ReqSrcReg/ReqDstReg before writing a 1 to the SgIReqSr-
cReg/SglReqDstReg register.

Software can poll the relevant channel bit in the SgiIReqSrcReg/ SglIReqDstReg and ReqSr-
cReg/ReqDstReg registers. When both are 0, then either the requested burst or single
transaction has completed. Alternatively, the IntSrcTran or IntDstTran interrupts can be enabled
and unmasked in order to generate an interrupt when the requested source or destination trans-
action has completed.

Note: The transaction-complete interrupts are triggered when both single and burst transactions are
complete. The same transaction-complete interrupt is used for both single and burst transactions.

17.6.2 Hardware Handshaking

There are 11 hardware handshaking interfaces between the DMAC and peripherals. Refer to the
“Peripherals” chapter for the device-specific mapping of these interfaces.

17.6.2.1 External DMA Request Definition

32003E-AVR32-05/06

When an external slave peripheral requires the DMAC to perform DMA transactions, it communi-
cates its request by asserting the external nDMAREQXx signal. This signal is resynchronized to
ensure a proper functionality (see "External DMA Request Timing” on page 178).

The external NDMAREQX is asserted when the source threshold level is reached. After resyn-
chronization, the rising edge of dma_req starts the transfer. dma_req is de-asserted when
dma_ack is asserted.

The external nDMAREQXx signal must be de-asserted after the last transfer and re-asserted
again before a new transaction starts.

For a source FIFO, an active edge is triggered on nDMAREQx when the source FIFO exceeds a
watermark level. For a destination FIFO, an active edge is triggered on nDMAREQx when the
destination FIFO drops below the watermark level.

The source transaction length, CTLx.SRC_MSIZE, and destination transaction length,
CTLx.DEST_MSIZE, must be set according to watermark levels on the source/destination
peripherals.

A mEI% 177

ATMEL

Figure 17-4. External DMA Request Timing

178

nDMAREQx _\ ,_\

o JULUUUUUUUUUUUUUUUL Uiyl

DMA Transaction

dma_req o _,____—/'\—, _

DMA Transfers DMA Transfers

amaack .|| <‘I_\ [1

/AT 32 /A P70 O/ () 50000000000

17.7 DMAC Transfer Types

A DMA transfer may consist of single or multi-block transfers. On successive blocks of a multi-
block transfer, the SARx/DARX register in the DMAC is reprogrammed using either of the follow-
ing methods:

* Block chaining using linked lists

¢ Auto-reloading

¢ Contiguous address between blocks
On successive blocks of a multi-block transfer, the CTLx register in the DMAC is re-programmed
using either of the following methods:

* Block chaining using linked lists

* Auto-reloading
When block chaining, using linked lists is the multi-block method of choice, and on successive
blocks, the LLPx register in the DMAC is re-programmed using the following method:

* Block chaining using linked lists

A block descriptor (LLI) consists of following registers, SARx, DARX, LLPx, CTLx, SSTATX,
DSTATXx. The first four registers, along with the CFGx register, are used by the DMAC to set up
and describe the block transfer.

17.71 Multi-block Transfers

17.7.1.1 Block Chaining Using Linked Lists

32003E-AVR32-05/06

In this case, the DMAC re-programs the channel registers prior to the start of each block by
fetching the block descriptor for that block from system memory. This is known as an LLI update.

DMAC block chaining is supported by using a Linked List Pointer register (LLPx) that stores the
address in memory of the next linked list item. Each LLI (block descriptor) contains the corre-
sponding block descriptor (SARx, DARX, LLPx, CTLx, SSTATx, DSTATX).

To set up block chaining, a sequence of linked lists must be programmed in memory.

The SARXx, DARX, LLPx and CTLx registers are fetched from system memory on an LLI update.
The updated contents of the CTLx, SSTATx, and DSTATX registers are written back to memory
on block completion. Figure 17-5 on page 180 shows how to use chained linked lists in memory
to define multi-block transfers using block chaining.

The Linked List multi-block transfers is initiated by programming LLPx with LLPx(0) (LLI(0) base
address) and CTLx with CTLx.LLP_S_EN and CTLx.LLP_D_EN.

AIMEL 179

ATMEL

Figure 17-5. Multi-block Transfer Using Linked Lists

System Memory

LLI(0) LLI(1)
Write back for DSTATx Write back for DSTATx
Write back for SSTATx Write back for SSTATx
CTLX[63..32] CTLX[63..32]
CTLx[31..0] CTLx[31..0]
LLPx(1) LLPx(2)
DARXx DARXx
— | sARx SARX LLPx(2)
LLPx(0) LLPx(1)

180 /AT 32 /A P70/ () 15—

32003E-AVR32-05/06

ATMEL

Table 17-1. Programming of Transfer Types and Channel Register Update Method (DMAC State Machine Table)
RELOAD RELOAD_ | CTLx,
LLP. LLP_S_EN | _SR LLP_D_EN | DS LLPx SARX DARX
Transfer Type Loc ((((Update Update Update | Write
=0 CTLx) CFGx) CTLx) CFGx) Method Method Method | Back
1) Single Block or None. user None
last transfer of Yes 0 0 0 0 re ro’ rams None (single) (single) No
multi-Block prog ¢
2) AgtoReIoad CTLx,LLPx are
multi-block transfer . Auto-
. - Yes 0 0 0 1 reloaded from Contiguous No
with contiguous initial values Reload
SAR ’
erg ﬁttt())lc?g(l??;nsfer CTLx,LLPx are Con-
_u . Yes 0 1 0 0 reloaded from Auto-Reload . No
with contiguous initial values tiguous
DAR ’
4) AutoReload CTLx,LLPx are Auto-
. Yes 0 1 0 1 reloaded from Auto-Reload No
multi-block transfer o Reload
initial values.
5) Single Block or None. user None
last transfer of No 0 0 0 0 re r07 rams None (single) (single) Yes
multi-block prog 9
6) Linked List CTLx,LLPx
multi-block transfer loaded from . Linked
with contiguous No 0 0 ! 0 next Linked List Contiguous List Yes
SAR item
7) Linked List CTLx,LLPx
multi-block transfer loaded from Linked
with auto-reload No 0 1 1 0 next Linked List | ~uto-Reload List Yes
SAR item
8) Linked List CTLx,LLPx
multi-block transfer loaded from . . Con-
with contiguous No ! 0 0 0 next Linked List Linked List tiguous Yes
DAR item
9) Linked List CTLx,LLPx
multi-block transfer loaded from . . Auto-
with auto-reload No 1 0 0 1 next Linked List Linked List Reload Yes
DAR item
CTLx,LLPx
10) Linked List loaded from . . Linked
multi-block transfer No 1 0 1 0 next Linked List Linked List List Yes
item
181

ATMEL

17.7.1.2 Auto-reloading of Channel Registers
During auto-reloading, the channel registers are reloaded with their initial values at the comple-
tion of each block and the new values used for the new block. Depending on the row number in
Table 17-1 on page 181, some or all of the SARx, DARx and CTLx channel registers are
reloaded from their initial value at the start of a block transfer.

17.7.1.3 Contiguous Address Between Blocks

In this case, the address between successive blocks is selected to be a continuation from the

end of the previous block. Enabling the source or destination address to be contiguous between

blocks is a function of CTLx.LLP_S_EN, CFGx.RELOAD_SR, CTLx.LLP_D_EN, and

CFGx.RELOAD_DS registers (see Figure 17-1 on page 181).

Note: Both SARx and DARx updates cannot be selected to be contiguous. If this functionality is
required, the size of the Block Transfer (CTLx.BLOCK_TS) must be increased. If this is at the max-
imum value, use Row 10 of Table 17-1 on page 181 and setup the LLI.SARx address of the block
descriptor to be equal to the end SARx address of the previous block. Similarly, setup the
LLI.DARx address of the block descriptor to be equal to the end DARx address of the previous
block.

17.7.1.4 Suspension of Transfers Between Blocks
At the end of every block transfer, an end of block interrupt is asserted if:

¢ interrupts are enabled, CTLx.INT_EN =1
¢ the channel block interrupt is unmasked, MaskBlock[n] = 0, where n is the channel number.
Note: The block complete interrupt is generated at the completion of the block transfer to the destination.

For rows 6, 8, and 10 of Table 17-1 on page 181, the DMA transfer does not stall between block
transfers. For example, at the end of block N, the DMAC automatically proceeds to block N + 1.

Forrows 2, 3, 4,7, and 9 of Table 17-1 on page 181 (SARx and/or DARx auto-reloaded between
block transfers), the DMA transfer automatically stalls after the end of block. Interrupt is asserted
if the end of block interrupt is enabled and unmasked.

The DMAC does not proceed to the next block transfer until a write to the block interrupt clear
register, ClearBlock[n], is performed by software. This clears the channel block complete
interrupt.

Forrows 2, 3, 4,7, and 9 of Table 17-1 on page 181 (SARx and/or DARx auto-reloaded between
block transfers), the DMA transfer does not stall if either:

¢ interrupts are disabled, CTLx.INT_EN =0, or
e the channel block interrupt is masked, MaskBlock[n] = 1, where n is the channel number.

Channel suspension between blocks is used to ensure that the end of block ISR (interrupt ser-
vice routine) of the next-to-last block is serviced before the start of the final block commences.
This ensures that the ISR has cleared the CFGx.RELOAD_SR and/or CFGx.RELOAD_DS bits
before completion of the final block. The reload bits CFGx.RELOAD_SR and/or
CFGx.RELOAD_DS should be cleared in the ‘end of block ISR’ for the next-to-last block
transfer.

17.7.2 Ending Multi-block Transfers
All multi-block transfers must end as shown in either Row 1 or Row 5 of Table 17-1 on page 181.
At the end of every block transfer, the DMAC samples the row number, and if the DMAC is in

182 /AT 32 /A P70/ () 1mss—

32003E-AVR32-05/06

Row 1 or Row 5 state, then the previous block transferred was the last block and the DMA trans-
fer is terminated.

Note: Row 1 and Row 5 are used for single block transfers or terminating multiblock transfers. Ending in
Row 5 state enables status fetch and writeback for the last block. Ending in Row 1 state disables
status fetch and writeback for the last block.

For rows 2,3 and 4 of Table 17-1 on page 181, (LLPx = 0 and CFGx.RELOAD_SR and/or
CFGx.RELOAD_DS is set), multi-block DMA transfers continue until both the
CFGx.RELOAD_SR and CFGx.RELOAD_DS registers are cleared by software. They should be
programmed to zero in the end of block interrupt service routine that services the next-to-last
block transfer. This puts the DMAC into Row 1 state.

For rows 6, 8, and 10 (both CFGx.RELOAD_SR and CFGx.RELOAD_DS cleared) the user must
setup the last block descriptor in memory such that both LLI.CTLx.LLP_S_EN and
LLI.CTLx.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

For rows 7 and 9, the end-of-block interrupt service routine that services the next-to-last block
transfer should clear the CFGx.RELOAD_SR and CFGx.RELOAD_DS reload bits. The last
block descriptor in memory should be set up so that both the LLI.CTLx.LLP_S_EN and
LLI.CTLx.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

Note: The only allowed transitions between the rows of Table 17-1 on page 181are from any row into
row 1 or row 5. As already stated, a transition into row 1 or row 5 is used to terminate the DMA
transfer. All other transitions between rows are not allowed. Software must ensure that illegal tran-
sitions between rows do not occur between blocks of a multi-block transfer. For example, if block N
is in row 10 then the only allowed rows for block N + 1 are rows 10, 5 or 1.

17.8 Programming a Channel

Three registers, the LLPx, the CTLx and CFGx, need to be programmed to set up whether single
or multi-block transfers take place, and which type of multi-block transfer is used. The different
transfer types are shown in Table 17-1 on page 181.

The DMAC can be programmed to fetch status from the source/destination peripheral. This sta-
tus is stored in the SSTATx and DSTATXx registers. When the DMAC is programmed to fetch this
status from the source/destination peripheral it writes this status and the contents of the CTLx
register back to memory at the end of a block transfer. The “Write Back” column of Table 17-1 on
page 181 shows when this occurs.

The “Update Method” column indicates where the values of SARx, DARx, CTLx, and LLPx are
obtained for the next block transfer when multi-block DMAC transfers are enabled.

Note: In Table 17-1 on page 181, all other combinations of LLPx.LOC = 0, CTLx.LLP_S_EN,
CFGx.RELOAD_SR, CTLx.LLP_D_EN, and CFGx.RELOAD_DS are illegal, and causes indeter-
minate or erroneous behavior.

17.8.1 Programming Examples

17.8.1.1 Single-block Transfer (Row 1)

32003E-AVR32-05/06

Row 5 in Table 17-1 on page 181 is also a single block transfer with writeback of control and sta-
tus information enabled at the end of the single block transfer.

A mEI% 183

ATMEL

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

3. Program the following channel registers:
a. Write the starting source address in the SARX register for channel x.
b. Write the starting destination address in the DARX register for channel x.

c. Program CTLx and CFGx according to Row 1 as shown in Table 17-1 on page 181.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel
x. For example, in the register, you can program the following:

— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

— ii. Set up the transfer characteristics, such as:

Transfer width for the source in the SRC_TR_WIDTH field.
Transfer width for the destination in the DST_TR_WIDTH field.
Source master layer in the SMS field where source resides.

Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.
e. Write the channel configuration information into the CFGx register for channel x.

— i. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests.
Writing a ‘1’ activates the software handshaking interface to handle
source/destination requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign a handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

f. If gatheris enabled (CTLx.S_GATH_EN is enabled), program the SGRXx register for
channel x.

g. |If scatter is enabled (CTLx.D_SCAT_EN, program the DSRx register for channel x.

4. After the DMAC selected channel has been programmed, enable the channel by writing
a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit 0 of the DmaCfgReg register is
enabled.

5. Source and destination request single and burst DMA transactions to transfer the block
of data (assuming non-memory peripherals). The DMAC acknowledges at the comple-
tion of every transaction (burst and single) in the block and carry out the block transfer.

6. Once the transfer completes, hardware sets the interrupts and disables the channel. At
this time you can either respond to the Block Complete or Transfer Complete interrupts,
or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to
detect when the transfer is complete.

184 AT32AP7000 m—

17.8.1.2 Muilti-block Transfer with Linked List for Source and Linked List for Destination (Row 10)
1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the chain of Linked List Items (otherwise known as block descriptors) in memory.
Write the control information in the LLI.CTLx register location of the block descriptor for
each LLI in memory (see Figure 17-5 on page 180) for channel x. For example, in the
register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and desti-
nation) and flow control device by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:
— i. Transfer width for the source in the SRC_TR_WIDTH field.
— ii. Transfer width for the destination in the DST_TR_WIDTH field.
— iii. Source master layer in the SMS field where source resides.
— iv. Destination master layer in the DMS field where destination resides.
— v. Incrementing/decrementing or fixed address for source in SINC field.
— vi. Incrementing/decrementing or fixed address for destination DINC field.
3. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination periph-
eral. This requires programming the SRC_PER and DEST_PER bits, respectively.

4. Make sure that the LLI.CTLx register locations of all LLI entries in memory (except the
last) are set as shown in Row 10 of Table 17-1 on page 181. The LLI.CTLx register of
the last Linked List ltem must be set as described in Row 1 or Row 5 of Table 17-1. Fig-
ure 17-7 on page 188 shows a Linked List example with two list items.

5. Make sure that the LLI.LLPx register locations of all LLI entries in memory (except the
last) are non-zero and point to the base address of the next Linked List ltem.

6. Make sure that the LLI.SARx/LLI.DARX register locations of all LLI entries in memory
point to the start source/destination block address preceding that LLI fetch.

7. Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLI
entries in memory are cleared.

8. If source status fetching is enabled (CFGx.SS_UPD_EN is enabled), program the
SSTATARX register so that the source status information can be fetched from the loca-
tion pointed to by the SSTATARX. For conditions under which the source status
information is fetched from system memory, refer to the ‘Writeback’ column of Table 17-
1 on page 181.

9. If destination status fetching is enabled (CFGx.DS_UPD_EN is enabled), program the
DSTATARX register so that the destination status information can be fetched from the
location pointed to by the DSTATARX register. For conditions under which the destina-
tion status information is fetched from system memory, refer to the ‘Writeback’ column
of Table 17-1 on page 181.

10. If gather is enabled (CTLx.S_GATH_EN is enabled), program the SGRXx register for
channel x.

A IIIEI% 185

32003E-AVR32-05/06

186

11.

12.

13.

14.
15.

16.
Note:

17.

18.

19.

Note:

20.

Note:

21.

ATMEL

If scatter is enabled (CTLx.D_SCAT_EN is enabled), program the DSRXx register for
channel x.

Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

Program the CTLx, CFGx registers according to Row 10 as shown in Table 17-1 on
page 181.

Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed.

The DMAC fetches the first LLI from the location pointed to by LLPx(0).

The LLI.SARX, LLI. DARX, LLI.LLPx and LLI.CTLx registers are fetched. The DMAC automatically
reprograms the SARx, DARX, LLPx and CTLx channel registers from the LLPx(0).

Source and destination request single and burst DMA transactions to transfer the block

of data (assuming non-memory peripheral). The DMAC acknowledges at the comple-

tion of every transaction (burst and single) in the block and carry out the block transfer.

Once the block of data is transferred, the source status information is fetched from the
location pointed to by the SSTATARX register and stored in the SSTATXx register if
CFGx.SS_UPD_EN is enabled. For conditions under which the source status informa-
tion is fetched from system memory, refer to the ‘Writeback’ column of Table 17-1 on
page 181.

The destination status information is fetched from the location pointed to by the DSTA-
TARX register and stored in the DSTATXx register if CFGx.DS_UPD_EN is enabled. For
conditions under which the destination status information is fetched from system mem-
ory, refer to ‘Writeback’ column of Table 17-1 on page 181.

The CTLxH register is written out to system memory. For conditions under which the
CTLxH register is written out to system memory, refer to ‘Writeback’ column of Table
17-1 on page 181. The CTLxH register is written out to the same location on the same
layer (LLPx.LMS) where it was originally fetched; that is, the location of the CTLx regis-
ter of the linked list item fetched prior to the start of the block transfer. Only the second
word of the CTLx register is written out, CTLxH, because only the CTLx.BLOCK_TS
and CTLx.DONE fields have been updated by DMAC hardware. Additionally, the
CTLx.DONE bit is asserted to indicate block completion. Therefore, software can poll
the LLI.CTLx.DONE bit of the CTLx register in the LLI to ascertain when a block trans-
fer has completed.
Do not poll the CTLx.DONE bit in the DMAC memory map. Instead, poll the LLI.CTLx.DONE bit in
the LLI for that block. If the polled LLI.CTLx.DONE bit is asserted, then this block transfer has
completed. This LLI.CTLx.DONE bit was cleared at the start of the transfer (Step 7).
The SSTATX register is now written out to system memory if CFGx.SS_UPD_EN is
enabled. It is written to the SSTATXx register location of the LLI pointed to by the previ-
ously saved LLPx.LOC register.
The DSTATX register is now written out to system memory if CFGx.DS_UPD_EN is
enabled. It is written to the DSTATX register location of the LLI pointed to by the previ-
ously saved LLPx.LOC register. The end of block interrupt, int_block, is generated after
the write back of the control and status registers has completed.
The writeback location for the control and status registers is the LLI pointed to by the previous
value of the LLPx.LOC register, not the LLI pointed to by the current value of the LLPx.LOC
register.
The DMAC does not wait for the block interrupt to be cleared, but continues fetching the
next LLI from the memory location pointed to by current LLPx register and automatically

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

reprograms the SARx, DARx, LLPx and CTLx channel registers. The DMA transfer con-
tinues until the DMAC determines that the CTLx and LLPx registers at the end of a
block transfer match that described in Row 1 or Row 5 of Table 17-1 on page 181. The
DMAC then knows that the previous block transferred was the last block in the DMA
transfer. The DMA transfer might look like that shown in Figure 17-6 on page 187.

Figure 17-6. Multi-Block with Linked List Address for Source and Destination

Address of

Address of e
Destination Layer

Source Layer

Block 2 Block 2
SAR(2) —» DAR(2) —>
Block 1 Block 1
SAR(1) — DAR(1) —>
Block O Block O
SAR(0) — » DAR(0) —
Source Blocks Destination Blocks

If the user needs to execute a DMA transfer where the source and destination address are con-
tiguous but the amount of data to be transferred is greater than the maximum block size
CTLx.BLOCK_TS, then this can be achieved using the type of multi-block transfer as shown in
Figure 17-7 on page 188.

A IIIEI% 187

32003E-AVR32-05/06

ATMEL

Figure 17-7. Multi-Block with Linked Address for Source and Destination Blocks are

Contiguous
Address of Address of
Source Layer Destination Layer
Block 2
/ <« DAR@®)
Block 2 Block 2
SAR@3) —> / < DAR(?)
Block 2 Block 1
SAR(2) —— / <« DAR(1)
Block 1 Block 0
SAR(1) —> / . DAR()
Block 0
SAR(0) — »
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 17-8 on page 189.

188 /AT 32 /A P70/ () 15—

32003E-AVR32-05/06

Figure 17-8. DMA Transfer Flow for Source and Destination Linked List Address

Channel enabled by
software

h 4

LLI Fetch «——

!

Hardware reprograms
SARx, DARXx, CTLx, LLPx

DMAC block transfer

!

Source/destination
status fetch

!

Writeback of control and
source/destination status of LLI

Block Complete interrupt ________ l
generated here

Is DMAC in
Row1 or Row5 of
DMAC State Machine Table?

no

DMAC transfer Complete
interrupt generated here

yes

Channel Disabled by
hardware

A mEk@ 189

32003E-AVR32-05/06

ATMEL

17.8.1.3 DMA Transfer Flow for Source and Destination Linked List AddressMulti-block Transfer with Source Address
Auto-reloaded and Destination Address Auto-reloaded (Row 4)

1.
2.

Read the Channel Enable register to choose an available (disabled) channel.

Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

Program the following channel registers:
a. Write the starting source address in the SARX register for channel x.
b. Write the starting destination address in the DARX register for channel x.

c. Program CTLx and CFGx according to Row 4 as shown in Table 17-1 on page 181.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel
x. For example, in the register, you can program the following:

— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

— ii. Set up the transfer characteristics, such as:

— Transfer width for the source in the SRC_TR_WIDTH field.
Transfer width for the destination in the DST_TR_WIDTH field.
Source master layer in the SMS field where source resides.

Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.

e. If gatheris enabled (CTLx.S_GATH_EN is enabled), program the SGRXx register for
channel x.

f. If scatter is enabled (CTLx.D_SCAT_EN), program the DSRXx register for channel x.

g. Write the channel configuration information into the CFGx register for channel x.
Ensure that the reload bits, CFGx. RELOAD_SR and CFGx.RELOAD_DS are
enabled.

— i. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a 1’ activates the software handshaking interface to
handle source/destination requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

After the DMAC selected channel has been programmed, enable the channel by writing
a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit 0 of the DmaCfgReg register is
enabled.

Source and destination request single and burst DMAC transactions to transfer the

block of data (assuming non-memory peripherals). The DMAC acknowledges on com-
pletion of each burst/single transaction and carry out the block transfer.

190 /AT '32/A P70/ () 15—

32003E-AVR32-05/06

6. When the block transfer has completed, the DMAC reloads the SARx, DARx and CTLx
registers. Hardware sets the Block Complete interrupt. The DMAC then samples the
row number as shown in Table 17-1 on page 181. If the DMAC is in Row 1, then the
DMA transfer has completed. Hardware sets the transfer complete interrupt and dis-
ables the channel. So you can either respond to the Block Complete or Transfer
Complete interrupts, or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is dis-
abled, to detect when the transfer is complete. If the DMAC is not in Row 1, the next
step is performed.

7. The DMA transfer proceeds as follows:

a. Ifinterrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)
should clear the reload bits in the CFGx.RELOAD_SR and CFGx.RELOAD_DS
registers. This put the DMAC into Row 1 as shown in Table 17-1 on page 181. If the
next block is not the last block in the DMA transfer, then the reload bits should
remain enabled to keep the DMAC in Row 4.

b. If interrupts are disabled (CTLx.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1’b0, where x is the channel number), then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case software must clear the
reload bits in the CFGx.RELOAD_SR and CFGx.RELOAD_DS registers to put the
DMAC into ROW 1 of Table 17-1 on page 181 before the last block of the DMA
transfer has completed. The transfer is similar to that shown in Figure 17-9 on page
191. The DMA transfer flow is shown in Figure 17-10 on page 192.

Figure 17-9. Multi-Block DMA Transfer with Source and Destination Address Auto-reloaded

Address of Address of
Source Layer Destination Layer

BlockO

Block1
Block2

SAR —»

BIockN

Source Blocks Destination Blocks

A IIIEI% 191

32003E-AVR32-05/06

ATMEL

Figure 17-10. DMA Transfer Flow for Source and Destination Address Auto-reloaded

Channel Enabled by
software

'

Block Transfer g

!

Reload SARx, DARXx, CTLx

Block Complete interrupt i
generated here

DMAC transfer Complete
interrupt generated here yes Is DMAC in Row1 of
L, l DMAC State Machine Table?

Channel Disabled by
hardware

CTLx.INT_EN=1
8&
MASKBLOCK(x]=1?

Stall until block complete
interrupt cleared by software

17.8.1.4 Muilti-block Transfer with Source Address Auto-reloaded and Linked List Destination Address (Row?7)

1.
2.

Read the Channel Enable register to choose a free (disabled) channel.

Set up the chain of linked list items (otherwise known as block descriptors) in memory.
Write the control information in the LLI.CTLx register location of the block descriptor for
each LLI in memory for channel x. For example, in the register you can program the
following:

a. Set up the transfer type (memory or non-memory peripheral for source and desti-
nation) and flow control peripheral by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:

— i. Transfer width for the source in the SRC_TR_WIDTH field.

— ii. Transfer width for the destination in the DST_TR_WIDTH field.

— iii. Source master layer in the SMS field where source resides.

— iv. Destination master layer in the DMS field where destination resides.

— v. Incrementing/decrementing or fixed address for source in SINC field.

— vi. Incrementing/decrementing or fixed address for destination DINC field.

192 /AT 32/A P70/ () 10—

32003E-AVR32-05/06

3. Write the starting source address in the SARX register for channel x.

Note: The values in the LLI.SARX register locations of each of the Linked List Items (LLIs) setup up in
memory, although fetched during a LLI fetch, are not used.

4. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

5. Make sure that the LLI.CTLx register locations of all LLIs in memory (except the last)
are set as shown in Row 7 of Table 17-1 on page 181 while the LLI.CTLx register of the
last Linked List item must be set as described in Row 1 or Row 5 of Table 17-1. Figure
17-5 on page 180 shows a Linked List example with two list items.

6. Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last)
are non-zero and point to the next Linked List Item.

7. Make sure that the LLI.DARX register location of all LLIs in memory point to the start
destination block address proceeding that LLI fetch.

8. Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLIs in
memory is cleared.

9. If source status fetching is enabled (CFGx.SS_UPD_EN is enabled), program the
SSTATARX register so that the source status information can be fetched from the loca-
tion pointed to by the SSTATARX. For conditions under which the source status
information is fetched from system memory, refer to the ‘Writeback’ column of Table 17-
1 on page 181.

10. If destination status fetching is enabled (CFGx.DS_UPD_EN is enabled), program the
DSTATARX register so that the destination status information can be fetched from the
location pointed to by the DSTATARX register. For conditions under which the destina-
tion status information is fetched from system memory, refer to the ‘Writeback’ column
of Table 17-1 on page 181.

11. If gather is enabled (CTLx.S_GATH_EN is enabled), program the SGRXx register for
channel x.

12. If scatter is enabled (CTLx.D_SCAT_EN is enabled), program the DSRx register for
channel x.

13. Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

14. Program the CTLx, CFGXx registers according to Row 7 as shown in Table 17-1 on page
181.

15. Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

16. Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit 0 of the DmaCfgReg register is enabled.
17. The DMAC fetches the first LLI from the location pointed to by LLPx(0).

Note: The LLI.SARXx, LLI.DARX, LLI. LLPx and LLI.CTLx registers are fetched. The LLI.SARXx register
although fetched is not used.

A mEI% 193

32003E-AVR32-05/06

ATMEL

18. Source and destination request single and burst DMAC transactions to transfer the
block of data (assuming non-memory peripherals). DMAC acknowledges at the com-
pletion of every transaction (burst and single) in the block and carry out the block
transfer.

19. Once the block of data is transferred, the source status information is fetched from the

location pointed to by the SSTATARX register and stored in the SSTATXx register
CFGx.SS_UPD_EN is enabled. For conditions under which the source status informa-
tion is fetched from system memory, refer to the ‘Writeback’ column of Table 17-1 on
page 181.
The destination status information is fetched from the location pointed to by the DSTA-
TARX register and stored in the DSTATXx register if CFGx.DS_UPD_EN is enabled. For
conditions under which the destination status information is fetched from system mem-
ory, refer to ‘Writeback’ column of Table 17-1 on page 181.

20. The CTLxH register is written out to system memory. For conditions under which the
CTLxH register is written out to system memory, refer to ‘Writeback’ column of Table
17-1 on page 181. The CTLxH register is written out to the same location on the same
layer (LLPx.LMS) where it was originally fetched, that is the location of the CTLx regis-
ter of the linked list item fetched prior to the start of the block transfer. Only the second
word of the CTLx register is written out, CTLxH, because only the CTLx.BLOCK_TS
and CTLx.DONE fields have been updated by hardware within the DMAC. The
LLI.CTLx.DONE bit is asserted to indicate block completion. Therefore, software can
poll the LLI.CTLx.DONE bit field of the CTLx register in the LLI to ascertain when a
block transfer has completed.

Note: Do not poll the CTLx.DONE bit in the DMAC memory map. Instead poll the LLI.CTLx.DONE bit in
the LLI for that block. If the polled LLI.CTLx.DONE bit is asserted, then this block transfer has
completed. This LLI.CTLx.DONE bit was cleared at the start of the transfer (Step 8).

21. The SSTATXx register is now written out to system memory if CFGx.SS_UPD_EN is
enabled. It is written to the SSTATXx register location of the LLI pointed to by the previ-
ously saved LLPx.LOC register.

The DSTATX register is now written out to system memory if CFGx.DS_UPD_EN is
enabled. It is written to the DSTATX register location of the LLI pointed to by the previ-
ously saved LLPx.LOC register.

The end of block interrupt, int_block, is generated after the writeback of the control and
status registers has completed.

Note: The writeback location for the control and status registers is the LLI pointed to by the previous
value of the LLPx.LOC register, not the LLI pointed to by the current value of the LLPx.LOC
register.

22. The DMAC reloads the SARXx register from the initial value. Hardware sets the block
complete interrupt. The DMAC samples the row number as shown in Table 17-1 on
page 181. If the DMAC is in Row 1 or 5, then the DMA transfer has completed. Hard-
ware sets the transfer complete interrupt and disables the channel. You can either
respond to the Block Complete or Transfer Complete interrupts, or poll for the Channel
Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to detect when the trans-
fer is complete. If the DMAC is not in Row 1 or 5 as shown in Table 17-1 on page 181
the following steps are performed.

23. The DMA transfer proceeds as follows:

a. Ifinterrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)
should clear the CFGx.RELOAD_SR source reload bit. This puts the DMAC into

194 AT32AP7000 m—

Row1 as shown in Table 17-1 on page 181. If the next block is not the last block in
the DMA transfer, then the source reload bit should remain enabled to keep the
DMAC in Row 7 as shown in Table 17-1 on page 181.

b. If interrupts are disabled (CTLx.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1’b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case, software must clear the
source reload bit, CFGx.RELOAD_SR, to put the device into Row 1 of Table 17-1
on page 181 before the last block of the DMA transfer has completed.

24. The DMAC fetches the next LLI from memory location pointed to by the current LLPx
register, and automatically reprograms the DARx, CTLx and LLPx channel registers.
Note that the SARXx is not re-programmed as the reloaded value is used for the next
DMA block transfer. If the next block is the last block of the DMA transfer then the CTLx
and LLPx registers just fetched from the LLI should match Row 1 or Row 5 of Table 17-
1 on page 181. The DMA transfer might look like that shown in Figure 17-11 on page
195.

Figure 17-11. Multi-Block DMA Transfer with Source Address Auto-reloaded and Linked List

Address of A_ddrgss of
Source Layer Destination Layer

BlockQ

DAR(0)_,

SAR —»
T
1
1
BlockN
DAR(N)_,
Source Blocks Destination Blocks

Destination Address

The DMA Transfer flow is shown in Figure 17-12 on page 196

A IIIEI% 195

32003E-AVR32-05/06

ATMEL

Figure 17-12. DMA Transfer Flow for Source Address Auto-reloaded and Linked List Destina-
tion Address

Channel Enabled by
software

!

LLI Fetch

!

Hardware reprograms
DARXx, CTLx, LLPx

|

DMAC block transfer

|

Source/destination status fetch

!

Writeback of control and
source/destination status of LLI

|

Reload SARXx

Block Complete interrupt _ l
generated here

Is DMAC in
Row1 or Row5 of
DMAC State Machine Table?

DMAC Transfer Complete yes

interrupt generated here

Channel Disabled by
hardware

CTLx.INT_EN=1
&&
MASKBLOCK[X]=1 ?

Stall until block interrupt
Cleared by hardware

196 AT 32 /A P70/ () 1ms—

17.8.1.5 Muilti-block Transfer with Source Address Auto-reloaded and Contiguous Destination Address (Row 3)

1.
2.

32003E-AVR32-05/06

Read the Channel Enable register to choose a free (disabled) channel.

Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

Program the following channel registers:
a. Write the starting source address in the SARX register for channel x.
b. Write the starting destination address in the DARX register for channel x.

c. Program CTLx and CFGx according to Row 3 as shown in Table 17-1 on page 181.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel
x. For example, in this register, you can program the following:

— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

— ii. Set up the transfer characteristics, such as:

— Transfer width for the source in the SRC_TR_WIDTH field.
Transfer width for the destination in the DST_TR_WIDTH field.
Source master layer in the SMS field where source resides.

Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.

e. If gatheris enabled (CTLx.S_GATH_EN is enabled), program the SGRXx register for
channel x.

f. If scatter is enabled (CTLx.D_SCAT_EN), program the DSRXx register for channel x.
g. Write the channel configuration information into the CFGx register for channel x.

— i. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a 1’ activates the software handshaking interface to
handle source/destination requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

After the DMAC channel has been programmed, enable the channel by writing a ‘1’ to
the ChEnReg.CH_EN bit. Make sure that bit 0 of the DmaCfgReg register is enabled.

Source and destination request single and burst DMAC transactions to transfer the
block of data (assuming non-memory peripherals). The DMAC acknowledges at the
completion of every transaction (burst and single) in the block and carries out the block
transfer.

When the block transfer has completed, the DMAC reloads the SARX register. The
DARX register remains unchanged. Hardware sets the block complete interrupt. The
DMAC then samples the row number as shown in Table 17-1 on page 181. If the DMAC
is in Row 1, then the DMA transfer has completed. Hardware sets the transfer complete

A IIIEI% 197

ATMEL

interrupt and disables the channel. So you can either respond to the Block Complete or
Transfer Complete interrupts, or poll for the Channel Enable (ChEnReg.CH_EN) bit
until it is cleared by hardware, to detect when the transfer is complete. If the DMAC is
not in Row 1, the next step is performed.

7. The DMA transfer proceeds as follows:

a. Ifinterrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)
should clear the source reload bit, CFGx.RELOAD_SR. This puts the DMAC into
Row1 as shown in Table 17-1 on page 181. If the next block is not the last block in
the DMA transfer then the source reload bit should remain enabled to keep the
DMAC in Row3 as shown in Table 17-1 on page 181.

b. If interrupts are disabled (CTLx.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1’b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case software must clear the
source reload bit, CFGx.RELOAD_SR, to put the device into ROW 1 of Table 17-1
on page 181 before the last block of the DMA transfer has completed.

The transfer is similar to that shown in Figure 17-13 on page 198.

The DMA Transfer flow is shown in Figure 17-14 on page 199.

Figure 17-13. Multi-block Transfer with Source Address Auto-reloaded and Contiguous Desti-
nation Address

Address of
Destination Layer

Address of
Source Layer

Block2
— DAR(2)

Block1
+«— DAR(1)

Block0

SAR
- DAR(0)
Source Blocks Destination Blocks

198 /AT 32 /A P70/ () 15—

32003E-AVR32-05/06

Figure 17-14. DMA Transfer for Source Address Auto-reloaded and Contiguous Destination
Address

Channel Enabled by
software

Block Transfer D E—

Reload SARx, CTLx

Block Complete interrupt E— l
generated here

DMAC Transfer Complete
interrupt generated here yes

L

Is DMAC in Row1 of
DMAC State Machine Table?

Channel Disabled by
hardware

CTLx.INT_EN=1
&&
MASKBLOCK][x]=1?

l yes

Stall until Block Complete
interrupt cleared by software

17.8.1.6 Multi-block DMA Transfer with Linked List for Source and Contiguous Destination Address (Row 8)
1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the linked list in memory. Write the control information in the LLI. CTLx register
location of the block descriptor for each LLI in memory for channel x. For example, in
the register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and desti-
nation) and flow control device by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:

— i. Transfer width for the source in the SRC_TR_WIDTH field.

— ii. Transfer width for the destination in the DST_TR_WIDTH field.

— iii. Source master layer in the SMS field where source resides.

— iv. Destination master layer in the DMS field where destination resides.

A IIIEI,@ 199

32003E-AVR32-05/06

Note:

10.

11.

12.

13.

14.

15.
16.

ATMEL

— v. Incrementing/decrementing or fixed address for source in SINC field.
— vi. Incrementing/decrementing or fixed address for destination DINC field.

Write the starting destination address in the DARX register for channel x.

The values in the LLI.DARX register location of each Linked List Iltem (LLI) in memory, although
fetched during an LLI fetch, are not used.

Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripherals.
This requires programming the SRC_PER and DEST_PER bits, respectively.

Make sure that all LLI.CTLx register locations of the LLI (except the last) are set as
shown in Row 8 of Table 17-1 on page 181, while the LLI.CTLx register of the last
Linked List item must be set as described in Row 1 or Row 5 of Table 17-1. Figure 17-5
on page 180 shows a Linked List example with two list items.

Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last)
are non-zero and point to the next Linked List ltem.

Make sure that the LLI.SARX register location of all LLIs in memory point to the start
source block address proceeding that LLI fetch.

Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLIs in
memory is cleared.

If source status fetching is enabled (CFGx.SS_UPD_EN is enabled), program the
SSTATARX register so that the source status information can be fetched from the loca-
tion pointed to by SSTATARX. For conditions under which the source status information
is fetched from system memory, refer to the ‘Writeback’ column of Table 17-1 on page
181.

If destination status fetching is enabled (CFGx.DS_UPD_EN is enabled), program the
DSTATARX register so that the destination status information can be fetched from the

location pointed to by the DSTATARX register. For conditions under which the destina-
tion status information is fetched from system memory, refer to the ‘Writeback’ column
of Table 17-1 on page 181.

If gather is enabled (CTLx.S_GATH_EN is enabled), program the SGRx register for
channel x.

If scatter is enabled (CTLx.D_SCAT_EN is enabled), program the DSRXx register for
channel x.

Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

Program the CTLx, CFGx registers according to Row 8 as shown in Table 17-1 on page
181

Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit 0 of the DmaCfgReg register is enabled.

200 /AT 32 /A P70 00 1mmm—————————

32003E-AVR32-05/06

17.

Note:

18.

19.

20.

Note:

21.

Note:

22.

The DMAC fetches the first LLI from the location pointed to by LLPx(0).
The LLI.SARX, LLI.DARX, LLI.LLPx and LLI.CTLx registers are fetched. The LLI.DARX register
location of the LLI although fetched is not used. The DARX register in the DMAC remains
unchanged.
Source and destination requests single and burst DMAC transactions to transfer the
block of data (assuming non-memory peripherals). The DMAC acknowledges at the
completion of every transaction (burst and single) in the block and carry out the block
transfer.

Once the block of data is transferred, the source status information is fetched from the
location pointed to by the SSTATARX register and stored in the SSTATX register if
CFGx.SS_UPD_EN is enabled. For conditions under which the source status informa-
tion is fetched from system memory, refer to the ‘Writeback’ column of Table 17-1 on
page 181. The destination status information is fetched from the location pointed to by
the DSTATARX register and stored in the DSTATX register if CFGx.DS_UPD_EN is
enabled. For conditions under which the destination status information is fetched from
system memory, refer to ‘Writeback’ column of Table 17-1 on page 181.

The CTLxH register is written out to system memory. For conditions under which the
CTLxH register is written out to system memory, refer to ‘Writeback’ column of Table
17-1 on page 181. The CTLxH register is written out to the same location on the same
layer (LLPx.LMS) where it was originally fetched, that is the location of the CTLx regis-
ter of the linked list item fetched prior to the start of the block transfer. Only the second
word of the CTLx register is written out, CTLxH, because only the CTLx.BLOCK_TS
and CTLx.DONE fields have been updated by hardware within the DMAC. Additionally,
the CTLx.DONE bit is asserted to indicate block completion. Therefore, software can
poll the LLI.CTLx.DONE bit field of the CTLx register in the LLI to ascertain when a
block transfer has completed.

Do not poll the CTLx.DONE bit in the DMAC memory map. Instead poll the LLI.CTLx.DONE bit in

the LLI for that block. If the polled LLI.CTLx.DONE bit is asserted, then this block transfer has

completed. This LLI.CTLx.DONE bit was cleared at the start of the transfer (Step 8).
The SSTATX register is now written out to system memory if CFGx.SS_UPD_EN is
enabled. It is written to the SSTATX register location of the LLI pointed to by the previ-
ously saved LLPx.LOC register.
The DSTATX register is now written out to system memory if CFGx.DS_UPD_EN is
enabled. It is written to the DSTATX register location of the LLI pointed to by the previ-
ously saved LLPx.LOC register. The end of block interrupt, int_block, is generated after
the write back of the control and status registers has completed.

The writeback location for the control and status registers is the LLI pointed to by the previous

value of the LLPx.LOC register, not the LLI pointed to by the current value of the LLPx.LOC

register.
The DMAC does not wait for the block interrupt to be cleared, but continues and fetches
the next LLI from the memory location pointed to by current LLPx register and automat-
ically reprograms the SARx, CTLx and LLPx channel registers. The DARX register is
left unchanged. The DMA transfer continues until the DMAC samples the CTLx and
LLPx registers at the end of a block transfer match that described in Row 1 or Row 5 of
Table 17-1 on page 181. The DMAC then knows that the previous block transferred was
the last block in the DMA transfer.

The DMAC transfer might look like that shown in Figure 17-15 on page 202 Note that the desti-
nation address is decrementing.

32003E-AVR32-05/06

A IIIEI% 201

ATMEL

Figure 17-15. DMA Transfer with Linked List Source Address and Contiguous Destination

Address
Address of Address of
Source Layer Destination Layer
Block 2
SAR(2) —» \ Block 2
« DAR(2)
Block 1 > | Block 1
SAR(1) —> < DAR(1)
/ Block 0
Block 0 < DAR(0)
SAR(0) —
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 17-16 on page 203.

202 AT 32 /AP 7000 1mm—

32003E-AVR32-05/06

Figure 17-16. DMA Transfer Flow for Source Address Auto-reloaded and Contiguous Destina-
tion Address

Channel Enabled by
software

LLI Fetch

A

Hardware reprograms
SARXx, CTLx, LLPx

DMAC block transfer

Source/destination
status fetch

Writeback of control and
source/destination status of LLI

Block Complete interrupt — l
generated here

Is DMAC in
Row 1 or Row 5
of Table 4 ?

no

DMAC Transfer Complete
interrupt generated here

Channel Disabled by
hardware

A mEl% 203

32003E-AVR32-05/06

ATMEL

17.9 Disabling a Channel Prior to Transfer Completion

17.9.1

204

Under normal operation, software enables a channel by writing a ‘1’ to the Channel Enable Reg-
ister, ChEnReg.CH_EN, and hardware disables a channel on transfer completion by clearing the
ChEnReg.CH_EN register bit.

The recommended way for software to disable a channel without losing data is to use the
CH_SUSP bit in conjunction with the FIFO_EMPTY bit in the Channel Configuration Register
(CFGx) register.

1. If software wishes to disable a channel prior to the DMA transfer completion, then it can
set the CFGx.CH_SUSP bit to tell the DMAC to halt all transfers from the source
peripheral. Therefore, the channel FIFO receives no new data.
2. Software can now poll the CFGx.FIFO_EMPTY bit until it indicates that the channel
FIFO is empty.
3. The ChEnReg.CH_EN bit can then be cleared by software once the channel FIFO is
empty.
When CTLx.SRC_TR_WIDTH is less than CTLx.DST_TR_WIDTH and the CFGx.CH_SUSP bit
is high, the CFGx.FIFO_EMPTY is asserted once the contents of the FIFO do not permit a single
word of CTLx.DST_TR_WIDTH to be formed. However, there may still be data in the channel
FIFO but not enough to form a single transfer of CTLx.DST_TR_WIDTH width. In this configura-
tion, once the channel is disabled, the remaining data in the channel FIFO are not transferred to
the destination peripheral. It is permitted to remove the channel from the suspension state by
writing a ‘0’ to the CFGx.CH_SUSP register. The DMA transfer completes in the normal manner.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

Abnormal Transfer Termination

A DMAC DMA transfer may be terminated abruptly by software by clearing the channel enable
bit, ChEnReg.CH_EN. This does not mean that the channel is disabled immediately after the
ChEnReg.CH_EN bit is cleared over the AHB slave interface. Consider this as a request to dis-
able the channel. The ChEnReg.CH_EN must be polled and then it must be confirmed that the
channel is disabled by reading back 0. A case where the channel is not be disabled after a chan-
nel disable request is where either the source or destination has received a split or retry
response. The DMAC must keep re-attempting the transfer to the system HADDR that originally
received the split or retry response until an OKAY response is returned. To do otherwise is an
System Bus protocol violation.

Software may terminate all channels abruptly by clearing the global enable bit in the DMAC Con-
figuration Register (DmaCfgReg[0]). Again, this does not mean that all channels are disabled
immediately after the DmaCfgReg[0] is cleared over the AHB slave interface. Consider this as a
request to disable all channels. The ChEnReg must be polled and then it must be confirmed that
all channels are disabled by reading back ‘0’

Note: If the channel enable bit is cleared while there is data in the channel FIFO, this data is not sent to
the destination peripheral and is not present when the channel is re-enabled. For read sensitive
source peripherals such as a source FIFO this data is therefore lost. When the source is not a
read sensitive device (i.e., memory), disabling a channel without waiting for the channel FIFO to
empty may be acceptable as the data is available from the source peripheral upon request and is
not lost.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

17.10 DMA Controller (DMAC) User Interface

Table 17-2. DMA Controller (DMAC) User Interface

Offset Register Register Name Access Reset Value
0x0 Channel 0 Source Address Register SARO Read/Write 0x0
0x4 Reserved -
0x8 Channel 0 Destination Address Register DARO Read/Write 0x0
0xC Reserved -

0x10 Channel 0 Linked List Pointer Register LLPO Read/Write 0x0
0x14 Reserved -

0x18 Channel 0 Control Register Low CTLOL Read/Write

0x1C Channel 0 Control Register High CTLOH Read/Write

0x20 Channel 0 Source Status Register SSTATO Read/Write 0x0
0x24 Reserved

0x28 Channel 0 Destination Status Register DSTATO Read/Write 0x0
0x2C Reserved

0x30 Channel 0 Source Status Address Register SSTATARO Read/Write 0x0
0x34 Reserved

0x38 Channel 0 Destination Status Address Register DSTATARO Read/Write 0x0
0x3C Reserved

0x40 Channel 0 Configuration Register low CFGOL Read/Write 0x00000c00
0x44 Channel 0 Configuration Register High CFGOH Read/Write 0x00000004
0x48 Channel 0 Source Gather Register SGRO Read/Write 0x0
0x4C Reserved

0x50 Channel 0 Destination Scatter Register DSRO Read/Write 0x0
0x54 Reserved

0x58 Channel 1 Source Address Register SAR1 Read/Write 0x0
0x5C Reserved

0x60 Channel 1 Destination Address Register DAR1 Read/Write 0x0
0x64 Reserved

0x68 Channel 1 Linked List Pointer Register LLP1 Read/Write 0x0
0x7C Reserved

0x70 Channel 1 Control Register Low CTL1L Read/Write

0x74 Channel 1 Control Register High CTL1H Read/Write

0x78 Channel 1 Source Status Register SSTAT1 Read/Write 0x0
0x7C Reserved

0x80 Channel 1 Destination Status Register DSTAT1 Read/Write 0x0
0x84 Reserved

0x88 Channel 1 Source Status Address Register SSTATART1 Read/Write 0x0

205

32003E-AVR32-05/06

ATMEL

ATMEL

Table 17-2. DMA Controller (DMAC) User Interface (Continued)

Offset Register Register Name Access Reset Value
0x8C Reserved

0x90 Channel 1 Destination Status Address Register DSTATAR1 Read/Write 0x0
0x94 Reserved

0x98 Channel 1 Configuration Register Low CFG1L Read/Write 0x00000c20
0x9C Channel 1 Configuration Register High CFG1H Read/Write 0x00000004
0xa0 Channel 1 Source Gather Register SGR1 Read/Write 0x0
Oxa4 Reserved

0xa8 Channel 1 Destination Scatter Register DSR1 Read/Write 0x0
Oxac Channel 0 Source Address Register SARO Read/Write 0x0
0xb0 Reserved -

Oxb4 Channel 0 Destination Address Register DARO Read/Write 0x0
0xb8 Reserved -

Oxbc Channel 0 Linked List Pointer Register LLPO Read/Write 0x0
0xc0 Reserved -

Oxc4 Channel 0 Control Register Low CTLOL Read/Write

0xc8 Channel 0 Control Register High CTLOH Read/Write

Oxcc Channel 0 Source Status Register SSTATO Read/Write 0x0
0xdo Reserved

Oxd4 Channel 0 Destination Status Register DSTATO Read/Write 0x0
0xd8 Reserved

Oxdc Channel 0 Source Status Address Register SSTATARO Read/Write 0x0
0xe0 Reserved

Oxe4 Channel 0 Destination Status Address Register DSTATARO Read/Write 0x0
0xe8 Reserved

Oxec Channel 0 Configuration Register low CFGOL Read/Write 0x00000c00
0xfo Channel 0 Configuration Register High CFGOH Read/Write 0x00000004
0xf4 Channel 0 Source Gather Register SGRO Read/Write 0x0
0xf8 Reserved

Oxfc Channel 0 Destination Scatter Register DSRO Read/Write 0x0

Ox1OOC..0x2b Reserved

0x2c0 Raw Status for IntTfr Interrupt RawTfr Read 0x0
0x2c4 Reserved

0x2c8 Raw Status for IntBlock Interrupt RawBlock Read 0x0
0x2cc Reserved

0x2d0 Raw Status for IntSrcTran Interrupt RawSrcTran Read 0x0

206 /AT 32 /AP 7000 1

Table 17-2. DMA Controller (DMAC) User Interface (Continued)

Offset Register Register Name Access Reset Value
0x2d4 Reserved

0x2d8 Raw Status for IntDstTran Interrupt RawDstTran Read 0x0
0x2dc Reserved

0x2e0 Raw Status for IntErr Interrupt RawErr Read 0x0
0x2e4 Reserved

0x2e8 Status for IntTfr Interrupt StatusTfr Read 0x0
Ox2ec Reserved

0x2f0 Status for IntBlock Interrupt StatusBlock Read 0x0
0x2f4 Reserved

0x2f8 Status for IntSrcTran Interrupt StatusSrcTran Read 0x0
0x2fc Reserved

0x300 Status for IntDstTran Interrupt StatusDstTran Read 0x0
0x304 Reserved

0x308 Status for IntErr Interrupt StatusErr Read 0x0
0x30c Reserved

0x310 Mask for IntTfr Interrupt MaskTfr Read/Write 0x0
0x314 Reserved

0x318 Mask for IntBlock Interrupt MaskBlock Read/Write 0x0
0x31c Reserved

0x320 Mask for IntSrcTran Interrupt MaskSrcTran Read/Write 0x0
0x324 Reserved

0x328 Mask for IntDstTran Interrupt MaskDstTran Read/Write 0x0
0x32c Reserved

0x330 Mask for IntErr Interrupt MaskErr Read/Write 0x0
0x334 Reserved

0x338 Clear for IntTfr Interrupt ClearTfr Write 0x0
0x33c Reserved

0x340 Clear for IntBlock Interrupt ClearBlock Write 0x0
0x344 Reserved

0x348 Clear for IntSrcTran Interrupt ClearSrcTran Write 0x0
0x34c Reserved

0x350 Clear for IntDstTran Interrupt ClearDstTran Write 0x0
0x354 Reserved

0x358 Clear for IntErr Interrupt ClearErr Write 0x0
0x35¢c Reserved

0x360 Status for each interrupt type Statusint Read 0x0

A mEl% 207

32003E-AVR32-05/06

ATMEL

Table 17-2. DMA Controller (DMAC) User Interface (Continued)

Offset Register Register Name Access Reset Value
0x364 Reserved

0x368 Source Software Transaction Request Register ReqSrcReg Read/Write 0x0
0x36¢ Reserved

0x370 Destination Software Transaction Request Register | ReqDstReg Read/Write 0x0
0x374 Reserved

0x378 Single Source Transaction Request Register SglReqSrcReg Read/Write 0x0
0x37¢ Reserved

0x380 Single Destination Transaction Request Register SglRegDstReg Read/Write 0x0
0x384 Reserved

0x388 Last Source Transaction Request Register LstSrcReg Read/Write 0x0
0x38c Reserved

0x390 Last Destination Transaction Request Register LstDstReg Read/Write 0x0
0x394 Reserved

0x398 DMA Configuration Register DmaCfgReg Read/Write 0x0
0x39¢c Reserved

0x3a0 Channel Enable Register ChEnReg Read/Write 0x0
0x3a4 Reserved

0x3a8 DMA ID Register IdReg Read DMA_ID_NUM
0x3ac Reserved

0x3b0 DMA Test Register DmaTestReg Read/Write

0x3b4 Reserved

0x3b8 Reserved

0x3b8 Reserved

208 /AT 32 /AP 7000 1

17.10.1 Channel x Source Address Register

Name: SARx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| SADD |
23 22 21 20 19 18 17 16

| SADD |
15 14 13 12 11 10 9 8

| SADD |
7 6 5 4 3 2 1 0

| SADD |

The address offset for each channel is: [x *0x58]

For example, SARO: 0x000, SAR1: 0x058, etc.

e SADD: Source Address of DMA transfer

The starting System Bus source address is programmed by software before the DMA channel is enabled or by a LLI update
before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the source
address of the current System Bus transfer.

Updated after each source System Bus transfer. The SINC field in the CTLx register determines whether the address incre-
ments, decrements, or is left unchanged on every source System Bus transfer throughout the block transfer.

A IIIEI,@ 209

32003E-AVR32-05/06

ATMEL

17.10.2 Channel x Destination Address Register

Name: DARx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| DADD |
23 22 21 20 19 18 17 16

| DADD |
15 14 13 12 11 10 9 8

| DADD |
7 6 5 4 3 2 1 0

| DADD |

The address offset for each channel is: 0x08+[x * 0x58]

For example, DARO: 0x008, DAR1: 0x060, etc.

¢ DADD: Destination Address of DMA transfer
The starting System Bus destination address is programmed by software before the DMA channel is enabled or by a LLI
update before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the desti-
nation address of the current System Bus transfer.

Updated after each destination System Bus transfer. The DINC field in the CTLx register determines whether the address
increments, decrements or is left unchanged on every destination System Bus transfer throughout the block transfer.

210 AT 32 /AP 7000 1mmm—

32003E-AVR32-05/06

17.10.3 Linked List Pointer Register for Channel x

Name: LLPx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| LOC |
23 22 21 20 19 18 17 16

| LOC |
15 14 13 12 11 10 9 8

| LOC |
7 6 5 4 3 2 1 0

| LOC 0 0 |

The address offset for each channel is: 0x10+[x * 0x58]

For example, LLPO: 0x010, LLP1: 0x068, etc.

¢ LOC: Address of the next LLI

Starting address in memory of next LLI if block chaining is enabled. Note that the two LSBs of the starting address are not
stored because the address is assumed to be aligned to a 32-bit boundary.

The user need to program this register to point to the first Linked List Item (LLI) in memory prior to enabling the channel if
block chaining is enabled.

The LLP register has two functions:

1. The logical result of the equation LLP.LOC != 0 is used to set up the type of DMA transfer (single or multi-block).

If LLP.LOC is set to 0x0, then transfers using linked lists are NOT enabled. This register must be programmed prior to
enabling the channel in order to set up the transfer type.

It (LLP.LOC != 0) contains the pointer to the next Linked Listed Item for block chaining using linked lists.

2. The LLPx register is also used to point to the address where write back of the control and source/destination sta-
tus information occurs after block completion.

A mEl% 211

32003E-AVR32-05/06

ATMEL

17.10.4 Control Register for Channel x Low

Name: CTLxL

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| - | - - LLP_S_EN | LLP_D_EN | SMS | DMS |
23 22 21 20 19 18 17 16

| DMS | TT_FC | - | D_SCAT_EN | S_GATH_EN | SRC_MSIZE |
15 14 13 12 11 10 9 8

| SRC_MSIZE DEST_MSIZE | SINC | DINC |
7 6 5 4 3 2 1 0

| DINC | SRC_TR_WIDTH | DST_TR_WIDTH | INT_EN |

The address offset for each channel is: 0x18+[x * 0x58]
For example, CTLO: 0x018, CTL1: 0x070, etc.

This register contains fields that control the DMA transfer. The CTLxL register is part of the block descriptor (linked list item)
when block chaining is enabled. It can be varied on a block-by-block basis within a DMA transfer when block chaining is
enabled.

¢ INT_EN: Interrupt Enable Bit
If set, then all five interrupt generating sources are enabled.

e DST_TR_WIDTH: Destination Transfer Width
e SRC_TR_WIDTH: Source Transfer Width

SRC_TR_WIDTH/DST_TR_WIDTH Size (bits)
000 8

001 16

010 32

Other Reserved

¢ DINC: Destination Address Increment
Indicates whether to increment or decrement the destination address on every destination System Bus transfer. If your
device is writing data to a destination peripheral FIFO with a fixed address, then set this field to “No change”.

00 = Increment
01 = Decrement

1x = No change

¢ SINC: Source Address Increment
Indicates whether to increment or decrement the source address on every source System Bus transfer. If your device is
fetching data from a source peripheral FIFO with a fixed address, then set this field to “No change”.

00 = Increment

01 = Decrement

212 AT 32 /AP 7000 1mmm—

32003E-AVR32-05/06

1x = No change

e DEST_MSIZE: Destination Burst Transaction Length
Number of data items, each of width CTLx.DST_TR_WIDTH, to be written to the destination every time a destination burst
transaction request is made from either the corresponding hardware or software handshaking interface.

e SRC_MSIZE: Source Burst Transaction Length
Number of data items, each of width CTLx.SRC_TR_WIDTH, to be read from the source every time a source burst transac-
tion request is made from either the corresponding hardware or software handshaking interface.

e S GATH_EN: Source Gather Enable Bit
0 = Gather is disabled.

1 = Gather is enabled.

Gather on the source side is only applicable when the CTLx.SINC bit indicates an incrementing or decrementing address
control.

e D SCAT_EN: Destination Scatter Enable Bit
0 = Scatter is disabled.

1 = Scatter is enabled.

Scatter on the destination side is only applicable when the CTLx.DINC bit indicates an incrementing or decrementing
address control.

e TT_FC: Transfer Type and Flow Control
The following transfer types are supported.

* Memory to Memory
* Memory to Peripheral
* Peripheral to Memory

Flow Control can be assigned to the DMAC, the source peripheral, or the destination peripheral.

TT_FC Transfer Type Flow Controller

000 Memory to Memory DMAC

001 Memory to Peripheral DMAC

010 Peripheral to Memory DMAC

011 Peripheral to Peripheral DMAC

100 Peripheral to Memory Peripheral

101 Peripheral to Peripheral Source Peripheral
110 Memory to Peripheral Peripheral

111 Peripheral to Peripheral Destination Peripheral

e DMS: Destination Master Select
Identifies the Master Interface layer where the destination device (peripheral or memory) resides.

00 = AHB master 1

01 = Reserved

A IIIEI% 213

32003E-AVR32-05/06

ATMEL

10 = Reserved

11 = Reserved

e SMS: Source Master Select
Identifies the Master Interface layer where the source device (peripheral or memory) is accessed from.

00 = AHB master 1
01 = Reserved
10 = Reserved

11 = Reserved

e LLP_D_EN
Block chaining is only enabled on the destination side if the LLP_D_EN field is high and LLPx.LOC is non-zero.

e LLP_S_EN
Block chaining is only enabled on the source side if the LLP_S_EN field is high and LLPx.LOC is non-zero.

214 AT32AP7000 messs—

32003E-AVR32-05/06

17.10.5 Control Register for Channel x High

Name: CTLxH

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

T - - - - - - S
23 22 21 20 19 18 17 16

I |
15 14 13 12 11 10 9 8

| - - - DONE - BLOCK_TS |
7 6 5 4 3 2 1 0

| BLOCK_TS |

e BLOCK_TS: Block Transfer Size
When the DMAC is flow controller, this field is written by the user before the channel is enabled to indicate the block size.

The number programmed into BLOCK_TS indicates the total number of single transactions to perform for every block
transfer. The width of the single transaction is determined by CTLx.SRC_TR_WIDTH.

* DONE: Done Bit
If status writeback is enabled, the control register CTLxH, is written to the control register location of the Linked List Item in
system memory at the end of the block transfer with the done bit set.

Software can poll the LLI CTLx.DONE bit to see when a block transfer is complete. The LLI CTLx.DONE bit should be
cleared when the linked lists are setup in memory prior to enabling the channel.

A mEl% 215

32003E-AVR32-05/06

ATMEL

17.10.6 Source Status Register for Channel x

Name: SSTATx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| SSTAT |
23 22 21 20 19 18 17 16

| SSTAT |
15 14 13 12 11 10 9 8

| SSTAT |
7 6 5 4 3 2 1 0

| SSTAT |

The address offset for each channel is: 0x20+[x * 0x58]

For example, SSTATO0: 0x020, SSTAT1: 0x078, etc.

e SSTAT: Source status information

After the completion of each block transfer, hardware can retrieve the source status information from the address pointed to
by the contents of the SSTATRX register. This status information is then stored in the SSTATx register and written out to
the SSTATARX register location of the LLI before the start of the next block.This register is a temporary placeholder for the
source status information on its way to the SSTATx register location of the LLI. The source status information should be
retrieved by software from the SSTATXx register location of the LLI and not by a read of this register over the DMAC slave
interface.

216 AT 32 /AP 7000 1mm—

32003E-AVR32-05/06

17.10.7 Destination Status Register for Channel x

Name: DSTATX

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| DSTAT |
23 22 21 20 19 18 17 16

| DSTAT |
15 14 13 12 11 10 9 8

| DSTAT |
7 6 5 4 3 2 1 0

| DSTAT |

The address offset for each channel is: 0x28+[x * 0x58]

For example, DSTATO: 0x028, DSTAT1: 0x080, etc.

e DSTAT: Destination status information

After the completion of each block transfer, hardware can retrieve the destination status information from the address
pointed to by the contents of the DSTATARX register. This status information is then stored in the DSTATXx register and

written out to the DSTATX register location of the LLI before the start of the next block.

This register is a temporary placeholder for the destination status information on its way to the DSTATX register location of
the LLI. The destination status information should be retrieved by software from the DSTATXx register location of the LLI and
not by a read of this register over the DMAC slave interface.

32003E-AVR32-05/06

ATMEL

217

ATMEL

17.10.8 Source Status Address Register for Channel x

Name: SSTATARXx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| SSTATAR |
23 22 21 20 19 18 17 16

| SSTATAR |
15 14 13 12 11 10 9 8

| SSTATAR |
7 6 5 4 3 2 1 0

| SSTATAR |

The address offset for each channel is: 0x30+[x * 0x58]

For example, SSTATARO: 0x030, SSTATAR1: 0x088, etc.

e SSTATAR: Source Status Information address
Pointer from where hardware can fetch the source status information.This status information is registered in the SSTATx
register and written out to the SSTATX register location of the LLI before the start of the next block.

218 AT 32 /AP 7000 1mm—

32003E-AVR32-05/06

17.10.9 Destination Status Address Register for Channel x

Name: DSTATARXx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| DSTATAR |
23 22 21 20 19 18 17 16

| DSTATAR |
15 14 13 12 11 10 9 8

| DSTATAR |
7 6 5 4 3 2 1 0

| DSTATAR |

The address offset for each channel is: 0x38+[x * 0x58]
For example, DSTATARO: 0x038, DSTATAR1: 0x090, etc.
¢ DSTATAR: Destination Status Information address

Pointer from where hardware can fetch the destination status information. This status information is registered in the
DSTATX register and written out to the DSTATX register location of the LLI before the start of the next block.

A mEl% 219

32003E-AVR32-05/06

ATMEL

17.10.10 Configuration Register for Channel x Low

Name: CFGxL

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| RELOAD_DS | RELOAD_SR MAX_ABRST |
23 22 21 20 19 18 17 16

| MAX_ABRST | SR_HS_POL | DS_HS_POL | LOCK_B | LOCK_CH |
15 14 13 12 11 10 9 8

| LOCK_B_L LOCK_CH_L | HS_SEL_SR | HS_SEL_DS | FIFO_EMPT | CH_SUSP |
7 6 5 4 3 2 1 0

| CH_PRIOR - [- T -1 T

The address offset for each channel is: 0x40+[x * 0x58]

For example, CFGO: 0x040, CFG1: 0x098, etc.

e CH_PRIOR: Channel priority
A priority of 7 is the highest priority, and 0 is the lowest. This field must be programmed within the following range [0, x — 1]

A programmed value outside this range causes erroneous behavior.

e CH_SUSP: Channel Suspend

Suspends all DMA data transfers from the source until this bit is cleared. There is no guarantee that the current transaction
will complete. Can also be used in conjunction with CFGx.FIFO_EMPTY to cleanly disable a channel without losing any
data.

0 = Not Suspended.

1 = Suspend. Suspend DMA transfer from the source.

e FIFO_EMPTY
Indicates if there is data left in the channel's FIFO. Can be used in conjunction with CFGx.CH_SUSP to cleanly disable a
channel.

1 = Channel's FIFO empty
0 = Channel's FIFO not empty

e HS_SEL_DST: Destination Software or Hardware Handshaking Select
This register selects which of the handshaking interfaces, hardware or software, is active for destination requests on this
channel.

0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.
1 = Software handshaking interface. Hardware Initiated transaction requests are ignored.

If the destination peripheral is memory, then this bit is ignored.

e HS_SEL_SRC: Source Software or Hardware Handshaking Select
This register selects which of the handshaking interfaces, hardware or software, is active for source requests on this
channel.

0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.

220 /AT 32 /A P70 00 1mm—

1 = Software handshaking interface. Hardware-initiated transaction requests are ignored.

If the source peripheral is memory, then this bit is ignored.

e LOCK_CH_L: Channel Lock Level
Indicates the duration over which CFGx.LOCK_CH bit applies.

00 = Over complete DMA transfer
01 = Over complete DMA block transfer

1x = Over complete DMA transaction

e LOCK_B_L: Bus Lock Level
Indicates the duration over which CFGx.LOCK_B bit applies.

00 = Over complete DMA transfer
01 = Over complete DMA block transfer

1x = Over complete DMA transaction

e LOCK_CH: Channel Lock Bit

When the channel is granted control of the master bus interface and if the CFGx.LOCK_CH bit is asserted, then no other
channels are granted control of the master bus interface for the duration specified in CFGx.LOCK_CH_L. Indicates to the
master bus interface arbiter that this channel wants exclusive access to the master bus interface for the duration specified
in CFGx.LOCK_CH_L.

e LOCK_B: Bus Lock Bit
When active, the System Bus master signal hlock is asserted for the duration specified in CFGx.LOCK_B_L.

e DS_HS_POL: Destination Handshaking Interface Polarity
0 = Active high

1 = Active low

e SR_HS_POL: Source Handshaking Interface Polarity
0 = Active high

1 = Active low

e MAX_ABRST: Maximum System Bus Burst Length
Maximum System Bus burst length that is used for DMA transfers on this channel. A value of ‘0’ indicates that software is
not limiting the maximum burst length for DMA transfers on this channel.

e RELOAD_SR: Automatic Source Reload
The SARX register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.

* RELOAD_DS: Automatic Destination Reload
The DARX register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.

A IIIEI% 221

32003E-AVR32-05/06

ATMEL

17.10.11 Configuration Register for Channel x High

Name: CFGxH

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | DEST_PER | SRC_PER |
7 6 5 4 3 2 1 0

| SRC_PER | SS_UPD_EN | DS_UPD_EN | PROTCTL | FIFO_MODE | FCMODE |

e FCMODE: Flow Control Mode
Determines when source transaction requests are serviced when the Destination Peripheral is the flow controller.

0 = Source transaction requests are serviced when they occur. Data pre-fetching is enabled.

1 = Source transaction requests are not serviced until a destination transaction request occurs. In this mode the amount of
data transferred from the source is limited such that it is guaranteed to be transferred to the destination prior to block termi-
nation by the destination. Data pre-fetching is disabled.

* FIFO_MODE: R/W 0x0 FIFO Mode Select
Determines how much space or data needs to be available in the FIFO before a burst transaction request is serviced.

0 = Space/data available for single System Bus transfer of the specified transfer width.

1 = Space/data available is greater than or equal to half the FIFO depth for destination transfers and less than half the FIFO
depth for source transfers. The exceptions are at the end of a burst transaction request or at the end of a block transfer.

e PROTCTL: Protection Control
Bits used to drive the System Bus HPROTI[3:1] bus. The System Bus Specification recommends that the default value of
HPROT indicates a non-cached, nonbuffered, privileged data access. The reset value is used to indicate such an access.

HPROTIO0] is tied high as all transfers are data accesses as there are no opcode fetches. There is a one-to-one mapping of
these register bits to the HPROT[3:1] master interface signals.

e DS_UPD_EN: Destination Status Update Enable
Destination status information is only fetched from the location pointed to by the DSTATARX register, stored in the DSTATx
register and written out to the DSTATX location of the LLI if DS_UPD_EN is high.

e SS_UPD_EN: Source Status Update Enable
Source status information is only fetched from the location pointed to by the SSTATARX register, stored in the SSTATx reg-
ister and written out to the SSTATXx location of the LLI if SS_UPD_EN is high.

e SRC_PER: Source Hardware Handshaking Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the source of channel x if the
CFGx.HS_SEL_SRC field is 0. Otherwise, this field is ignored. The channel can then communicate with the source periph-
eral connected to that interface via the assigned hardware handshaking interface.

For correct DMAC operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.

222 AT 32 /A P70 00 1mmm—

 DEST_PER: Destination Hardware Handshaking Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the destination of channel x if the
CFGx.HS_SEL_DST field is 0. Otherwise, this field is ignored. The channel can then communicate with the destination
peripheral connected to that interface via the assigned hardware handshaking interface.

For correct DMA operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.

32003E-AVR32-05/06

A mEl% 223

ATMEL

17.10.12 Source Gather Register for Channel x

Name: SGRx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

- T - - — T - - - —]
23 22 21 20 19 18 17 16

| SGC | SGl |
15 14 13 12 11 10 9 8

| SGl |
7 6 5 4 3 2 1 0

| SGl |

The address offset for each channel is: 0x48+[x * 0x58]
For example, SGRO: 0x048, SGR1: 0x0a0, etc.

The CTLx.SINC field controls whether the address increments or decrements. When the CTLx.SINC field indicates a fixed-
address control, then the address remains constant throughout the transfer and the SGRx register is ignored.

* SGI: Source Gather Interval
Source gather count field specifies the number of contiguous source transfers of CTLx.SRC_TR_WIDTH between succes-
sive gather intervals. This is defined as a gather boundary.

e SGC: Source gather count
Source gather interval field (SGRx.SGl) — specifies the source address increment/decrement in multiples of
CTLx.SRC_TR_WIDTH on a gather boundary when gather mode is enabled for the source transfer.

224 AT32AP7000 messss—

32003E-AVR32-05/06

17.10.13 Destination Scatter Register for Channel x

Name: DSRx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

T - - SR - - S
23 22 21 20 19 18 17 16

| DSC | DSI |
15 14 13 12 11 10 9 8

| DSI |
7 6 5 4 3 2 1 0

| DSI |

The address offset for each channel is: 0x50+[x * 0x58]
For example, DSRO0: 0x050, DSR1: 0x0a8, etc.

The CTLx.DINC field controls whether the address increments or decrements. When the CTLx.DINC field indicates a fixed
address control then the address remains constant throughout the transfer and the DSRx register is ignored.

e DSI: Destination Scatter Interval
Destination scatter interval field (DSRx.DSI) — specifies the destination address increment/decrement in multiples of
CTLx.DST_TR_WIDTH on a scatter boundary when scatter mode is enabled for the destination transfer.

¢ DSC: Destination Scatter count
Destination scatter count field (DSRx.DSC) — specifies the number of contiguous destination transfers of
CTLx.DST_TR_WIDTH between successive scatter boundaries.

A mEl% 225

32003E-AVR32-05/06

ATMEL

17.10.14 Interrupt Registers

The following sections describe the registers pertaining to interrupts, their status, and how to clear them. For each channel,
there are five types of interrupt sources:

e IntTfr: DMA Transfer Complete Interrupt
This interrupt is generated on DMA transfer completion to the destination peripheral.

¢ IntBlock: Block Transfer Complete Interrupt
This interrupt is generated on DMA block transfer completion to the destination peripheral.

¢ IntSrcTran: Source Transaction Complete Interrupt
This interrupt is generated after completion of the last System Bus transfer of the requested single/burst transaction from
the handshaking interface on the source side.

If the source for a channel is memory, then that channel never generates a IntSrcTran interrupt and hence the correspond-
ing bit in this field is not set.

¢ IntDstTran: Destination Transaction Complete Interrupt
This interrupt is generated after completion of the last System Bus transfer of the requested single/burst transaction from
the handshaking interface on the destination side.

If the destination for a channel is memory, then that channel never generates the IntDstTran interrupt and hence the corre-
sponding bit in this field is not set.
* IntErr: Error Interrupt

This interrupt is generated when an ERROR response is received from an AHB slave on the HRESP bus during a DMA
transfer. In addition, the DMA transfer is cancelled and the channel is disabled.

226 AT 32 /A P70 00 1mmm—

32003E-AVR32-05/06

17.10.15 Interrupt Raw Status Registers

Name: RawTfr, RawBlock, RawSrcTran, RawDstTran, RawErr

Access: Read

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I I I I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I - I - I - I I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | RAW2 | RAW1 | RAWO |

The address offset are
RawTfr — 0x2c0
RawBlock — 0x2c8
RawSrcTran — 0x2d0
RawDstTran — 0x2d8
RawErr — 0x2e0

e RAWIJ2:0]: Raw interrupt for each channel

Interrupt events are stored in these Raw Interrupt Status Registers before masking: RawTfr, RawBlock, RawSrcTran,
RawDstTran, RawErr. Each Raw Interrupt Status register has a bit allocated per channel, for example, RawTfr[2] is Chan-
nel 2’s raw transfer complete interrupt. Each bit in these registers is cleared by writing a 1 to the corresponding location in
the ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr registers.

A mEl% 227

32003E-AVR32-05/06

ATMEL

17.10.16 Interrupt Status Registers

Name: StatusTfr, StatusBlock, StatusSrcTran, StatusDstTran, StatusErr

Access: Read

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ | — | - | - | - | STATUS2 | STATUSH1 | STATUSO |

The address offset are

StatusTfr: 0x2e8

StatusBlock: 0x2f0

StatusSrcTran: 0x2f8

StatusDstTran: 0x300

StatusErr: 0x308

e STATUS[2:0]

All interrupt events from all channels are stored in these Interrupt Status Registers after masking: StatusTfr, StatusBlock,
StatusSrcTran, StatusDstTran, StatusErr. Each Interrupt Status register has a bit allocated per channel, for example, Sta-

tusTfr[2] is Channel 2’s status transfer complete interrupt.The contents of these registers are used to generate the interrupt
signals leaving the DMAC.

228 AT 32 /A P70 00 1mm—

17.10.17 Interrupt Status Registers

Name: MaskTfr, MaskBlock, MaskSrcTran, MaskDstTran, MaskErr

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
| — | — | — | — | - | INT_M_WE2 | INT_M_WEA | INT_M_WEO |
7 6 5 4 3 2 1 0

| _ | — | - | - | - | INT_MASK2 | INT_MASK1 | INT_MASKO |

The address offset are
MaskTfr: 0x310
MaskBlock: 0x318
MaskSrcTran: 0x320
MaskDstTran: 0x328
MaskErr: 0x330

The contents of the Raw Status Registers are masked with the contents of the Mask Registers: MaskTfr, MaskBlock,
MaskSrcTran, MaskDstTran, MaskErr. Each Interrupt Mask register has a bit allocated per channel, for example, Mask-
Tfr[2] is the mask bit for Channel 2’s transfer complete interrupt.

A channel’s INT_MASK bit is only written if the corresponding mask write enable bit in the INT_MASK_WE field is asserted
on the same System Bus write transfer. This allows software to set a mask bit without performing a read-modified write
operation.

For example, writing hex 01x1 to the MaskTfr register writes a 1 into MaskTfr[0], while MaskTfr[7:1] remains unchanged.
Writing hex 00xx leaves MaskTfr[7:0] unchanged.

Writing a 1 to any bit in these registers unmasks the corresponding interrupt, thus allowing the DMAC to set the appropriate
bit in the Status Registers.

e INT_MASK][2:0]: Interrupt Mask
0 = Masked

1 = Unmasked

e INT_M_WEJ[10:8]: Interrupt Mask Write Enable
0 = Write disabled

1 = Write enabled

A mEl% 229

32003E-AVR32-05/06

ATMEL

17.10.18 Interrupt Clear Registers

Name: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,ClearErr

Access: Write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | - | - | - | CLEAR2 | CLEART1 | CLEARO |

The address offset are
ClearTfr: 0x338
ClearBlock: 0x340
ClearSrcTran: 0x348
ClearDstTran: 0x350
ClearErr: 0x358

e CLEAR[2:0]: Interrupt Clear
0 = No effect

1 = Clear interrupt

Each bit in the Raw Status and Status registers is cleared on the same cycle by writing a 1 to the corresponding location in
the Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr. Each Interrupt Clear register has a bit allo-
cated per channel, for example, ClearTfr[2] is the clear bit for Channel 2’s transfer complete interrupt. Writing a 0 has no
effect. These registers are not readable.

230 /AT 32 /AP 7000 1mmm—

17.10.19 Combined Interrupt Status Registers

Name: Statusint

Access: Read

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | ERR | DSTT | SRCT | BLOCK | TFR |

The contents of each of the five Status Registers (StatusTfr, StatusBlock, StatusSrcTran, StatusDstTran, StatusErr) is
OR’d to produce a single bit per interrupt type in the Combined Status Register (Statusint).

e TFR
OR of the contents of StatusTfr Register.

e BLOCK
OR of the contents of StatusBlock Register.

¢ SRCT
OR of the contents of StatusSrcTran Register.

e DSTT
OR of the contents of StatusDstTran Register.

e ERR
OR of the contents of StatusErr Register.

A mEl% 231

32003E-AVR32-05/06

ATMEL

17.10.20 Source Software Transaction Request Register

Name: ReqSrcReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
| — | — | — | — | - | REQ_WE2 | REQ_WEH1 | REQ_WEO |
7 6 5 4 3 2 1 0

| - | - | - | - | - | SRC_REQ2 | SRC_REQ1 | SRC_REQO |

A bit is assigned for each channel in this register. ReqSrcReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel SRC_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

For example, writing 0x101 writes a 1 into ReqSrcReg[0], while ReqSrcReg[3:1] remains unchanged. Writing hex 0x0yy
leaves ReqSrcReg[3:0] unchanged. This allows software to set a bit in the ReqSrcReg register without performing a read-
modified write

e SRC_REQJ[2:0]: Source request

e REQ_WE[10:8]: Request write enable
0 = Write disabled

1 = Write enabled

232 AT 32 /A P70 00 1mm—

17.10.21 Destination Software Transaction Request Register

Name: ReqDstReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
| — | — | — | — | - | REQ_WE2 | REQ_WEH1 | REQ_WEO |
7 6 5 4 3 2 1 0

| — | - | - | - | - | DST_REQ2 | DST_REQ1 | DST_REQO |

A bit is assigned for each channel in this register. ReqDstReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel DST_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on the
same System Bus write transfer.

e DST_REQ[2:0]: Destination request

e REQ_WE[10:8]: Request write enable
0 = Write disabled

1 = Write enabled

A IIIEI,@ 233

32003E-AVR32-05/06

ATMEL

17.10.22 Single Source Transaction Request Register

Name: SglReqSrcReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
| — | — | — | — | - | REQ_WE2 | REQ_WEH1 | REQ_WEO |
7 6 5 4 3 2 1 0

| - | - | - | - | - | S_SG_REQ2 | S_SG_REQ1 | S_SG_REQO |

A bit is assigned for each channel in this register. SgIReqSrcReg[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel S_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

e S_SG_REQ[2:0]: Source single request

e REQ_WE[10:8]: Request write enable
0 = Write disabled

1 = Write enabled

232 AT32AP7000 ms—

17.10.23 Single Destination Transaction Request Register

Name: SglReqDstReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | — | — | - | REQ_WE2 | REQ_WEH1 | REQ_WEO |
7 6 5 4 3 2 1 0

| - | - | - | - | - | D_SG_REQ2 | D_SG_REQ1 | D_SG_REQO |

A bit is assigned for each channel in this register. SgIReqDstReg[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel D_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

e D_SG_REQ[2:0]: Destination single request

e REQ_WE[10:8]: Request write enable
0 = Write disabled

1 = Write enabled

A mEl% 235

32003E-AVR32-05/06

Access: Read/write

ATMEL

17.10.24 Last Source Transaction Request Register

Name: LstSrcRegReg

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| _ | — | — | — | - | LSTSR_WE2 | LSTSR_WE1 | LSTSR_WEO |
7 6 5 4 3 2 1 0

| — | — | — | — | - | LSTSRC2 | LSTSRCH1 | LSTSRCO |

A bit is assigned for each channel in this register. LstSrcReqReg[n] is ignored when software handshaking is not enabled

for the source of channel n.

A channel LSTSRC bit is written only if the corresponding channel write enable bit in the LSTSR_WE field is asserted on

the same System Bus write transfer.

e LSTSRC[2:0]: Source Last Transaction request

e LSTSR_WE[10:8]: Source Last Transaction request write enable
0 = Write disabled

1 = Write enabled

236

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

17.10.25 Last Destination Transaction Request Register

Name: LstDstRegReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | — | — | - | LSTDS_WE2 | LSTDS_WE1 | LSTDS_WEO |
7 6 5 4 3 2 1 0

| — | — | — | — | - | LSTDST2 | LSTDST1 | LSTDSTO |

A bit is assigned for each channel in this register. LstDstReqReg[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel LSTDST bit is written only if the corresponding channel write enable bit in the LSTDS_WE field is asserted on
the same System Bus write transfer.

e LSTDST[2:0]: Destination Last Transaction request

e LSTDS_WE[10:8]: Destination Last Transaction request write enable
0 = Write disabled

1 = Write enabled

A mEl% 237

32003E-AVR32-05/06

ATMEL

17.10.26 DMAC Configuration Register

Name: DmaCfgReg

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I I I I - I - I I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | DMAEN |

e DMA_EN: DMA Controller Enable
0 = DMAC Disabled

1 = DMAC Enabled.
This register is used to enable the DMAC, which must be done before any channel activity can begin.

If the global channel enable bit is cleared while any channel is still active, then DmaCfgReg.DMA_EN still returns ‘1’ to indi-
cate that there are channels still active until hardware has terminated all activity on all channels, at which point the
DmaCfgReg.DMA_EN bit returns ‘0’.

238 AT 32 /AP 7000 1

17.10.27 DMAC Channel Enable Register

Name: ChEnReg

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| _ | — | - | — | - | CH_EN_WE2 | CH_EN_WEH1 | CH_EN_WEO |
7 6 5 4 3 2 1 0

| —_ | — | — | — | - | CH_EN2 | CH_EN1 | CH_ENO |

e CH_EN[2:0]

0 = Disable the Channel
1 = Enable the Channel
Enables/Disables the channel. Setting this bit enables a channel, clearing this bit disables the channel.

The ChEnReg.CH_EN bit is automatically cleared by hardware to disable the channel after the last System Bus transfer of
the DMA transfer to the destination has completed.Software can therefore poll this bit to determine when a DMA transfer
has completed.

e CH_EN_WE[10:8]
The channel enable bit, CH_EN, is only written if the corresponding channel write enable bit, CH_EN_WE, is asserted on
the same System Bus write transfer.

For example, writing 0x101 writes a 1 into ChEnReg[0], while ChEnReg[7:1] remains unchanged.

A IIIEI,@ 239

32003E-AVR32-05/06

ATMEL

18. Peripheral DMA Controller (PDC)

18.1 Features

18.2 Description

Rev: 6047C

* Generates Transfers to/from Peripherals such as USART, SSC and SPI

¢ Supports Up to 20 Channels (Product Dependent)

One Master Clock Cycle Needed for a Transfer from Memory to Peripheral
Two Master Clock Cycles Needed for a Transfer from Peripheral to Memory

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals such as
the UART, USART, SSC, SPI, and the on- and off-chip memories. Using the Peripheral DMA
Controller avoids processor intervention and removes the processor interrupt-handling over-
head. This significantly reduces the number of clock cycles required for a data transfer and, as a
result, improves the performance of the microcontroller and makes it more power efficient.

The PDC channels are implemented in pairs, each pair being dedicated to a particular periph-
eral. One channel in the pair is dedicated to the receiving channel and one to the transmitting
channel of each UART, USART, SSC and SPI.

The user interface of a PDC channel is integrated in the memory space of each peripheral. It
contains:

* A 32-bit memory pointer register

* A 16-bit transfer count register

* A 32-bit register for next memory pointer

* A 16-bit register for next transfer count

The peripheral triggers PDC transfers using transmit and receive signals. When the pro-
grammed data is transferred, an end of transfer interrupt is generated by the corresponding
peripheral.

200 AT32AP7000 messs—

32003E-AVR32-05/06

18.3 Block Diagram

Figure 18-1. Block Diagram

Peripheral Peripheral DMA Controller
THR < PDC Channel 0 >
_ Memory
RHR »| PDC Channel 1 Control > Controller

Status & Control
Control <

A mEl% 241

32003E-AVR32-05/06

ATMEL

18.4 Functional Description
18.4.1 Configuration

The PDC channels user interface enables the user to configure and control the data transfers for
each channel. The user interface of a PDC channel is integrated into the user interface of the
peripheral (offset 0x100), which it is related to.

Per peripheral, it contains four 32-bit Pointer Registers (RPR, RNPR, TPR, and TNPR) and four
16-bit Counter Registers (RCR, RNCR, TCR, and TNCR).

The size of the buffer (number of transfers) is configured in an internal 16-bit transfer counter
register, and it is possible, at any moment, to read the number of transfers left for each channel.

The memory base address is configured in a 32-bit memory pointer by defining the location of
the first address to access in the memory. It is possible, at any moment, to read the location in
memory of the next transfer and the number of remaining transfers. The PDC has dedicated sta-
tus registers which indicate if the transfer is enabled or disabled for each channel. The status for
each channel is located in the peripheral status register. Transfers can be enabled and/or dis-
abled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in PDC Transfer Control Register. These
control bits enable reading the pointer and counter registers safely without any risk of their
changing between both reads.

The PDC sends status flags to the peripheral visible in its status-register (ENDRX, ENDTX,
RXBUFF, and TXBUFE).

ENDRX flag is set when the PERIPH_RCR register reaches zero.
RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.
ENDTX flag is set when the PERIPH_TCR register reaches zero.
TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.
These status flags are described in the peripheral status register.

18.4.2 Memory Pointers

Each peripheral is connected to the PDC by a receiver data channel and a transmitter data
channel. Each channel has an internal 32-bit memory pointer. Each memory pointer points to a
location anywhere in the memory space (on-chip memory or external bus interface memory).

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
by 1, 2 or 4, respectively for peripheral transfers.

If a memory pointer is reprogrammed while the PDC is in operation, the transfer address is
changed, and the PDC performs transfers using the new address.

18.4.3 Transfer Counters

There is one internal 16-bit transfer counter for each channel used to count the size of the block
already transferred by its associated channel. These counters are decremented after each data
transfer. When the counter reaches zero, the transfer is complete and the PDC stops transfer-
ring data.

If the Next Counter Register is equal to zero, the PDC disables the trigger while activating the
related peripheral end flag.

22 AT32AP7000 mss—

18.4.4 Data Transfers

If the counter is reprogrammed while the PDC is operating, the number of transfers is updated
and the PDC counts transfers from the new value.

Programming the Next Counter/Pointer registers chains the buffers. The counters are decre-
mented after each data transfer as stated above, but when the transfer counter reaches zero,
the values of the Next Counter/Pointer are loaded into the Counter/Pointer registers in order to
re-enable the triggers.

For each channel, two status bits indicate the end of the current buffer (ENDRX, ENTX) and the
end of both current and next buffer (RXBUFF, TXBUFE). These bits are directly mapped to the
peripheral status register and can trigger an interrupt request to the Interrupt Controller.

The peripheral end flag is automatically cleared when one of the counter-registers (Counter or
Next Counter Register) is written.

Note: When the Next Counter Register is loaded into the Counter Register, it is set to zero.

The peripheral triggers PDC transfers using transmit (TXRDY) and receive (RXRDY) signals.

When the peripheral receives an external character, it sends a Receive Ready signal to the PDC
which then requests access to the system bus. When access is granted, the PDC starts a read
of the peripheral Receive Holding Register (RHR) and then triggers a write in the memory.

After each transfer, the relevant PDC memory pointer is incremented and the number of trans-
fers left is decremented. When the memory block size is reached, a signal is sent to the
peripheral and the transfer stops.

The same procedure is followed, in reverse, for transmit transfers.

18.4.5 Priority of PDC Transfer Requests

32003E-AVR32-05/06

The Peripheral DMA Controller handles transfer requests from the channel according to priori-
ties fixed for each product.These priorities are defined in the product datasheet.

If simultaneous requests of the same type (receiver or transmitter) occur on identical peripher-
als, the priority is determined by the numbering of the peripherals.

If transfer requests are not simultaneous, they are treated in the order they occurred. Requests
from the receivers are handled first and then followed by transmitter requests.

A IIIEI% 243

ATMEL

18.5 Peripheral DMA Controller (PDC) User Interface

Table 18-1. Register Mapping
Offset Register Register Name Read/Write Reset
0x100 Receive Pointer Register PERIPH")_RPR Read/Write 0x0
0x104 Receive Counter Register PERIPH_RCR Read/Write 0x0
0x108 Transmit Pointer Register PERIPH_TPR Read/Write 0x0
0x10C Transmit Counter Register PERIPH_TCR Read/Write 0x0
0x110 Receive Next Pointer Register PERIPH_RNPR Read/Write 0x0
0x114 Receive Next Counter Register PERIPH_RNCR Read/Write 0x0
0x118 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0x0
0x11C Transmit Next Counter Register PERIPH_TNCR Read/Write 0x0
0x120 PDC Transfer Control Register PERIPH_PTCR Write-only -
0x124 PDC Transfer Status Register PERIPH_PTSR Read-only 0x0

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user

according to the function and the peripheral desired (USART, SSC, SPI, etc).
24 AT32AP7000 m——

32003E-AVR32-05/06

18.5.1 PDC Receive Pointer Register

Register Name: PERIPH_RPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| RXPTR |
23 22 21 20 19 18 17 16

| RXPTR |
15 14 13 12 11 10 9 8

| RXPTR |
7 6 5 4 3 2 1 0

| RXPTR |

* RXPTR: Receive Pointer Address

Address of the next receive transfer.

245

32003E-AVR32-05/06

ATMEL

ATMEL

18.5.2 PDC Receive Counter Register

Register Name: PERIPH_RCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| RXCTR |
7 6 5 4 3 2 1 0
| RXCTR |

* RXCTR: Receive Counter Value
Number of receive transfers to be performed.

226 AT32AP7000 mes—

32003E-AVR32-05/06

18.5.3 PDC Transmit Pointer Register

Register Name: PERIPH_TPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TXPTR |
23 22 21 20 19 18 17 16

| TXPTR |
15 14 13 12 11 10 9 8

| TXPTR |
7 6 5 4 3 2 1 0

| TXPTR |

e TXPTR: Transmit Pointer Address

Address of the transmit buffer.

247

32003E-AVR32-05/06

ATMEL

ATMEL

18.5.4 PDC Transmit Counter Register

Register Name: PERIPH_TCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| TXCTR |
7 6 5 4 3 2 1 0
| TXCTR |

¢ TXCTR: Transmit Counter Value
TXCTR is the size of the transmit transfer to be performed. At zero, the peripheral data transfer is stopped.

28 AT32AP7000 messs—

32003E-AVR32-05/06

18.5.5 PDC Receive Next Pointer Register

Register Name: PERIPH_RNPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| RXNPTR |
23 22 21 20 19 18 17 16

| RXNPTR |
15 14 13 12 11 10 9 8

| RXNPTR |
7 6 5 4 3 2 1 0

| RXNPTR |

* RXNPTR: Receive Next Pointer Address

RXNPTR is the address of the next buffer to fill with received data when the current buffer is full.

32003E-AVR32-05/06

ATMEL

249

ATMEL

18.5.6 PDC Receive Next Counter Register

Register Name: PERIPH_RNCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| RXNCR |
7 6 5 4 3 2 1 0
| RXNCR |

* RXNCR: Receive Next Counter Value
RXNCR is the size of the next buffer to receive.

250 /AT 32 /A P70 00 1mmm—

32003E-AVR32-05/06

18.5.7 PDC Transmit Next Pointer Register

Register Name: PERIPH_TNPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TXNPTR |
23 22 21 20 19 18 17 16

| TXNPTR |
15 14 13 12 11 10 9 8

| TXNPTR |
7 6 5 4 3 2 1 0

| TXNPTR |

* TXNPTR: Transmit Next Pointer Address

TXNPTR is the address of the next buffer to transmit when the current buffer is empty.

32003E-AVR32-05/06

ATMEL

251

ATMEL

18.5.8 PDC Transmit Next Counter Register

Register Name: PERIPH_TNCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| TXNCR |
7 6 5 4 3 2 1 0
| TXNCR |

* TXNCR: Transmit Next Counter Value
TXNCR is the size of the next buffer to transmit.

252 AT 32 /A P70 O () 1mmm—

32003E-AVR32-05/06

18.5.9 PDC Transfer Control Register

Register Name: PERIPH_PTCR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | — | TxTDIS | TXTEN]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | mBxtDIS | RXTEN |

* RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables the receiver PDC transfer requests if RXTDIS is not set.

* RXTDIS: Receiver Transfer Disable
0 = No effect.

1 = Disables the receiver PDC transfer requests.

e TXTEN: Transmitter Transfer Enable
0 = No effect.

1 = Enables the transmitter PDC transfer requests.

e TXTDIS: Transmitter Transfer Disable
0 = No effect.

1 = Disables the transmitter PDC transfer requests

A mEl% 253

32003E-AVR32-05/06

ATMEL

18.5.10 PDC Transfer Status Register

Register Name: PERIPH_PTSR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - rr - ¢ - - r - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - r - ¢ - - r - [- [- [7N |
7 6 5 4 3 2 1 0

. - rr - ¢ - - [- [- [- [RXTEN |

* RXTEN: Receiver Transfer Enable
0 = Receiver PDC transfer requests are disabled.

1 = Receiver PDC transfer requests are enabled.

¢ TXTEN: Transmitter Transfer Enable
0 = Transmitter PDC transfer requests are disabled.

1 = Transmitter PDC transfer requests are enabled.

254 AT32AP7000 messss—

32003E-AVR32-05/06

19. Parallel Input/Output Controller (P1O)

19.1 Features

19.2 Description

32003E-AVR32-05/06

Rev: 6057B

Up to 32 Programmable I/O Lines
* Fully Programmable through Set/Clear Registers
¢ Multiplexing of Two Peripheral Functions per I/O Line
For each 1/O Line (Whether Assigned to a Peripheral or Used as General Purpose 1/0)
— Input Change Interrupt
— Glitch Filter
— Programmable Pull Up on Each /O Line
— Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time
¢ Synchronous Output, Provides Set and Clear of Several I/O lines in a Single Write

The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output
lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.

Each /O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User
Interface.

Each 1/0O line of the PIO Controller features:

* An input change interrupt enabling level change detection on any I/O line.

* A glitch filter providing rejection of pulses lower than one-half of clock cycle.
* Control of the the pull-up of the I/O line.

e |nput visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a
single write operation.

A IIIEI% 255

ATMEL

19.3 Block Diagram

Figure 19-1. Block Diagram

PIO Controller

Interrupt PIO Interrupt
Controller
P10 Clock
Power Manager >

| Data, Enable N
——

| E) > Up to 32
peripheral I0s
Embedded —>
Peripheral
7 <—>|:| PIN O
Data, Enable
|) <—>|:| PIN 1 !
to 32 pins
|<—> . p p
> Up to 32 .
Embedded > peripheral 10s °
Peripheral BN 31
J ‘ ’D

APB

Figure 19-2. Application Block Diagram

On-Chip Peripheral Drivers

Keyboard Driver Control & Command
Driver

On-Chip Peripherals

PIO Controller

Keyboard Driver General Purpose I/Os External Devices

256 AT 3:2/A P70 00 1

19.4 Product Dependencies

19.4.1 Pin Multiplexing

Each pin is configurable, according to product definition as either a general-purpose 1/O line
only, or as an /O line multiplexed with one or two peripheral 1/0s. As the multiplexing is hard-
ware-defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an I/O line is general-purpose only, i.e. not multiplexed with any peripheral 1/0, programming of
the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Con-
troller can control how the pin is driven by the product.

19.4.2 External Interrupt Lines
The external interrupt request signals are most generally multiplexed through the PIO Control-
lers. However, it is not necessary to assign the 1/O line to the interrupt function as the PIO
Controller has no effect on inputs and the external interrupt lines are used only as inputs.

19.4.3 Power Management
The PIO clock is generated by the Power Manager. Before accessing the PIO, the programmer
must ensure that the PIO clock is enabled in the Power Manager. Note that the PIO clock must
be enabled when using the Input Change interrupt.

In the P10 description, Master Clock (MCK) is the APB-bus clock, to which the PIO is connected.
19.4.4 Interrupt Generation

The PIO interrupt line is connected to the Interrupt Controller. Using the PIO interrupt requires
the Interrupt Controller to be programmed first.

A mEI% 257

32003E-AVR32-05/06

19.5 Functional Description

ATMEL

The PIO Controller features up to 32 fully-programmable 1/O lines. Most of the control logic asso-
ciated to each 1/0 is represented in Figure 19-3. In this description each signal shown
represents but one of up to 32 possible indexes.

Figure 19-3. 1/O Line Control Logic

| PIO_OER[0] |

| Pi0_osRio]

| PIO_ODRI0] |

| PIO_PUER[0] |

| Pi0_PUsR[0] |3

| P1O_PUDRI[0] I

Peripheral A
Output Enable —N
0
Peripheral B
Output Enable —}
| PIO_ASRI0] | | PIO_PER[0] |
| PIo_ABSRI0] |4 | Pio_Psmio] [+
| PIO_BSRI0] | | PIO_PDR[0] |
Peripheral A 0
Output
i e
Pegphera' B PIO_SODRI0] |
utput
| Pi0_opsRi0] !
| PIO_CODRI0] |
Peripheral A
Input
Peripheral B
PI0_PDSR[0] [| PIO_ISR[0] | Input

| PIO_IFER[0] |

Edge
Detector

Glitch
Filter

| PIO_IFSR[0]

| PIO_IER[0] |

| PIO_IFDRI[0] | | PIO_IMRIO]

| PIO_IDR[0] |

| PIO_IER[31] |

| PIO_IMR[31]

| PIO_IDR[31] |

(Up to 32 possible inputs)

PIO Interrupt

258 AT 3:2/A P70 00 1mmms—

32003E-AVR32-05/06

19.5.1 Pull-up Resistor Control
Each /O line is designed with an embedded pull-up resistor. The value of this resistor is library-
specific, refer to the Electrical Characteristics Section for details. The pull-up resistor can be
enabled or disabled by writing respectively PUER (Pull-up Enable Register) and PUDR (Pull-up
Disable Resistor). Writing in these registers results in setting or clearing the corresponding bit in
PUSR (Pull-up Status Register). Reading a 1 in PUSR means the pull-up is disabled and read-
ing a 0 means the pull-up is enabled.

Control of the pull-up resistor is possible regardless of the configuration of the 1/O line.

After reset, all of the pull-ups are enabled, i.e. PUSR resets at the value 0x0.

19.5.2 I/0 Line or Peripheral Function Selection
When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PER (P1O Enable Register) and PDR (PIO Disable Register). The register PSR
(P10 Status Register) is the result of the set and clear registers and indicates whether the pin is
controlled by the corresponding peripheral or by the PIO Controller. A value of 0 indicates that
the pin is controlled by the corresponding on-chip peripheral selected in the ABSR (AB Select
Status Register). A value of 1 indicates the pin is controlled by the PIO controller.

If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral), PER
and PDR have no effect and PSR returns 1 for the corresponding bit.

After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PSR resets at
1. However, in some events, it is important that PIO lines are controlled by the peripheral (as in
the case of memory chip select lines that must be driven inactive after reset or for address lines
that must be driven low for booting out of an external memory). Thus, the reset value of PSR is
defined at the product level, depending on the multiplexing of the device.

19.5.3 Peripheral A or B Selection
The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The
selection is performed by writing ASR (A Select Register) and BSR (Select B Register). ABSR
(AB Select Status Register) indicates which peripheral line is currently selected. For each pin,
the corresponding bit at level 0 means peripheral A is selected whereas the corresponding bit at
level 1 indicates that peripheral B is selected.

Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral
input lines are always connected to the pin input.

After reset, ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A. How-
ever, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line mode.

Writing in ASR and BSR manages ABSR regardless of the configuration of the pin. However,
assignment of a pin to a peripheral function requires a write in the corresponding peripheral
selection register (ASR or BSR) in addition to a write in PDR.

19.5.4 Output Control

When the 1/0 line is assigned to a peripheral function, i.e. the corresponding bit in PSR is at 0,
the drive of the 1/O line is controlled by the peripheral. Peripheral A or B, depending on the value
in ABSR, determines whether the pin is driven or not.

When the 1/O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing OER (Output Enable Register) and PDR (Output Disable Register). The
results of these write operations are detected in OSR (Output Status Register). When a bit in this

A IIIEI% 259

32003E-AVR32-05/06

19.5.5

19.5.6

ATMEL

register is at 0, the corresponding I/O line is used as an input only. When the bit is at 1, the cor-
responding I/O line is driven by the PIO controller.

The level driven on an I/O line can be determined by writing in SODR (Set Output Data Register)
and CODR (Clear Output Data Register). These write operations respectively set and clear
ODSR (Output Data Status Register), which represents the data driven on the I/O lines. Writing
in OER and ODR manages OSR whether the pin is configured to be controlled by the PIO con-
troller or assigned to a peripheral function. This enables configuration of the 1/O line prior to
setting it to be managed by the PIO Controller.

Similarly, writing in SODR and CODR effects ODSR. This is important as it defines the first level
driven on the 1/O line.

Synchronous Data Output

Controlling all parallel busses using several PIOs requires two successive write operations in the
SODR and CODR registers. This may lead to unexpected transient values. The PIO controller
offers a direct control of PIO outputs by single write access to ODSR (Output Data Status Regis-
ter). Only bits unmasked by OSWSR (Output Write Status Register) are written. The mask bits in
the OWSR are set by writing to OWER (Output Write Enable Register) and cleared by writing to
OWDR (Output Write Disable Register).

After reset, the synchronous data output is disabled on all the 1/O lines as OWSR resets at 0x0.

Output Line Timings

Figure 19-4 shows how the outputs are driven either by writing SODR or CODR, or by directly
writing ODSR. This last case is valid only if the corresponding bit in OWSR is set. Figure 19-4
also shows when the feedback in PDSR is available.

Figure 19-4. Output Line Timings

Write PIO_ODSR at 1

Write PIO_ODSR at 0

19.5.7

260

McK |

Write PIO_SODR

I | L

APB Access

Write PIO_CODR

APB Access

PIO_ODSR

PIO_PDSR

2 cycles . 2 cycles

Inputs

The level on each I/O line can be read through PDSR (Pin Data Status Register). This register
indicates the level of the I/O lines regardless of their configuration, whether uniquely as an input
or driven by the PIO controller or driven by a peripheral.

Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PDSR reads the levels present on the 1/O line at the time the clock was disabled.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

19.5.8 Input Glitch Filtering

Optional input glitch filters are independently programmable on each I/O line. When the glitch fil-
ter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically
rejected, while a pulse with a duration of 1 Master Clock cycle or more is accepted. For pulse
durations between 1/2 Master Clock cycle and 1 Master Clock cycle the pulse may or may not
be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to be
visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably filtered out, its
duration must not exceed 1/2 Master Clock cycle. The filter introduces one Master Clock cycle
latency if the pin level change occurs before a rising edge. However, this latency does not
appear if the pin level change occurs before a falling edge. This is illustrated in Figure 19-5.

The glitch filters are controlled by the register set; IFER (Input Filter Enable Register), IFDR
(Input Filter Disable Register) and IFSR (Input Filter Status Register). Writing IFER and IFDR
respectively sets and clears bits in IFSR. This last register enables the glitch filter on the 1/O
lines.

When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals.
It acts only on the value read in PDSR and on the input change interrupt detection. The glitch fil-
ters require that the PIO Controller clock is enabled.

Figure 19-5. Input Glitch Filter Timing

MCK |

Pin Level

L | N I L1 |

7 7 [|

up to 1.5 cycles

PIO_PDSR
if PIO_IFSR =0

PIO_PDSR
if PIO_IFSR =1

1 cycle 1 cycle 1 cycle 1 cycle
. 2 gycles R 1 cycle
up to 2.5 pycles | up to 2 cycles

19.5.9 Input Change Interrupt

32003E-AVR32-05/06

The PIO Controller can be programmed to generate an interrupt when it detects an input change
on an I/O line. The Input Change Interrupt is controlled by writing IER (Interrupt Enable Register)
and IDR (Interrupt Disable Register), which respectively enable and disable the input change
interrupt by setting and clearing the corresponding bit in IMR (Interrupt Mask Register). As Input
change detection is possible only by comparing two successive samplings of the input of the 1/0
line, the PIO Controller clock must be enabled. The Input Change Interrupt is available, regard-
less of the configuration of the 1/O line, i.e. configured as an input only, controlled by the PIO
Controller or assigned to a peripheral function.

When an input change is detected on an 1/O line, the corresponding bit in ISR (Interrupt Status
Register) is set. If the corresponding bit in IMR is set, the PIO Controller interrupt line is
asserted. The interrupt signals of the thirty-two channels are ORed-wired together to generate a
single interrupt signal to the Interrupt Controller.

When the software reads ISR, all the interrupts are automatically cleared. This signifies that all
the interrupts that are pending when ISR is read must be handled.

A IIIEI% 261

AIMEL
Figure 19-6. Input Change Interrupt Timings

wew || L LI L | L LI |

Pin Level

PIO_ISR

Read PIO_ISR APB Access APB Access

19.6 1/O Lines Programming Example
The programing example as shown in Table 19-1 below is used to define the following
configuration.
* 4-bit output port on I/O lines 0 to 3, (should be written in a single write operation)
* Four output signals on I/O lines 4 to 7 (to drive LEDs for example)

* Four input signals on 1/O lines 8 to 11 (to read push-button states for example), with pull-up
resistors, glitch filters and input change interrupts

* Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no input
change interrupt), no pull-up resistor, no glitch filter

¢ 1/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor
¢ |/O lines 20 to 23 assigned to peripheral B functions, no pull-up resistor
* /O line 24 to 27 assigned to peripheral A with Input Change Interrupt and pull-up resistor

262 AT 32 /A P70 00 1mmm—

Table 19-1. Programming Example

Register Value to be Written
PER 0x0000 FFFF
PDR O0xOFFF 0000
OER 0x0000 O0OFF
ODR OxOFFF FFOO
IFER 0x0000 0F00
IFDR OXOFFF FOFF

SODR 0x0000 0000
CODR OxOFFF FFFF
IER 0x0F00 OF00
IDR 0x00FF FOFF
PUDR 0x00FO0 00FO0
PUER OxOFOF FFOF
ASR 0xOFOF 0000
BSR 0x00F0 0000
OWER 0x0000 000F
OWDR OxOFFF FFFO

A mEk 263

32003E-AVR32-05/06

ATMEL

19.7 User Interface

Each 1/O line controlled by the PIO Controller is associated with a bit in each of the PIO Control-
ler User Interface registers. Each register is 32 bits wide. If a parallel I/O line is not defined,
writing to the corresponding bits has no effect. Undefined bits read zero. If the 1/O line is not mul-
tiplexed with any peripheral, the I/O line is controlled by the PIO Controller and PSR returns 1
systematically.

Table 19-2. Register Mapping

Offset Register Name Access Reset Value
0x0000 PIO Enable Register PER Write-only -
0x0004 PI1O Disable Register PDR Write-only -
0x0008 PIO Status Register (V PSR Read-only 0x0000 0000
0x000C Reserved

0x0010 Output Enable Register OER Write-only -
0x0014 Output Disable Register ODR Write-only -
0x0018 Output Status Register OSR Read-only 0x0000 0000
0x001C Reserved

0x0020 Glitch Input Filter Enable Register IFER Write-only -
0x0024 Glitch Input Filter Disable Register IFDR Write-only -
0x0028 Glitch Input Filter Status Register IFSR Read-only 0x0000 0000
0x002C Reserved

0x0030 Set Output Data Register SODR Write-only -
0x0034 Clear Output Data Register CODR Write-only -
0x0038 Output Data Status Register® ODSR Read-only 0x0000 0000
0x003C Pin Data Status Register® PDSR Read-only

0x0040 Interrupt Enable Register IER Write-only -
0x0044 Interrupt Disable Register IDR Write-only -
0x0048 Interrupt Mask Register IMR Read-only 0x0000 0000
0x004C Interrupt Status Register® ISR Read-only 0x0000 0000
0x0050 Reserved

0x0054 Reserved

0x0058 Reserved

0x005C Reserved

0x0060 Pull-up Disable Register PUDR Write-only -
0x0064 Pull-up Enable Register PUER Write-only -
0x0068 Pad Pull-up Status Register PUSR Read-only 0x0000 0000
0x006C Reserved

264 AT32AP7000 messss——

Table 19-2. Register Mapping (Continued)

Offset Register Name Access Reset Value
0x0070 Peripheral A Select Register® ASR Write-only -
0x0074 Peripheral B Select Register® BSR Write-only -
0x0078 AB Status Register® ABSR Read-only 0x0000 0000
g:gg;g o Reserved

0x00A0 Output Write Enable OWER Write-only -
0x00A4 Output Write Disable OWDR Write-only -
0x00A8 Output Write Status Register OWSR Read-only 0x0000 0000
0x00AC Reserved

Notes: Reset value of PSR depends on the product implementation.

1.

2. ODSR is Read-only or Read/Write depending on OWSR I/O lines.

3. Reset value of PDSR depends on the level of the I/O lines.

4. ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have occurred.

5. Only this set of registers clears the status by writing 1 in the first register and sets the status by writing 1 in the second
register.

A IIIEI% 265

32003E-AVR32-05/06

ATMEL

19.7.1 PIO Controller PIO Enable Register

Name: PER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: PIO Enable
0 = No effect.
1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

266 AT 32/A P70 00 1

19.7.2 PIO Controller PIO Disable Register

Name: PDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-P31: PIO Disable
0 = No effect.
1 = Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

A mEl% 267

32003E-AVR32-05/06

ATMEL

19.7.3 PIO Controller PIO Status Register

Name: PSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: PIO Status
0 = PIO is inactive on the corresponding I/O line (peripheral is active).
1 = PIO is active on the corresponding I/O line (peripheral is inactive).

268 AT 32/A P70 00 1mmm——————————————

19.7.4 PIO Controller Output Enable Register

Name: OER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Enable
0 = No effect.
1 = Enables the output on the 1/O line.

A mEl% 269

32003E-AVR32-05/06

ATMEL

19.7.5 PIO Controller Output Disable Register

Name: ODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Disable
0 = No effect.
1 = Disables the output on the I/O line.

270 AT 32 /A P70 00 1mm—

32003E-AVR32-05/06

19.7.6 PIO Controller Output Status Register

Name: OSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Output Status
0 = The I/O line is a pure input.
1 =The I/O line is enabled in output.

A mEl% 271

32003E-AVR32-05/06

19.7.7 PIO Controller Input Filter Enable Register

ATMEL

Name: IFER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 P27 P26 P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 P19 P18 P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 P11 P10 P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 P3 P2 P1 | PO |

e P0-P31: Input Filter Enable
0 = No effect.
1 = Enables the input glitch filter on the 1/O line.

19.7.8

272 AT 32 /A P70 00 1mm—

32003E-AVR32-05/06

Name: IFDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Input Filter Disable
0 = No effect.
1 = Disables the input glitch filter on the I/O line.

AIMEL 273

32003E-AVR32-05/06

ATMEL

19.7.9 PIO Controller Input Filter Status Register

Name: IFSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Filer Status
0 = The input glitch filter is disabled on the 1/O line.
1 = The input glitch filter is enabled on the I/O line.

274 AT32AP7000 mess—

19.7.10 PIO Controller Set Output Data Register

Name: SODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Set Output Data
0 = No effect.
1 = Sets the data to be driven on the 1/O line.

A mEl% 275

32003E-AVR32-05/06

ATMEL

19.7.11 PIO Controller Clear Output Data Register

Name: CODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Set Output Data
0 = No effect.
1 = Clears the data to be driven on the 1/O line.

276 AT 32/A P70 00 1mmm————————————

32003E-AVR32-05/06

19.7.12 PIO Controller Output Data Status Register

Name: ODSR

Access Type: Read-only or Read/Write
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Output Data Status
0 = The data to be driven on the 1/O line is 0.
1 = The data to be driven on the I/O line is 1.

A mEl% 277

32003E-AVR32-05/06

ATMEL

19.7.13 PIO Controller Pin Data Status Register

Name: PDSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Data Status
0 = The I/O line is at level 0.
1 =The I/Oline is at level 1.

278 AT 3:2/A P70 00 1mm—

32003E-AVR32-05/06

19.7.14 PIO Controller Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Enable
0 = No effect.
1 = Enables the Input Change Interrupt on the I/O line.

AIMEL 279

32003E-AVR32-05/06

ATMEL

19.7.15 PIO Controller Interrupt Disable Register

Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Disable
0 = No effect.
1 = Disables the Input Change Interrupt on the I/O line.

280 /AT 32 /A P70 00 1mmm——

19.7.16 PIO Controller Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Mask
0 = Input Change Interrupt is disabled on the 1/O line.
1 = Input Change Interrupt is enabled on the 1/O line.

A mEl% 281

32003E-AVR32-05/06

ATMEL

19.7.17 PIO Controller Interrupt Status Register

Name: ISR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Status
0 = No Input Change has been detected on the I/O line since ISR was last read or since reset.
1 = At least one Input Change has been detected on the /O line since ISR was last read or since reset.

282 AT 32 /A P70 00 1mm—

19.7.18 PIO Pull Up Disable Register

Name: PUDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Pull Up Disable.
0 = No effect.
1 = Disables the pull up resistor on the 1/O line.

A mEl% 283

32003E-AVR32-05/06

ATMEL

19.7.19 PIO Pull Up Enable Register

Name: PUER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Pull Up Enable.
0 = No effect.
1 = Enables the pull up resistor on the I/O line.

28¢ AT32AP7000 messss—

19.7.20 PIO Pull Up Status Register

Name: PUSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Pull Up Status.
0 = Pull Up resistor is enabled on the I/O line.
1 = Pull Up resistor is disabled on the I/O line.

A mEl% 285

32003E-AVR32-05/06

ATMEL

19.7.21 PIO Peripheral A Select Register

Name: ASR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-P31: Peripheral A Select.
0 = No effect.
1 = Assigns the I/O line to the Peripheral A function.

286 /AT 3:2/A P70 00 1mmmm————

19.7.22 PIO Peripheral B Select Register

Name: BSR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Peripheral B Select.
0 = No effect.
1 = Assigns the 1/O line to the peripheral B function.

A mEl% 287

32003E-AVR32-05/06

ATMEL

19.7.23 PIO Peripheral A B Status Register

Name: ABSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Peripheral A B Status.
0 = The I/O line is assigned to the Peripheral A.
1 =The I/O line is assigned to the Peripheral B.

288 /AT 3:2/A P70 00 1mmm—

19.7.24 PIO Output Write Enable Register

Name: OWER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Write Enable.
0 = No effect.
1 = Enables writing ODSR for the 1/O line.

A mEl% 289

32003E-AVR32-05/06

ATMEL

19.7.25 PIO Output Write Disable Register

Name: OWDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Write Disable.
0 = No effect.
1 = Disables writing ODSR for the 1/O line.

2900 /AT 32 /A P70 00 1mm———

19.7.26 PIO Output Write Status Register

Name: OWSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Write Status.
0 = Writing ODSR does not affect the I/O line.
1 = Writing ODSR affects the I/O line.

A mEl% 291

32003E-AVR32-05/06

ATMEL

20. Serial Peripheral Interface (SPI)

20.1 Features

20.2 Description

Rev: 6088D

* Supports Communication with Serial External Devices
— Four Chip Selects with External Decoder Support Allow Communication with Up to 15
Peripherals
— Serial Memories, such as DataFlash and 3-wire EEPROMs
— Serial Peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
— External Co-processors
* Master or Slave Serial Peripheral Bus Interface
— 8- to 16-bit Programmable Data Length Per Chip Select
— Programmable Phase and Polarity Per Chip Select
— Programmable Transfer Delays Between Consecutive Transfers and Between Clock and Data
Per Chip Select
— Programmable Delay Between Consecutive Transfers
— Selectable Mode Fault Detection
¢ Connection to PDC Channel Capabilities Optimizes Data Transfers
— One Channel for the Receiver, One Channel for the Transmitter
— Next Buffer Support

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master™ which controls the data
flow, while the other devices act as “slaves" which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:
¢ Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).

¢ Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of
the master. There may be no more than one slave transmitting data during any particular
transfer.

¢ Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the data
bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once for
each bit that is transmitted.

» Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

292 AT 32 /A P70 00 1mmms—

32003E-AVR32-05/06

20.3 Block Diagram

Figure 20-1. Block Diagram

PDC

A
| ——
APB
e
A4
Power MCK |
Manager

SPI Interface

Interrupt Control

Note: 1. N=32

32003E-AVR32-05/06

SPI Interrupt

ATMEL

PIO

SPCK

MISO

MOSI

NPCS0/NSS

NPCS1

NPCS2

NPCS3

bbb o

293

ATMEL

20.4 Application Block Diagram

Figure 20-2. Application Block Diagram: Single Master/Multiple Slave Implementation

g N\
SPCK SPCK
MISO MISO
Slave 0
MOSI MOSI
SPI Master NPCS0 NSS)
g N\
NPCS1 » SPCK
MISO
NPCS2—X NC Slave 1
NPCS3 >[MosI
~\NSS)
;/SPCK)
MISO
Slave 2
> MOSI
>\ NSS)

204 AT32AP7000 mes—

20.5 Signal Description

32003E-AVR32-05/06

Table 20-1. Signal Description

Type
Pin Name Pin Description Master Slave
MISO Master In Slave Out Input Output
MOSI Master Out Slave In Output Input
SPCK Serial Clock Output Input
NPCS1-NPCS3 Peripheral Chip Selects Output Unused
NPCSO0/NSS Peripheral Chip Select/Slave Select Output Input

ATMEL

295

ATMEL

20.6 Product Dependencies
20.6.1 I/0 Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the SPI pins to their peripheral
functions.

20.6.2 Power Management

The SPI clock is generated by the Power Manager. Before using the SPI, the programmer must
ensure that the SPI clock is enabled in the Power Manager.

In the SPI description, Master Clock (MCK) is the APB-bus clock, to which the SPI is connected.
20.6.3 Interrupt

The SPI interface has an interrupt line connected to the Interrupt Controller. Handling the SPI
interrupt requires programming the interrupt controller before configuring the SPI.

206 AT 32 /A P70 00 1mm—

32003E-AVR32-05/06

20.7 Functional Description

20.7.1 Modes of Operation

20.7.2 Data Transfer

32003E-AVR32-05/06

The SPI operates in Master Mode or in Slave Mode.

Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register.
The pins NPCSO0 to NPCSS are all configured as outputs, the SPCK pin is driven, the MISO line
is wired on the receiver input and the MOSI line driven as an output by the transmitter.

If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the
transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCSO0 pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCSS3 are not driven and can be used for other
purposes.

The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in Master Mode.

Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with
the NCPHA bit. These two parameters determine the edges of the clock signal on which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 20-2 shows the four modes and corresponding parameter settings.

Table 20-2. SPI Bus Protocol Mode

SPI Mode CPOL NCPHA
0 0 1
1 0 0
2 1 1
3 1 0

Figure 20-3 and Figure 20-4 show examples of data transfers.

A IIIEI% 297

ATMEL

Figure 20-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

SPCK cycle (for reference)

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

1 2 3 4 8

| | | | |

| | | | |

msB [X 6 5 4 X _tse X
MSB 6 5 X 4 X tse X *

* Not defined, but normally MSB of previous character received.

Figure 20-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

SPCK cycle (for reference)

SPCK
(CPOL =0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

206 AT32AP7000

1 2 3 4 8

| | | | |

| | | | |

MSB 6 5 4 X LsB X
X wse 6 5 4 X LSB

* Not defined but normally LSB of previous character transmitted.

32003E-AVR32-05/06

20.7.3 Master Mode Operations

32003E-AVR32-05/06

When configured in Master Mode, the SPI uses the internal programmable baud rate generator
as clock source. It fully controls the data transfers to and from the slave(s) connected to the SPI
bus. The SPI drives the chip select line to the slave and the serial clock signal (SPCK).

The SPI features two holding registers, the Transmit Data Register and the Receive Data Regis-
ter, and a single Shift Register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer begins when the processor writes to the TDR (Transmit
Data Register). The written data is immediately transferred in the Shift Register and transfer on
the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO line
is sampled and shifted in the Shift Register. Transmission cannot occur without reception.

No transfer is started when writing into the TDR if the PCS field does not select a slave. The
PCS field is set by writing the TDR in variable mode, or the MR in fixed mode, depending on the
value of PCS field.

If new data is written in TDR during the transfer, it stays in it until the current transfer is com-
pleted. Then, the received data is transferred from the Shift Register to RDR, the data in TDR is
loaded in the Shift Register and a new transfer starts.

The transfer of a data written in TDR in the Shift Register is indicated by the TDRE bit (Transmit
Data Register Empty) in the Status Register (SR). When new data is written in TDR, this bit is
cleared. The TDRE bit is used to trigger the Transmit PDC channel.

The end of transfer is indicated by the TXEMPTY flag in the SR register. If a transfer delay (DLY-
BCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of said delay.
The master clock (MCK) can be switched off at this time.

The transfer of received data from the Shift Register in RDR is indicated by the RDRF bit
(Receive Data Register Full) in the Status Register (SR). When the received data is read, the
RDRF bit is cleared.

If the RDR (Receive Data Register) has not been read before new data is received, the Overrun
Error bit (OVRES) in SR is set. As long as this flag is set, no data is loaded in RDR. The user
has to read the status register to clear the OVRES bit.

Figure 20-5 on page 300 shows a block diagram of the SPI when operating in Master Mode. Fig-
ure 20-6 on page 301 shows a flow chart describing how transfers are handled.

A mEI% 299

20.7.3.1

300

Master Mode Block Diagram

Figure 20-5. Master Mode Block Diagram

| FDIV I

ATMEL

SPI_CSRO0..3
| SCBR
MCK 0 |
Baud Rate Generator
MCK/N 1
SPI
Clock
SPI_CSRo0..3
BITS SPI_RDR —>{ RDRF
NCPHA [mRb__ —{ ovmes
CPOL T
I
miso [] LSB Shift Register MSB
SPI_TDR
[T }—{ 1DRE |
SPI_CSRo0..3
CSAAT SPI_RDR
| I P> PCS
SPI_MR PCSDEC
PCS Current
I Peripheral
SPI_TDR —
PCS
I
|~
| MSTR I
MODF
NPCSO| I 5
MODFDIS

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

20.7.3.2

32003E-AVR32-05/06

Master Mode Flow Diagram

Figure 20-6. Master Mode Flow Diagram S

| SPI Enable |
T

- NPCS defines the current Chip Select
- CSAAT, DLYBS, DLYBCT refer to the fields of the
Chip Select Register corresponding to the Current Chip Select

- When NPCS is OxF, CSAAT is 0.

AT32AP7000

CSAAT ?

Fixed
peripheral

Variable
peripheral

SPI_TDR(PCS)

peripheral

Fixed

SPI_MR(PCS)

'

Serializer = SPI_TDR(TD)
TDRE =1

!

Data Transfer

!

SPI_RDR(RD) = Serializer
RDRF =1

b

Delay DLYBCT

=NPCS ? =NPCS ?
Variable
1 peripheral

NPCS = SPI_TDR(PCS) | | NPCS = SPI_MR(PCS) | | NPCS = OxF | | NPCS = OxF |
| Delay DLYBCS | | Delay DLYBCS |

[reswmwes] | [|

¥
Delay DLYBS

| NPCS = OxF |

!

| Delay DLYBCS |

ATMEL

301

20.7.3.3

20.7.3.4

ATMEL

Clock Generation

The SPI Baud rate clock is generated by dividing the Master Clock (MCK) or the Master Clock
divided by 32, by a value between 2 and 255. The selection between Master Clock or Master
Clock divided by N is done by the FDIV value set in the Mode Register

This allows a maximum operating baud rate at up to Master Clock/2 and a minimum operating
baud rate of MCK divided by 255*32.

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead
to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first
transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the
SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud
rate for each interfaced peripheral without reprogramming.

Transfer Delays

Figure 20-7 shows a chip select transfer change and consecutive transfers on the same chip
select. Three delays can be programmed to modify the transfer waveforms:

* The delay between chip selects, programmable only once for all the chip selects by writing the
DLYBCS field in the Mode Register. Allows insertion of a delay between release of one chip
select and before assertion of a new one.

* The delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted.

* The delay between consecutive transfers, independently programmable for each chip select by
writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on the
same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus

release time.

Figure 20-7. Programmable Delays

302

Chip Select 1

Chip Select 2

SPCK

DLYBCS DLYBS % % DLYBCT S S DLYBCT

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

20.7.3.5 Peripheral Selection

The serial peripherals are selected through the assertion of the NPCS0 to NPCS3 signals. By
default, all the NPCS signals are high before and after each transfer.

The peripheral selection can be performed in two different ways:

* Fixed Peripheral Select: SPI exchanges data with only one peripheral
* Variable Peripheral Select: Data can be exchanged with more than one peripheral

Fixed Peripheral Select is activated by writing the PS bit to zero in MR (Mode Register). In this
case, the current peripheral is defined by the PCS field in MR and the PCS fields of the Chip
Select Registers have no effect.

Variable Peripheral Select is activated by setting PS bit to one. The PCS field in TDR is used to
select the current peripheral. This means that the peripheral selection can be defined for each
new data.

The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is
an optimal means, as the size of the data transfer between the memory and the SPI is either 8
bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be
reprogrammed.

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without repro-
gramming the Mode Register. Data written in TDR is 32 bits wide and defines the real data to be
transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit wide
buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs, however the
SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI lines with
the chip select configuration registers. This is not the optimal means in term of memory size for
the buffers, but it provides a very effective means to exchange data with several peripherals
without any intervention of the processor.

20.7.3.6 Peripheral Chip Select Decoding

The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCSO0 to NPCS3 with an external logic. This can be enabled by writing the PCS-
DEC bit at 1 in the Mode Register (MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e. driven low at a time. If two bits are defined low in a PCS field, only the lowest
numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field of
either the Mode Register or the Transmit Data Register (depending on PS).

As the SPI sets a default value of OxF on the chip select lines (i.e. all chip select lines at 1) when
not processing any transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0to 3, 4to 7, 8 to 11 and 12 to 14.

A IIIEI% 303

32003E-AVR32-05/06

ATMEL

20.7.3.7 Peripheral Deselection

When operating normally, as soon as the transfer of the last data written in TDR is completed,
the NPCS lines all rise. This might lead to runtime error if the processor is too long in responding
to an interrupt, and thus might lead to difficulties for interfacing with some serial peripherals
requiring the chip select line to remain active during a full set of transfers.

To facilitate interfacing with such devices, the Chip Select Register can be programmed with the
CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select lines to remain in
their current state (low = active) until transfer to another peripheral is required.

Figure 20-8 shows different peripheral deselection cases and the effect of the CSAAT bit.

Figure 20-8. Peripheral Deselection

CSAAT =0 CSAAT =1
TDRE | |
DLYBCT DLYBCT
NPCS[0..3] A | A A A A
DLYBCS DLYBCS
PCS = A PCS=A
Write SPI_TDR 1 1
TDRE | |
DLYBCT DLYBCT
NPCSI0..3] A | A A A A
DLYBCS DLYBCS
PCS=A PCS=A
Write SPI_TDR 1 1
TDRE |
DLYBCT DLYBCT
NPCS[0..3] B
DLYBCS DLYBCS
PCS =B PCS =B
Write SPI_TDR ! 1

304 AT32AP7000 eesss—

32003E-AVR32-05/06

20.7.3.8 Mode Fault Detection

A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCSO/NSS signal. As this pin is generally configured in open-
drain, it is important that a pull up resistor is connected on the NPCSO0 line, so that a high level is
guaranteed and no spurious mode fault is detected.

When a mode fault is detected, the MODF bit in the SR is set until the SR is read and the SPI is
automatically disabled until re-enabled by writing the SPIEN bit in the CR (Control Register) at 1.

By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault
detection by setting the MODFDIS bit in the SPI Mode Register (MR).

20.7.4 SPI Slave Mode

32003E-AVR32-05/06

When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).

The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits
defined by the BITS field of the Chip Select Register 0 (CSRO0). These bits are processed follow-
ing a phase and a polarity defined respectively by the NCPHA and CPOL bits of the CSR0. Note
that BITS, CPOL and NCPHA of the other Chip Select Registers have no effect when the SPI is
programmed in Slave Mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

When all the bits are processed, the received data is transferred in the Receive Data Register
and the RDREF bit rises. If RDRF is already high when the data is transferred, the Overrun bit
rises and the data transfer to RDR is aborted.

When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the Transmit Data Register (TDR), the last data received is transferred. If no
data has been received since the last reset, all bits are transmitted low, as the Shift Register
resets at 0.

When a first data is written in TDR, it is transferred immediately in the Shift Register and the
TDRE bit rises. If new data is written, it remains in TDR until a transfer occurs, i.e. NSS falls and
there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in TDR is
transferred in the Shift Register and the TDRE bit rises. This enables frequent updates of critical
variables with single transfers.

Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no
character is ready to be transmitted, i.e. no character has been written in TDR since the last load
from TDR to the Shift Register, the Shift Register is not modified and the last received character
is retransmitted.

Figure 20-9 shows a block diagram of the SPI when operating in Slave Mode.

A IIIEI% 305

ATMEL

Figure 20-9. Slave Mode Functional Block Diagram

NSS | I {>¢ SPI
Clock

[sPiEN]
[SPIENS
[spDis_]
SPI_CSRO
BITS SPI_RDR - RDRF
NCPHA [RD | OVRES

CPOL T
I
MSB

mosi [] LSB Shift Register] wso

A

SPI_TDR

[FLOoAD } | TD —>| TDRE |

306 /AT 32/A P 7000

32003E-AVR32-05/06

20.8 User Interface

Table 20-3. SPI Register Mapping

Offset Register Register Name Access Reset
0x00 Control Register CR Write-only
0x04 Mode Register MR Read/Write 0x0
0x08 Receive Data Register RDR Read-only 0x0
0x0C Transmit Data Register TDR Write-only -
0x10 Status Register SR Read-only 0x000000F0
0x14 Interrupt Enable Register IER Write-only ---
0x18 Interrupt Disable Register IDR Write-only
0x1C Interrupt Mask Register IMR Read-only 0x0
0x20 - 0x2C Reserved
0x30 Chip Select Register 0 CSRO Read/Write 0x0
0x34 Chip Select Register 1 CSR1 Read/Write 0x0
0x38 Chip Select Register 2 CSR2 Read/Write 0x0
0x3C Chip Select Register 3 CSR3 Read/Write 0x0
0x100 - 0x124 Reserved for the PDC

32003E-AVR32-05/06

ATMEL

307

ATMEL

20.8.1 SPI Control Register

Name: CR

Access Type: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - [- [- | - | tasTxFeR |
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | - [-]
15 14 13 12 11 10 9 8

. - - r - { - [- [- | - [-
7 6 5 4 3 2 1 0

| swrsT | - | - | - | - | - | spibis | sPEN |

¢ SPIEN: SPI Enable
0 = No effect.

1 = Enables the SPI to transfer and receive data.

* SPIDIS: SPI Disable
0 = No effect.

1 = Disables the SPI.

All pins are set in input mode and no data is received or transmitted.

If a transfer is in progress, the transfer is finished before the SPI is disabled.

If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled.

e SWRST: SPI Software Reset
0 = No effect.

1 = Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.
* LASTXFER: Last Transfer
0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

308 AT 32/A P 700 ()

20.8.2 SPI Mode Register

Name: MR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| DLYBCS |
23 22 21 20 19 18 17 16

| - | - | - | - | PCS |
15 14 13 12 11 10 9 8

. - - r - { - [- [- | - - |
7 6 5 4 3 2 1 0

| LLB | - | - | mopbFDis | FDiv [PCSDEC | PS MSTR |

* MSTR: Master/Slave Mode
0 = SPlis in Slave mode.

1 = SPl is in Master mode.

* PS: Peripheral Select
0 = Fixed Peripheral Select.

1 = Variable Peripheral Select.

* PCSDEC: Chip Select Decode
0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The Chip Select Registers define the characteristics of the 16 chip selects according to the following rules:

CSRO defines peripheral chip select signals 0 to 3.
CSR1 defines peripheral chip select signals 4 to 7.
CSR2 defines peripheral chip select signals 8 to 11.
CSR3 defines peripheral chip select signals 12 to 15.

* FDIV: Clock Selection
0 = The SPI operates at MCK.

1 = The SPI operates at MCK/N.

e MODFDIS: Mode Fault Detection
0 = Mode fault detection is enabled.

1 = Mode fault detection is disabled.

e LLB: Local Loopback Enable
0 = Local loopback path disabled.

1 = Local loopback path enabled.

LLB controls the local loopback on the data serializer for testing in Master Mode only.

ATMEL

32003E-AVR32-05/06

309

ATMEL

* PCS: Peripheral Chip Select
This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC = 0:
PCS = xxx0 NPCS[3:0] = 1110
PCS = xx01 NPCS[3:0] = 1101
PCS = x011 NPCS[3:0] = 1011
PCS = 0111 NPCS[3:0] = 0111
PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS.

¢ DLYBCS: Delay Between Chip Selects

This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-over-
lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods (or 6*N MCK periods if FDIV is set) will be inserted by default.

Otherwise, the following equation determines the delay:

If FDIV is O:
Delay Between Chip Selects = DLYBCS
MCK
If FDIV is 1:
Delay Between Chip Selects = 2LYBESxN
MCK

310 AT 32 /AP 7000 1

20.8.3 SPI Receive Data Register

Name: RDR

Access Type: Read-only
31 30 29 28 27 26 25 24

I I I B R - - —]
23 22 21 20 19 18 17 16

I - I - I - I - I PCS |
15 14 13 12 11 10 9 8

I RD |
7 6 5 4 3 2 1 0

I RD |

* RD: Receive Data
Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.
¢ PCS: Peripheral Chip Select

In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.

A mEl% 311

32003E-AVR32-05/06

ATMEL

20.8.4 SPI Transmit Data Register

Name: TDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - | - | - | - - - | LASTXFER |
23 22 21 20 19 18 17 16

| - | - | - | - | PCS |
15 14 13 12 11 10 9 8

I D |
7 6 5 4 3 2 1 0

I D |

* TD: Transmit Data

Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.

PCS: Peripheral Chip Select

This field is only used if Variable Peripheral Select is active (PS = 1).

If PCSDEC = 0:
PCS = xxx0 NPCS[3:0] = 1110
PCS = xx01 NPCS[3:0] = 1101
PCS = x011 NPCS[3:0] = 1011
PCS =0111 NPCS[3:0] = 0111
PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS
¢ LASTXFER: Last Transfer
0 = No effect.
1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this

allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

312 AT 32 /AP 700 () 1mmm——

20.8.5 SPI Status Register

Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - [- [- | - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | - | sPENs |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TXEMPTY [NSSR |
7 6 5 4 3 2 1 0

| t™xBUFE | RxBUFF | ENDTX | ENDRX | oOvrRes | wmMobF | TDRE [RDRF |

* RDRF: Receive Data Register Full
0 = No data has been received since the last read of RDR

1 = Data has been received and the received data has been transferred from the serializer to RDR since the last read of
RDR.

¢ TDRE: Transmit Data Register Empty
0 = Data has been written to TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.
TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

¢ MODF: Mode Fault Error
0 = No Mode Fault has been detected since the last read of SR.

1 = A Mode Fault occurred since the last read of the SR.

¢ OVRES: Overrun Error Status
0 = No overrun has been detected since the last read of SR.

1 = An overrun has occurred since the last read of SR.
An overrun occurs when RDR is loaded at least twice from the serializer since the last read of the RDR.

* ENDRX: End of RX buffer
0 = The Receive Counter Register has not reached 0 since the last write in RCR or RNCR.

1 = The Receive Counter Register has reached 0 since the last write in RCR or RNCR.

¢ ENDTX: End of TX buffer
0 = The Transmit Counter Register has not reached 0 since the last write in TCR or TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in TCR or TNCR.

e RXBUFF: RX Buffer Full
0 = RCR or RNCR has a value other than 0.

1 = Both RCR and RNCR has a value of 0.

¢ TXBUFE: TX Buffer Empty
0 = TCR or TNCR has a value other than 0.

A mElg 313

32003E-AVR32-05/06

ATMEL

1 = Both TCR and TNCR has a value of 0.

* NSSR: NSS Rising
0 = No rising edge detected on NSS pin since last read.

1 = Arising edge occurred on NSS pin since last read.

e TXEMPTY: Transmission Registers Empty
0 = As soon as data is written in TDR.

1 = TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of such
delay.

¢ SPIENS: SPI Enable Status
0 = SPIl is disabled.

1 = SPl is enabled.

314 AT32AP7000 me—

32003E-AVR32-05/06

20.8.6 SPI Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

I - S S I B
23 22 21 20 19 18 17 16

I - S S I B
15 14 13 12 11 10 9 8

| - | - - - | - - | TXEmpTY | NSSR |
7 6 5 4 3 2 1 0

| TXBUFE | RXBUFF ENDTX ENDRX | OVRES MODF | TDRE | RDRF |

* RDRF: Receive Data Register Full Interrupt Enable
e TDRE: SPI Transmit Data Register Empty Interrupt Enable

¢ MODF: Mode Fault Error Interrupt Enable

e OVRES: Overrun Error Interrupt Enable

* ENDRX: End of Receive Buffer Interrupt Enable

¢ ENDTX: End of Transmit Buffer Interrupt Enable
* RXBUFF: Receive Buffer Full Interrupt Enable

¢ TXBUFE: Transmit Buffer Empty Interrupt Enable
e TXEMPTY: Transmission Registers Empty Enable
* NSSR: NSS Rising Interrupt Enable

0 = No effect.

1 = Enables the corresponding interrupt.

32003E-AVR32-05/06

ATMEL

315

ATMEL

20.8.7 SPI Interrupt Disable Register

Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - [- [- | - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | - [-]
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TXEMPTY [NSSR |
7 6 5 4 3 2 1 0

| t™xBUFE | RxBUFF | ENDTX | ENDRX | oOvrRes | wmMobF | TDRE [RDRF |

* RDRF: Receive Data Register Full Interrupt Disable

e TDRE: SPI Transmit Data Register Empty Interrupt Disable
¢ MODF: Mode Fault Error Interrupt Disable

e OVRES: Overrun Error Interrupt Disable

* ENDRX: End of Receive Buffer Interrupt Disable

* ENDTX: End of Transmit Buffer Interrupt Disable

* RXBUFF: Receive Buffer Full Interrupt Disable

¢ TXBUFE: Transmit Buffer Empty Interrupt Disable

e TXEMPTY: Transmission Registers Empty Disable

* NSSR: NSS Rising Interrupt Disable

0 = No effect.

1 = Disables the corresponding interrupt.

316 AT 32/A P70 00 mmm—

32003E-AVR32-05/06

20.8.8 SPI Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - S S I B
23 22 21 20 19 18 17 16

I - S S I B
15 14 13 12 11 10 9 8

| - | - - - | - - | TXEmpTY | NSSR |
7 6 5 4 3 2 1 0

| TXBUFE | RXBUFF ENDTX ENDRX | OVRES MODF | TDRE | RDRF |

* RDRF: Receive Data Register Full Interrupt Mask
e TDRE: SPI Transmit Data Register Empty Interrupt Mask

¢ MODF: Mode Fault Error Interrupt Mask

e OVRES: Overrun Error Interrupt Mask

* ENDRX: End of Receive Buffer Interrupt Mask

¢ ENDTX: End of Transmit Buffer Interrupt Mask
¢ RXBUFF: Receive Buffer Full Interrupt Mask

¢ TXBUFE: Transmit Buffer Empty Interrupt Mask
e TXEMPTY: Transmission Registers Empty Mask
* NSSR: NSS Rising Interrupt Mask

0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

32003E-AVR32-05/06

ATMEL

317

ATMEL

20.8.9 SPI Chip Select Register

Name: CSRO... CSR3

Access Type: Read/Write
31 30 29 28 27 26 25 24

| DLYBCT |
23 22 21 20 19 18 17 16

| DLYBS |
15 14 13 12 11 10 9 8

| SCBR |
7 6 5 4 3 2 1 0

| BITS CSAAT - NCPHA cPoL |

e CPOL: Clock Polarity
0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.

¢ NCPHA: Clock Phase
0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.

e CSAAT: Chip Select Active After Transfer
0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.
e BITS: Bits Per Transfer

The BITS field determines the number of data bits transferred. Reserved values should not be used, see Table 20-4 on
page 319.

318 AT 32/A P 7000 1mmm—

Table 20-4. BITS, Bits Per Transfer

BITS Bits Per Transfer
0000 8
0001 9
0010 10
0011 11
0100 12
0101 13
0110 14
0111 15
1000 16
1001 Reserved
1010 Reserved
1011 Reserved
1100 Reserved
1101 Reserved
1110 Reserved
1111 Reserved

e SCBR: Serial Clock Baud Rate

In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud
rate:

If FDIV is O:
MCK
PCK Baudrate = ——~
SPCK Baudrate SCBR
If FDIV is 1:
MCK
SPCK Baudrate = —————
a (N x SCBR)

Note: N =32

Programming the SCBR field at O is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.
At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.

e DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

A IIIEI% 319

32003E-AVR32-05/06

ATMEL

Otherwise, the following equations determine the delay:

If FDIV is 0:
Delay Before SPCK = DLYBS
MCK
If FDIV is 1:
N x DLYBS
Delay Bef PCK = ———— -~
elay Before SPC MCK

Note: N =32

e DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.

Otherwise, the following equation determines the delay:

If FDIV is O:

Delay Between Consecutive Transfers = 32 x DLYBCT + SCBR

MCK 2MCK
If FDIV is 1:
: 32 xNxDLYBCT . NxSCBR
Delay Bet tive T f =
elay Between Consecutive Transfers K + oMK

N =32

320 /AT 32 /AP 7000 1mmm——

21. Two-wire Interface (TWI)

Rev: 6061B

21.1 Features
¢ Compatible with Philips’ 12C© protocol
* One, Two or Three Bytes for Slave Address
¢ Sequential Read/Write Operations

21.2 Description

The Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of
one clock line and one data line with speeds of up to 400 Kbits per second, based on a byte-ori-
ented transfer format. It can be used with any Atmel two-wire bus Serial EEPROM. The TWI is
programmable as a master with sequential or single-byte access. A configurable baud rate gen-
erator permits the output data rate to be adapted to a wide range of core clock frequencies.

21.3 Block Diagram

Figure 21-1. Block Diagram

APB Bridge

| —— < > <—>|:| TWCK
—{]

PIO
Two-wire > TWD
Power MCK Interface
Manager
T™WI
Interrupt »| Interrupt
Controller
21.4 Application Block Diagram
Figure 21-2. Application Block Diagram
VDD
R R
TWD
Host with Y ¢ >
TWI
Interface TWCK >
AT24LC16 AT24LC16 LCD Controller
U1 U2 U3
Slave 1 Slave 2 Slave 3

A IIIEI% 321

32003E-AVR32-05/06

ATMEL

2141 I/0 Lines Description

Table 21-1. 1/O Lines Description

Pin Name Pin Description Type
TWD Two-wire Serial Data Input/Output
TWCK Two-wire Serial Clock Input/Output

21.5 Product Dependencies

21.5.1 I/O Lines
Both TWD and TWCK are bi-directional lines, connected to a positive supply voltage via a cur-
rent source or pull-up resistor (see Figure 21-2 on page 321). When the bus is free, both lines
are high. The output stages of devices connected to the bus must have an open-drain or open-
collector to perform the wired-AND function.

TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the programmer
must program the PIO controller to dedicate TWD and TWCK as peripheral lines.

21.5.2 Power Management
The TWI clock is generated by the power manager. Before using the TWI, the programmer must
ensure that the TWI clock is enabled in the power manager.

In the TWI description, Master Clock (MCK) is the APB-bus clock, to which the TWI is
connected.

21.5.3 Interrupt
The TWI interface has an interrupt line connected to the interrupt controller. In order to handle
interrupts, the interrupt controller must be programmed before configuring the TWI.

322 AT 32 /AP 7000 1mmm—

32003E-AVR32-05/06

21.6 Functional Description

21.6.1

21.6.2

21.6.3

32003E-AVR32-05/06

Transfer format

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must
be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure
21-4 on page 323).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure
21-3 on page 323).

* A high-to-low transition on the TWD line while TWCK is high defines the START condition.
* A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 21-3. START and STOP Conditions

Start Address R/W Ack Data Ack Data Ack Stop

Modes of Operation

The TWI has two modes of operation:

¢ Master transmitter mode
¢ Master receiver mode

The TWI Control Register (CR) allows configuration of the interface in Master Mode. In this
mode, it generates the clock according to the value programmed in the Clock Waveform Gener-
ator Register (CWGR). This register defines the TWCK signal completely, enabling the interface
to be adapted to a wide range of clocks.

Transmitting Data

After the master initiates a Start condition, it sends a 7-bit slave address, configured in the Mas-
ter Mode register (DADR in MMR), to notify the slave device. The bit following the slave address
indicates the transfer direction (write or read). If this bit is 0, it indicates a write operation (trans-
mit operation). If the bit is 1, it indicates a request for data read (receive operation).

The TWI transfers require the slave to acknowledge each received byte. During the acknowl-
edge clock pulse, the master releases the data line (HIGH), enabling the slave to pull it down in
order to generate the acknowledge. The master polls the data line during this clock pulse and
sets the NAK bit in the status register if the slave does not acknowledge the byte. As with the

A IIIEI% 323

ATMEL

other status bits, an interrupt can be generated if enabled in the interrupt enable register (IER).
After writing in the transmit-holding register (THR), setting the START bit in the control register
starts the transmission. The data is shifted in the internal shifter and when an acknowledge is
detected, the TXRDY bit is set until a new write in the THR (see Figure 21-6 below). The master
generates a stop condition to end the transfer.

The read sequence begins by setting the START bit. When the RXRDY bit is set in the status
register, a character has been received in the receive-holding register (RHR). The RXRDY bit is
reset when reading the RHR.

The TWI interface performs various transfer formats (7-bit slave address, 10-bit slave address).
The three internal address bytes are configurable through the Master Mode register (MMR). If
the slave device supports only a 7-bit address, IADRSZ must be set to 0. For a slave address
higher than 7 bits, the user must configure the address size (IADRSZ) and set the other slave
address bits in the internal address register (IADR).

Figure 21-5. Master Write with One, Two or Three Bytes Internal Address and One Data Byte
Three bytes internal address

16 D O O CiEED € Gl €) €S €N € &

Two bytes internal address

Two X5 X_oron > Ao X A roria A X _omn XX

One byte internal address

TN G €D €Y CHh) € S € D

Figure 21-6. Master Write with One Byte Internal Address and Multiple Data Bytes

LI I O TN D GEII Y ANEETINEY GO G

TXCOMP | %

/1

Write THR

TXRDY—|,\

Write THR

—.

Write THR Write THR

Figure 21-7. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

Three bytes internal address
o X s X AR X w X A Xiaorestepd a X morgse) X A X aorro) X a X s X oaor X X)

Two bytes internal address

Coara_ XV X P

D ED T € €) €S T €D €D ST 6 €Y G € €

One byte internal address

D 6 G €D € T € & I 6 € Gl € €

324 AT32AP7000 messss—

32003E-AVR32-05/06

AT32AP7000

Figure 21-8. Master Read with One Byte Internal Address and Multiple Data Bytes

I E EED O € T € 6 CITID G O G CIEE € &
TXCOMP~|\

Write START Bit l Write STOP Bit i
RXRDY [/—| /’
Read RHR Read RHR
e S = Start
e P = Stop
o W = Write
* R =Read

* A = Acknowledge

* N = Not Acknowledge

* DADR= Device Address
* |ADR = Internal Address

Figure 21-9 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates the
use of internal addresses to access the device.

Figure 21-9. Internal Address Usage

S w
T R S
A . | T
R Device T FIRST SECOND o
T Address E WORD ADDRESS WORD ADDRESS DATA P
D_l_l_l |0|_I—| | | LI I N I B | | | LI I N I B | | | LI I N I B | | |_|
1 T T T | T T T | T T T |

M LRA M A LA A

S S/ C S C SC C

B BWK B K BK K

A IIIEI% 325

32003E-AVR32-05/06

21.6.4 Read/Write Flowcharts

ATMEL

The following flowcharts shown in Figure 21-10 on page 326 and in Figure 21-11 on page 327
give examples for read and write operations in Master Mode. A polling or interrupt method can
be used to check the status bits. The interrupt method requires that the interrupt enable register

(IER) be configured first.

Figure 21-10. TWI Write in Master Mode

START

Set TWI clock:
TWI_CWGR = clock

Set the control register:
- Master enable
TWI_CR = MSEN

|

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit
Write ==> bit MREAD = 0

Internal address size = 0?

Yes

<

Set theinternal address
TWI_IADR = address

l

Load transmit register
TWI_THR = Data to send
Start the transfer
TWI_CR = START

TWI_THR =

data to send

26 AT32AP7000

y

Read status register

Yes

Data to send?

Stop the transfer
TWI_CR = STOP

Read status register

@ Yes

32003E-AVR32-05/06

Figure 21-11. TWI Read in Master Mode

START

Set TWI clock:
TWI_CWGR = clock

Set the control register:
- Master enable
- Slave disable
TWI_CR = MSEN

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit
Read ==> bit MREAD =0

Internal address size = 0?

Set the internal address
TWI_IADR = address

Yes

Start the transfer
TWI_CR = START

Read status register

RXRDY = 07?
Yes

Data to read?

Yes
Stop the transfer
TWI_CR = STOP
Read status register
Yes
END

— AITEL 327
32003E-AVR32-05/06 I ©

ATMEL

21.7 TWI User Interface

21.71 Register Mapping

Table 21-2. Two-wire Interface (TWI) User Interface

Offset Register Name Access Reset Value
0x0000 Control Register CR Write-only N/A
0x0004 Master Mode Register MMR Read/Write 0x0000
0x0008 Reserved - - -
0x000C Internal Address Register IADR Read/Write 0x0000
0x0010 Clock Waveform Generator Register CWGR Read/Write 0x0000
0x0020 Status Register SR Read-only 0x0008
0x0024 Interrupt Enable Register IER Write-only N/A
0x0028 Interrupt Disable Register IDR Write-only N/A
0x002C Interrupt Mask Register IMR Read-only 0x0000
0x0030 Receive Holding Register RHR Read-only 0x0000
0x0034 Transmit Holding Register THR Read/Write 0x0000
328 AT32AP7000 m—

32003E-AVR32-05/06

21.7.2 TWI Control Register

Register Name: CR
Access Type: Write-only

31 30 29 28 27 26 25 24
. - r - r - -+ - 1 - = [= |
23 22 21 20 19 18 17 16
. - r - r - -+ - 1 - { - [- |
15 14 13 12 11 10 9 8
. - r - r - -+ - {r - ¢ - [- |
7 6 5 4 3 2 1 0
|SWRST| - | - | - | MSDIS | MSEN | STOP | START |

e START: Send a START Condition
0 = No effect.
1 = A frame beginning with a START bit is transmitted according to the settings in the mode register.

This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a
write operation, a frame is sent with the mode register as soon as the user writes a character in the holding register.

e STOP: Send a STOP Condition

0 = No effect.

1 = STOP Condition is sent just after completing the current byte transmission in master read or write mode.
In single data byte master read or write, the START and STOP must both be set.

In multiple data bytes master read or write, the STOP must be set before ACK/NACK bit transmission.

In master read mode, if a NACK bit is received, the STOP is automatically performed.

In multiple data write operation, when both THR and shift register are empty, a STOP condition is automatically sent.
e MSEN: TWI Master Transfer Enabled

0 = No effect.

1 = If MSDIS = 0, the master data transfer is enabled.

e MSDIS: TWI Master Transfer Disabled

0 = No effect.

1 = The master data transfer is disabled, all pending data is transmitted. The shifter and holding characters (if they contain
data) are transmitted in case of write operation. In read operation, the character being transferred must be completely
received before disabling.

e SWRST: Software Reset
0 = No effect.
1 = Equivalent to a system reset.

A IIIEI,@ 329

32003E-AVR32-05/06

21.7.3

ATMEL

TWI Master Mode Register

Register Name: MMR
Address Type: Read/Write

31 30 29 28 27 26 25 24
I — 1 - T - - - -

23 22 21 20 19 18 17 16
| - | DADR

15 14 13 12 11 10 9 8
| - | - | - | MREAD | - | - IADRSZ

7 6 5 4 3 2 1 0

¢ |ADRSZ: Internal Device Address Size

IADRSZ[9:8]
0 0 No internal device address (Byte command protocol)
0 1 One-byte internal device address
1 0 Two-byte internal device address

Three-byte internal device address

e MREAD: Master Read Direction

0 = Master write direction.

1 = Master read direction.

¢ DADR: Device Address

The device address is used in Master Mode to access slave devices in read or write mode.

330

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

21.74 TWI Internal Address Register
Register Name: IADR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| IADR |
15 14 13 12 11 10 9 8
| IADR |
7 6 5 4 3 2 1 0
IADR |

¢ |ADR: Internal Address
0, 1, 2 or 3 bytes depending on IADRSZ.

— Low significant byte address in 10-bit mode addresses.

32003E-AVR32-05/06

ATMEL

331

ATMEL

21.75 TWI Clock Waveform Generator Register

Register Name: CWGR

Access Type: Read/Write
31 30 29 28 27 26 25 24

- T - T - T - T = T = - —]
23 22 21 20 19 18 17 16

I - I - I - I - I - I CKDIV |
15 14 13 12 11 10 9 8

| CHDIV |
7 6 5 4 3 2 1 0

| CLDIV |

e CLDIV: Clock Low Divider
The SCL low period is defined as follows:

Tiow = ((CLDIV x 2%KPV

)+3) x Tyck
e CHDIV: Clock High Divider
The SCL high period is defined as follows:

CKDIV

Thigh = ((CHDIV x 2)+3) x Tyck

e CKDIV: Clock Divider
The CKDIV is used to increase both SCL high and low periods.

332 AT 32 /AP 7000 1mmm—

32003E-AVR32-05/06

21.7.6 TWI Status Register

Register Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - ¢ - { - [- [- | N
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | S
15 14 13 12 11 10 9 8

. - - ¢ - - [- [- /| - [Nack |
7 6 5 4 3 2 1 0

| UNRE | OVRE | - | - | - | TXRDY | RXRDY | TXCOMP |

e TXCOMP: Transmission Completed
0 = In master, during the length of the current frame. In slave, from START received to STOP received.

1 = When both holding and shift registers are empty and STOP condition has been sent (in Master), or when MSEN is set
(enable TWI).

¢ RXRDY: Receive Holding Register Ready

0 = No character has been received since the last RHR read operation.

1 = A byte has been received in theRHR since the last read.

¢ TXRDY: Transmit Holding Register Ready

0 = The transmit holding register has not been transferred into shift register. Set to 0 when writing into THR register.

1 = As soon as data byte is transferred from THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

e OVRE: Overrun Error

0 = RHR has not been loaded while RXRDY was set

1 = RHR has been loaded while RXRDY was set. Reset by read in SR when TXCOMP is set.
¢ UNRE: Underrun Error

0 = No underrun error

1 = No valid data in THR (TXRDY set) while trying to load the data shifter. This action automatically generated a STOP bit
in Master Mode. Reset by read in SR when TXCOMP is set.

¢ NACK: Not Acknowledged
0 = Each data byte has been correctly received by the far-end side TWI slave component.
1 = A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP. Reset after read.

A IIIEI,@ 333

32003E-AVR32-05/06

21.7.7 TWI Interrupt Enable Register

ATMEL

Register Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

- T - T - T - - — [- T -]
23 22 21 20 19 18 17 16

- T - T - T - - — T - T -]
15 14 13 12 11 10 9 8

. - [- f - [- - S R
7 6 4 2 1 0

| UNRE | OVRE | - | - - TXRDY | RXRDY | TXCOMP |

e TXCOMP: Transmission Completed

¢ RXRDY: Receive Holding Register Ready
e TXRDY: Transmit Holding Register Ready
e OVRE: Overrun Error

¢ UNRE: Underrun Error

e NACK: Not Acknowledge

0 = No effect.

1 = Enables the corresponding interrupt.

33 AT32AP7000 messs—

32003E-AVR32-05/06

21.7.8 TWI Interrupt Disable Register

Register Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - - I - [Nack |
7 6 5 4 3 2 1 0

| UNRE | OVRE | - | - | - TXRDY | RXRDY | TXCOMP |

e TXCOMP: Transmission Completed

¢ RXRDY: Receive Holding Register Ready
e TXRDY: Transmit Holding Register Ready
e OVRE: Overrun Error

¢ UNRE: Underrun Error

¢ NACK: Not Acknowledge

0 = No effect.

1 = Disables the corresponding interrupt.

32003E-AVR32-05/06

ATMEL

335

21.7.9 TWI Interrupt Mask Register

ATMEL

Register Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

- T - T - T - - -~ [- T -]
23 22 21 20 19 18 17 16

- T - T - T - - — 1 - T -]
15 14 13 12 11 10 9 8

. - [- { - [- - - | - [Nack |
7 6 5 4 3 2 1 0

| UNRE | OVRE | - | - - TXRDY | RXRDY | TXCOMP |

e TXCOMP: Transmission Completed

¢ RXRDY: Receive Holding Register Ready
e TXRDY: Transmit Holding Register Ready
e OVRE: Overrun Error

¢ UNRE: Underrun Error

¢ NACK: Not Acknowledge

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

336 AT 32/A P70 00 1mmmm—

32003E-AVR32-05/06

21.7.10 TWI Receive Holding Register

Register Name: RHR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - — 1= - - —]
23 22 21 20 19 18 17 16

I - — 1 - - - —]
15 14 13 12 11 10

I - — T _- - - —]
7 6 5 4 3 2 1 0

RXDATA

* RXDATA: Master or Slave Receive Holding Data

32003E-AVR32-05/06

ATMEL

337

ATMEL

21.7.11 TWI Transmit Holding Register

Register Name: THR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| TXDATA |

e TXDATA: Master or Slave Transmit Holding Data

338 /AT 32/A P 7000 mmm—

32003E-AVR32-05/06

22. PS/2 Module (PSIF)
Rev: 1.0.0

22.1 Features

* System Bus APB slave

* PS/2 Host

* Receive and transmit capability

¢ Parity generation and error detection
¢ Overrun error detection

22.2 Description

The PS/2 module provides host functionality allowing the MCU to interface PS/2 devices such as
keyboard and mice. The module is capable of both host-to-device and device-to-host
communication.

22.3 Product Dependencies
22.3.1 I/O Lines

The PS/2 may be multiplexed with PIO lines. The programmer must first program the PIO con-
troller to give control of the pins to the PS/2 module.

22.3.2 Power Management

The clock for the PS/2 module is generated by the power manager. The programmer must
ensure that the PS/2 clock is enabled in the power manager before using the PS/2 module.

22.3.3 Interrupt

The PS/2 module has an interrupt line connected to the interrupt controller. Handling the PS/2
interrupt requires programming the interrupt controller before configuring the PS/2 module.

22.4 The PS/2 Protocol

The PS/2 protocol is a bidirectional synchronous serial communication protocol. It connects a
single master - referred to as the ‘host’ - to a single slave - referred to as the ‘device’. Communi-
cation is done through two lines called ‘data’ and ‘clock’. Both of these must be open-drain or
open-collector with a pullup resistor to perform a wired-AND function. When the bus is idle, both
lines are high.

The device always generates the clock signal, but the host may pull the clock low to inhibit trans-
fers. The clock frequency is in the range 10-16.7 kHz. Both the host and the slave may initiate a
transfer, but the host has ultimate control of the bus.

Data are transmitted one byte at a time in a frame consisting of 11-12 bits. The transfer format is
described in detail below.

2241 Device to host communication

The device can only initiate a transfer when the bus is idle. If the host at any time pulls the clock
low, the device must stop transferring data and prepare to receive data from the host.

The device transmits data using a 11-bit frame. The device writes a bit on the data line when the
clock is high, and the host reads the bit when the clock is low.

A mElg 339

32003E-AVR32-05/06

ATMEL

The format of the frame is:
* 1 start bit - always 0.
* 8 data bits, least significant bit first.
* 1 parity bit - odd parity.
* 1 stop bit - always 1.

Figure 22-1. Device to host transfer

CLOCK

DATA | A \ X \ \ \ \ \)

Start
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Stop

224.2 Host to device communication
Because the device always generates the clock, host to device communication is done differ-

ently than device to host communication.
* The host starts by inhibiting communication by pulling clock low for a minimum of 100

microseconds.
* Then applies a “request-to-send” by releasing clock and pulling data low.

The device must check for this state at least every 10 milliseconds. Once it detects a request-to-
send, it must start generating the clock and receive one frame of data. The host writes a data bit
when the clock is low, and the device reads the bit when the clock is high.

The format of the frame is:
* 1 start bit - always 0.
* 8 data bits - least significant bit first.
* 1 parity bit - odd parity
* 1 stop bit - always one.
* 1 acknowledge bit - the device acknowledges by pulling data low.

30 AT32AP7000 messsss—

32003E-AVR32-05/06

Figure 22-2. Host to device transfer

CLOCK 1 L [O
DATA | f X X X X X X X /AR [

Host Clock
Host Data | K X X X X X X X /

Device Clock

Device Data

Inhibit

F
:
:
:
:
:
:
:
:

C

Start
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Stop
Ack

22.5 Functional Description

22.5.1 Prescaler

For all data transfers on the PS/2 bus, the device is responsible for generating the clock and
thus controlling the timing of the communications. When a host wants to initiate a transfer how-
ever, it needs to pull the clock line low for a given time (minimum 100ps). A clock prescaler
controls the timing of the transfer request pulse.

Before initiating host to device transfers, the programmer must write PSR (Prescale Register).
This value determines the length of the “transfer request”’ pulse and is found by:

PRSCV = Pulse length * PS/2 module frequency

According to the PS/2 specifications, the pulse length should be at least 100ps. The PS/2 mod-
ule frequency is the frequency of the APB bus to which the module is connected.

225.2 Receiving data

The receiver is enabled by writing the RXEN bit in CR (Control Register) to ‘1’. When enabled,
the receiver will continuously receive data transmitted by the device. The data is stored in RHR
(Receive Holding Register). When a byte has been received, the RXRDY bit in SR (Status Reg-
ister) is set.

For each received byte, the parity is calculated. If it doesn’t match the parity bit received from the
device, the PARITY bit in SR is set. The received byte should then be discarded.

If a received byte in RHR is not read before a new byte has been received, the overrun bit -
OVRUN in SR is set. The new data is stored in RHR overwriting the previously received byte.

22.5.3 Transmitting data

32003E-AVR32-05/06

The transmitter is enabled by writing the TXEN bit in CR to ‘1’. When enabled, a data transfer to
the device will be started by writing the transmit data to THR (Transmit Holding Register). Any
ongoing transfer from the device will be aborted.

A IIIEI% 341

2254

342

Interrupts

ATMEL

When the data written to THR has been transmitted to the device, the TXRDY bit in SR will be
set and a new value can be loaded into THR.

At the end of the transfer, the device should acknowledge the transfer by pulling the data line
low for one cycle. If an acknowledge is not detected, the NACK bit in SR will be set.

If the device fails to acknowledge the frame, the NACK bit in SR will be set. The software is
responsible for any retries.

All transfers from host to device are started by the host pulling the clock line low for at least
100ps. The programmer must ensure that the prescaler is programmed to generate correct
pulse length.

The PS/2 module can be configured to signal an interrupt when one of the bits in SR is set. The
interrupt is enabled by writing to IER (Interrupt Enable Register) and disabled by writing to IDR
(Interrupt Disable Register). The current setting of an interrupt line can be seen by reading IMR
(Interrupt Mask Register).

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

22.6 User Interface

Offset Register Register Name Access Reset
0x00 PS/2 Control Register CR Write-only -
0x04 PS/2 Receive Holding Register RHR Read-only 0x0
0x08 PS/2 Transmit Holding Register THR Write-only -
0x0C RESERVED - - -
0x10 PS/2 Status Register SR Read-only 0x0
Ox14 PS/2 Interrupt Enable Register IER Write-only -
0x18 PS/2 Interrupt Disable Register IDR Write-only -
0x1C PS/2 Interrupt Mask Register IMR Read-only 0x0
0x20 PS/2 Prescale Register PSR Write-only 0x0

A mEk@ 343

32003E-AVR32-05/06

ATMEL

22.6.1 PS/2 Control Register

Name: CR

Access Type: Write-only
31 30 29 28 27 26 25 24

. - - r -t - - ¢ - ;-]} - |
23 22 21 20 19 18 17 16

- ! - r - r -t - - ;3 - [- |
15 14 13 12 11 10 9 8

‘ SWRST‘ - ‘ - ‘ - ‘ - ‘ - ‘ TXDIS ‘ TXEN |
7 6 5 4 3 2 1 0

| : | : | : | : | : | : | RXDIS | RXEN |

SWRST: Software Reset
Writing this strobe causes a reset of the PS/2 interface module. Data shift registers are cleared and configuration registers are
reset to default values.
TXDIS: Transmitter Disable
0: No effect.
1: Disables the transmitter.
TXEN: Transmitter Enable
0: No effect.
1: Enables the transmitter if TXDIS=0.
RXDIS: Receiver Disable
0: No effect.
1: Disables the receiver.
RXEN: Receiver Enable
0: No effect.
1: Enables the receiver if RXDIS=0.

344 AT32AP7000 eessssss—

22.6.2 PS/2 Receive Holding Register

Name: RHR

Access Type: Read-only
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

‘ RXDATA |

* RXDATA: Receive Data
Data received from the device.

A mElg 345

32003E-AVR32-05/06

ATMEL

22.6.3 PS/2 Transmit Holding Register

Name: THR

Access Type: Write-only
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

‘ TXDATA |

* TXDATA: Transmit Data

¢ Data to be transmitted to the device.
346 /AT32/A P 700 () o ——

32003E-AVR32-05/06

22.6.4 PS/2 Status Register

Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - r -t - - ¢ - ;-]} - |
23 22 21 20 19 18 17 16

- ! - r - r -t - - ;3 - [- |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ - ‘ PARITY ‘ NACK |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘TXEMPTY‘ TXRDY |

* PARITY:

0: No parity errors detected on incoming data since last read of SR.
1: At least one parity error detected on incoming data since last read of SR.
NACK: Not Acknowledge
0: All transmissions has been properly acknowledged by the device since last read of SR.
1: At least one transmission was not properly acknowledged by the device since last read of SR.
Overrun
0: No receive overrun has occured since the last read of SR.
1: At least one receive overrun condition has occured since the last read of SR.
Receiver Ready
0: RHR is empty.
1: RHR contains valid data received from the device.
TXEMPTY: Transmitter Empty
0: Data remains in THR or is currently being transmitted from the shift register.
1: Both THR and the shift register are empty.
TXRDY: Transmitter Ready
0: Data has been loaded in THR and is waiting to be loaded into the shift register.
1: THR is empty.

°
Q
<
=]
[
<

.
X
X
S
=<

AIMEL 347

32003E-AVR32-05/06

ATMEL

22.6.5 PS/2 Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

‘ ‘ ‘ ‘ ‘ PARITY ‘ NACK
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ TXEMPTY ‘ TXRDY

¢ PARITY: PARITY Interrupt Enable

* NACK: Not Acknowledge Interrupt Enable

¢ OVRUN: Overrun Interrupt Enable

¢ RXRDY: Overrun Interrupt Enable

e TXEMPTY: Overrun Interrupt Enable

[]

TXRDY: Overrun Interrupt Enable
0: No effect.
1: Enables the corresponding interrupt.

a8 AT32AP7000 ees—

32003E-AVR32-05/06

22.6.6 PS/2 Interrupt Disable Register

Name: IDR

Access Type: Write-Only
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ - ‘ PARITY ‘ NACK |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘ TXEMPTY ‘ TXRDY |

PARITY: PARITY Interrupt Disable
NACK: Not Acknowledge Interrupt Disable
OVRUN: Overrun Interrupt Disable
RXRDY: Overrun Interrupt Disable
TXEMPTY: Overrun Interrupt Disable
TXRDY: Overrun Interrupt Disable

0: No effect.

1: Disables the corresponding interrupt.

A mElg 349

32003E-AVR32-05/06

ATMEL

22.6.7 PS/2 Interrupt Mask Register
Name: IMR
Access Type: Read-only
31 30 29 28 27 26 25 24
| | | | |
23 22 21 20 19 18 17 16
| | | | |
15 14 13 12 11 10 9 8
‘ ‘ ‘ ‘ PARITY ‘ NACK
7 6 5 4 3 2 1 0
‘ ‘ OVRUN ‘ RXRDY ‘ TXEMPTY ‘ TXRDY

350

PARITY: PARITY Interrupt Mask

NACK: Not Acknowledge Interrupt Mask
OVRUN: Overrun Interrupt Mask
RXRDY: Overrun Interrupt Mask
TXEMPTY: Overrun Interrupt Mask
TXRDY: Overrun Interrupt Mask

0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

22.6.8 PS/2 Prescale Register

Name: PSR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| i | ; | - | PRSCV |
7 6 5 4 3 2 1 0

‘ PRSCV |

* PRSCLE: Prescale Value

A IIIEI% 351

32003E-AVR32-05/06

ATMEL

23. Synchronous Serial Controller (SSC)

23.1 Features

23.2 Description

Rev: 6078B

* Provides Serial Synchronous Communication Links Used in Audio and Telecom Applications

* Contains an Independent Receiver and Transmitter and a Common Clock Divider

¢ Interfaced with Two PDC Channels (DMA Access) to Reduce Processor Overhead

¢ Offers a Configurable Frame Sync and Data Length

* Receiver and Transmitter Can be Programmed to Start Automatically or on Detection of Different
Events on the Frame Sync Signal

* Receiver and Transmitter Include a Data Signal, a Clock Signal and a Frame Synchronization
Signal

The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link
with external devices. It supports many serial synchronous communication protocols generally
used in audio and telecom applications such as 12S, Short Frame Sync, Long Frame Sync, etc.

The SSC contains an independent receiver and transmitter and a common clock divider. The
receiver and the transmitter each interface with three signals: the TD/RD signal for data, the
TK/RK signal for the clock and the TF/RF signal for the Frame Sync. The transfers can be pro-
grammed to start automatically or on different events detected on the Frame Sync signal.

The SSC’s high-level of programmability and its two dedicated PDC channels of up to 32 bits
permit a continuous high bit rate data transfer without processor intervention.

Featuring connection to two PDC channels, the SSC permits interfacing with low processor
overhead to the following:

* CODEC'’s in master or slave mode

¢ DAC through dedicated serial interface, particularly 12S

* Magnetic card reader

352 AT 32 /A P70 00 1mmm—

32003E-AVR32-05/06

23.3 Block Diagram

Figure 23-1. Block Diagram

AHB |«
APB Bridge
A
) PDC
APB
<_,l:l TF
h}
,| |TK
\ 4 HI: |
TD
Power MCK B
Manager SSC Interface FIO
s e
Interrupt Control
’ —] o

SSC Interrupt

23.4 Application Block Diagram

Figure 23-2. Application Block Diagram

0S or RTOS Driver Power Interrupt Test
Management Management Management
SSC
Serial AUDIO Codec Time Slot Frame Line Interface
Management | Management

A mEl% 353

32003E-AVR32-05/06

23.5 Pin Name List

ATMEL

Table 23-1. 1/O Lines Description

Pin Name Pin Description Type
RF Receiver Frame Synchro Input/Output
RK Receiver Clock Input/Output
RD Receiver Data Input

TF Transmitter Frame Synchro Input/Output
TK Transmitter Clock Input/Output
TD Transmitter Data Output

23.6 Product Dependencies

23.6.1 I/0 Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver I/O lines to the SSC peripheral mode.

Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter /O lines to the SSC peripheral mode.

23.6.2 Power Management

23.6.3 Interrupt

The SSC clock is generated by the power manager. Before using the SSC, the programmer
must ensure that the SSC clock is enabled in the power manager.

In the SSCdescription, Master Clock (MCK) is the APB-bus clock, to which the SSC is
connected.

The SSC interface has an interrupt line connected to the interrupt controller. Handling interrupts
requires programming the interrupt controller before configuring the SSC.

All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt ser-
vice routine can get the interrupt origin by reading the SSC interrupt status register.

23.7 Functional Description

This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.

The receiver and transmitter operate separately. However, they can work synchronously by pro-
gramming the receiver to use the transmit clock and/or to start a data transfer when transmission
starts. Alternatively, this can be done by programming the transmitter to use the receive clock
and/or to start a data transfer when reception starts. The transmitter and the receiver can be pro-
grammed to operate with the clock signals provided on either the TK or RK pins. This allows the
SSC to support many slave-mode data transfers. The maximum clock speed allowed on the TK
and RK pins is the master clock divided by 2.

35 AT32AP7000 messs—

32003E-AVR32-05/06

AT32AP7000

Figure 23-3. SSC Functional Block Diagram

Transmitter Clock Output >
Controller
TKInput |
MCK QIC_)Ck ‘ Transmit Clock | TX clock Frame Sync TE
Divider Controller Controller
RX clock ——>
TF >
—>| Start o .]
< q RF Selector —>| +Transmlt Shift Register . [TD
TXPDC| Transmit Holding Transmit Sync
APB - Register Holding Register
> Load Shift —1 ¥
User
Interface
Receiver Clock Output
RK
€ > Controller
RKInput — 5
Receive Clock |3X Clock Frame Sync RE
Controller Controller
TX Clock —>
i S: t |
ar) . .
TF Selector —>| +Fiecelve Shift F%eglster+ [RD
4 RX PDC | Receive Holding Receive Sync
Register Holding Register
PDC Interrupt Control Load Shift : A

l

Interrupt Controller

23.71 Clock Management
The transmitter clock can be generated by:
¢ an external clock received on the TK I/O pad
* the receiver clock
e the internal clock divider
The receiver clock can be generated by:

¢ an external clock received on the RK 1/O pad

¢ the transmitter clock

¢ the internal clock divider
Furthermore, the transmitter block can generate an external clock on the TK I/O pad, and the
receiver block can generate an external clock on the RK I/O pad.

This allows the SSC to support many Master and Slave Mode data transfers.

A mEl% 355

32003E-AVR32-05/06

23.7.1.1
23.7.1.2
356

ATMEL

Clock Divider

Figure 23-4. Divided Clock Block Diagram

Clock Divider
SSC_CMR
MCK ivi
12-bit Counter DIVIded>CIOCk

The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its
maximal value is 4095) in the Clock Mode Register CMR, allowing a Master Clock division by up
to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When this field is
programmed to 0, the Clock Divider is not used and remains inactive.

When DIV is set to a value equal to or greater than 1, the Divided Clock has a frequency of Mas-
ter Clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the Master
Clock multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless of
whether the DIV value is even or odd.

Figure 23-5. Divided Clock Generation

MasterCIock||||||||||||
Divided Clock l_

DIV =1

' ' '
P

Divided Clock F;'equency =MCK/2

MasterCIock|||||||||I|I||

Divided Clock E E : : l_

DIV=3 . :
. Divided Clock Frequency = MCK/6 '
Table 23-2.
Maximum Minimum
MCK/ 2 MCK /8190

Transmitter Clock Management

The transmitter clock is generated from the receiver clock or the divider clock or an external
clock scanned on the TK I/O pad. The transmitter clock is selected by the CKS field in TCMR
(Transmit Clock Mode Register). Transmit Clock can be inverted independently by the CKI bits
in TCMR.

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

The transmitter can also drive the TK I/O pad continuously or be limited to the actual data trans-
fer. The clock output is configured by the TCMR register. The Transmit Clock Inversion (CKI)
bits have no effect on the clock outputs. Programming the TCMR register to select TK pin (CKS
field) and at the same time Continuous Transmit Clock (CKO field) might lead to unpredictable
results.

Figure 23-6. Transmitter Clock Management

TK(pin) —
MUX Tri_state > Sock
. Controller — Ouut
Receiver o >
Clock
Divider 5
Clock
T CKO Data Transfer
CKS
INV i
Tri-state Transmitter
L 5 MUX > Controller > Clock
CKI CKG

23.7.1.3 Receiver Clock Management

32003E-AVR32-05/06

The receiver clock is generated from the transmitter clock or the divider clock or an external
clock scanned on the RK I/O pad. The Receive Clock is selected by the CKS field in RCMR
(Receive Clock Mode Register). Receive Clocks can be inverted independently by the CKI bits
in RCMR.

The receiver can also drive the RK I/O pad continuously or be limited to the actual data transfer.
The clock output is configured by the RCMR register. The Receive Clock Inversion (CKI) bits
have no effect on the clock outputs. Programming the RCMR register to select RK pin (CKS
field) and at the same time Continuous Receive Clock (CKO field) can lead to unpredictable
results.

AIMEL 357

ATMEL

Figure 23-7. Receiver Clock Management

RK(pin) 5
MUX Tri-state ook
Controller - Ot
Transmitter o -
Clock
Divider 5
Clock
T CKO Data Transfer
e INV Tri-state .
> MUX > Controller » Receiver
Clock
CKI CKG

23.7.1.4 Serial Clock Ratio Considerations
The Transmitter and the Receiver can be programmed to operate with the clock signals provided
on either the TK or RK pins. This allows the SSC to support many slave-mode data transfers. In
this case, the maximum clock speed allowed on the RK pin is:

— Master Clock divided by 2 if Receiver Frame Synchro is input
— Master Clock divided by 3 if Receiver Frame Synchro is output
In addition, the maximum clock speed allowed on the TK pin is:

— Master Clock divided by 6 if Transmit Frame Synchro is input
— Master Clock divided by 2 if Transmit Frame Synchro is output

23.7.2 Transmitter Operations
A transmitted frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured by setting the Transmit Clock Mode Register (TCMR). See Section
“23.7.4” on page 360.

The frame synchronization is configured setting the Transmit Frame Mode Register (TFMR).
See Section “23.7.5” on page 362.

To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and
the start mode selected in the TCMR. Data is written by the application to the THR register then
transferred to the shift register according to the data format selected.

When both the THR and the transmit shift register are empty, the status flag TXEMPTY is set in
SR. When the Transmit Holding register is transferred in the Transmit shift register, the status
flag TXRDY is set in SR and additional data can be loaded in the holding register.

358 AT 3:2/A P70 00 1mmmm—————————

32003E-AVR32-05/06

AT32AP7000

Figure 23-8. Transmitter Block Diagram

| SSC_CR.TXEN |

| SSC_SR.TXEN |7

| SSC_CR.TXDIS |

SSC_TFMR.DATDEF SSC_TCMR.STTDLY
SSC_TFMR.FSDEN
SSC_TFMR.DATNB

SSC_TFMR.MSBF 0 ———— —|TP
RF TF
by |
Transmitter Clock Start
— > Transmit Shift Register I—
Selector

SSC_TFMR.FSDEN
SSC_TCMR.STTDLY

ot
[|

SSC_TFMR.DATLEN 4 SSC_THR | | SSC_TSHR |*SSC_TFMR.FSLEN

23.7.3 Receiver Operations

32003E-AVR32-05/06

A received frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured setting the Receive Clock Mode Register (RCMR). See Section
“23.7.4” on page 360.

The frame synchronization is configured setting the Receive Frame Mode Register (RFMR). See
Section “23.7.5” on page 362.

The receiver uses a shift register clocked by the receiver clock signal and the start mode
selected in the RCMR. The data is transferred from the shift register depending on the data for-
mat selected.

When the receiver shift register is full, the SSC transfers this data in the holding register, the sta-
tus flag RXRDY is set in SR and the data can be read in the receiver holding register. If another
transfer occurs before read of the RHR register, the status flag OVERUN is set in SR and the
receiver shift register is transferred in the RHR register.

A IIIEI% 359

ATMEL

Figure 23-9. Receiver Block Diagram

| SSC_CR.RXEN |

| SSC_SR.RXEN |7

| ssc_crRxois |

SSC_RFMR.MSBF SSC_RFMR.DATNB

RF TF
Receiver Clock ' : |
eceiver Cloc
Start . .] |
>
Selector 4>| Receive Shift Register i RD

SSC_RSHR | h SSC_RHR |

SSC_RFMR.FSLEN SSC_RFMR.DATLEN

SSC_RCMR.STTDLY

23.7.4 Start

The transmitter and receiver can both be programmed to start their operations when an event

occurs, respectively in the Transmit Start Selection (START) field of TCMR and in the Receive
Start Selection (START) field of RCMR.

Under the following conditions the start event is independently programmable:

¢ Continuous. In this case, the transmission starts as soon as a word is written in THR and the

reception starts as soon as the Receiver is enabled.

¢ Synchronously with the transmitter/receiver

¢ On detection of a falling/rising edge on TF/RF

* On detection of a low level/high level on TF/RF

* On detection of a level change or an edge on TF/RF
A start can be programmed in the same manner on either side of the Transmit/Receive Clock
Register (RCMR/TCMR). Thus, the start could be on TF (Transmit) or RF (Receive).

Moreover, the Receiver can start when data is detected in the bit stream with the Compare
Functions.

Detection on TF/RF input/output is done by the field FSOS of the Transmit/Receive Frame Mode
Register (TFMR/RFMR).

360 /AT 32 /AP 700 ()

32003E-AVR32-05/06

AT32AP7000

Figure 23-10. Transmit Start Mode

Tyt
|
TF ' .
(Input) : |
|
D PR : |
B |
Start = Low Level on TF (Output) < X : | STTDLY
T
|
|
Start = Falling Edge on TF 11> @(B >. ! |
(Output) ° o : |_STTDLY
j |
|
Start = High Level on TF ™ < X
(Output) | | : STTDLY
|
Start = Rising Edge on TF D X < BO >- |
(Output) < > , | STTDLY
|
|
™ !
Start = Level Change on TF (Output) (B1 >I STTDLY
1
T
1) | :
Start = Any Edge on TF (Output) o@o BO > :
| STTDLY

Figure 23-11. Receive Pulse/Edge Start Modes

oL
RF ! !
(Input) : :
I I
RD — ! !
Start = Low Level on RF | |
(Input) C(_ I I STTDLY
<« T T
. I I
Start = Falling Edge on RF RD @ BO .
4 > I
(Input) o : , STTDLY
I I
Start = High Level on RF RD < X @o
I I
(|nput) | | : . STTDLY
. I I
Start = Rising Edge on RF RD X < BO >.@ |
(Input) <) ! | STTDLY
I I
RD
Start = Level Change on RF ! {
T T
RD | 1
Start = Any Edge on RF (Input) o@o BO > :
! STTDLY

A mEl% 361

32003E-AVR32-05/06

23.7.5

23.7.5.1

23.7.5.2

362

Frame Sync

ATMEL

The Transmitter and Receiver Frame Sync pins, TF and RF, can be programmed to generate
different kinds of frame synchronization signals. The Frame Sync Output Selection (FSOS) field
in the Receive Frame Mode Register (RFMR) and in the Transmit Frame Mode Register (TFMR)
are used to select the required waveform.

¢ Programmable low or high levels during data transfer are supported.

* Programmable high levels before the start of data transfers or toggling are also supported.
If a pulse waveform is selected, the Frame Sync Length (FSLEN) field in RFMR and TFMR pro-
grams the length of the pulse, from 1 bit time up to 16 bit time.

The periodicity of the Receive and Transmit Frame Sync pulse output can be programmed
through the Period Divider Selection (PERIOD) field in RCMR and TCMR.

Frame Sync Data

Frame Sync Data transmits or receives a specific tag during the Frame Sync signal.

During the Frame Sync signal, the Receiver can sample the RD line and store the data in the
Receive Sync Holding Register and the transmitter can transfer Transmit Sync Holding Register
in the Shifter Register. The data length to be sampled/shifted out during the Frame Sync signal
is programmed by the FSLEN field in RFMR/TFMR.

Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or
lower than the delay between the start event and the actual data reception, the data sampling
operation is performed in the Receive Sync Holding Register through the Receive Shift Register.

The Transmit Frame Sync Operation is performed by the transmitter only if the bit Frame Sync
Data Enable (FSDEN) in TFMR is set. If the Frame Sync length is equal to or lower than the
delay between the start event and the actual data transmission, the normal transmission has pri-
ority and the data contained in the Transmit Sync Holding Register is transferred in the Transmit
Register, then shifted out.

Frame Sync Edge Detection

The Frame Sync Edge detection is programmed by the FSEDGE field in RFMR/TFMR. This sets
the corresponding flags RXSYN/TXSYN in the SSC Status Register (SR) on frame synchro
edge detection (signals RF/TF).

/AT 32 /A P70 O/ () 50000000000

32003E-AVR32-05/06

AT32AP7000

23.7.6 Receive Compare Modes

Figure 23-12. Receive Compare Modes

v LYY v e fv el felvfy
S Tl D)

Start
B L —
FSLEN STDLY DATLEN
Up to 16 Bits

(4 in This Example)

23.7.6.1 Compare Functions
Compare 0 can be one start event of the Receiver. In this case, the receiver compares at each
new sample the last FSLEN bits received at the FSLEN lower bit of the data contained in the
Compare 0 Register (RCOR). When this start event is selected, the user can program the
Receiver to start a new data transfer either by writing a new Compare 0, or by receiving continu-
ously until Compare 1 occurs. This selection is done with the bit (STOP) in RCMR.

23.7.7 Data Format

The data framing format of both the transmitter and the receiver are programmable through the
Transmitter Frame Mode Register (TFMR) and the Receiver Frame Mode Register (RFMR). In
either case, the user can independently select:

¢ the event that starts the data transfer (START)

¢ the delay in number of bit periods between the start event and the first data bit (STTDLY)

¢ the length of the data (DATLEN)

¢ the number of data to be transferred for each start event (DATNB).

* the length of synchronization transferred for each start event (FSLEN)

* the bit sense: most or lowest significant bit first (MSBF).

Additionally, the transmitter can be used to transfer synchronization and select the level driven
on the TD pin while not in data transfer operation. This is done respectively by the Frame Sync
Data Enable (FSDEN) and by the Data Default Value (DATDEF) bits in TFMR.

A IIIEI% 363

32003E-AVR32-05/06

ATMEL

Table 23-3. Data Frame Registers

Transmitter Receiver Field Length Comment

TFMR RFMR DATLEN Up to 32 Size of word

TFMR RFMR DATNB Upto 16 Number of words transmitted in frame
TFMR RFMR MSBF Most significant bit first

TFMR RFMR FSLEN Upto 16 Size of Synchro data register

TFMR DATDEF Oor1 Data default value ended

TFMR FSDEN Enable send TSHR

TCMR RCMR PERIOD Upto 512 Frame size

TCMR RCMR STTDLY Up to 255 Size of transmit start delay

Figure 23-13. Transmit and Receive Frame Format in Edge/Pulse Start Modes

Start Start
P PERIOD _
TF/RFM |
““FSLEN |
|
™ > Sync Data Default Data Data > Default Sync Data ><
(fFSDEN=1) Rrom SSC_TSHR FromDATDEF| From SSC_THR From SSC_THR | FromDATDEF :
|
. > Default Data Data > Default >|<
(If FSDEN = 0) From | DATDEF From SSC_THR From SSC_THR From |DATDEF
|
RD > Sync Data Ignored Data Data > Ignored Sync Data ><
To SSC_RSHR To SSC_RHR To SSC_RHR !
STTDLY DATLEN DATLEN
DATNB
Note: 1. Example of input on falling edge of TF/RF.

32003E-AVR32-05/06

AT32AP7000

Figure 23-14. Transmit Frame Format in Continuous Mode

Start

™D > Data Data Default ><

From SSC_THR From SSC_THR
— > >
DATLEN DATLEN

Start: 1. TXEMPTY set to 1
2. Write into the SSC_THR

Note: 1. STTDLY is set to 0. In this example, THR is loaded twice. FSDEN value has no effect on the
transmission. SyncData cannot be output in continuous mode.

Figure 23-15. Receive Frame Format in Continuous Mode

Start = Enable Receiver

RD > Data Data
To SSC_RHR To SSC_RHR
DATLEN DATLEN

Note: 1. STTDLY is set to 0.

23.7.8 Loop Mode
The receiver can be programmed to receive transmissions from the transmitter. This is done by
setting the Loop Mode (LOOP) bit in RFMR. In this case, RD is connected to TD, RF is con-
nected to TF and RK is connected to TK.

23.7.9 Interrupt
Most bits in SR have a corresponding bit in interrupt management registers.

The SSC can be programmed to generate an interrupt when it detects an event. The interrupt is
controlled by writing IER (Interrupt Enable Register) and IDR (Interrupt Disable Register) These
registers enable and disable, respectively, the corresponding interrupt by setting and clearing
the corresponding bit in IMR (Interrupt Mask Register), which controls the generation of inter-
rupts by asserting the SSC interrupt line connected to the interrupt controller.

A IIIEI% 365

32003E-AVR32-05/06

23.8 SSC Application Examples

The SSC can support several serial communication modes used in audio or high speed serial

links. Some standard applications are shown in the following figures. All serial link applications
supported by the SSC are not listed here.

ATMEL

Figure 23-16. Interrupt Block Diagram

| SSC_IMR |

[ssc ier || [ssc iR |
PDC Setl Clear
TXBUFE
ENDTX
Transmitter
TXRDY
TXEMPTY
TXSYNC
Interrupt SSC Interrupt
 E———
RXBUFF Control
ENDRX
Receiver
RXRDY
OVRUN
RXSYNC

Figure 23-17. Audio Application Block Diagram

SSC

TK

Word Select WS

TF

[«————————————————————————————— >

TD

RECEIVER

RD

RF

Word Select WS

RK

12S

((

))

K XusexX X X (K Xuse Xusex)

Left Channel

Right Channel

366 AT 32/A P70 00 1

32003E-AVR32-05/06

Codec Application Block Diagram

Serial Data Clock (SCLK)
TK
Frame sync (FSYNC)
TF
Serial Data Out CODEC
TD
SSC
Serial Data In
RD [«
RF .
Serial Data Clock (SCLK)
RK Frame sync (FSYNC) First Time Slot
Dstart
Serial Data Out
Serial Data In
Time Slot Application Block Diagram
SCLK
TK O
FSYNC
TF L4 CODEC
First
D Data Out ® Time Slot
SSC .
Data in
RD ®
RF
RK CODEC
Second
Time Slot

Serial Data Clock (SCLK)

Frame sync (FSYNC) First Time Slot Second Time Slot

Dstart Dend

Serial Data Out

Serial Data in

32003E-AVR32-05/06

ATMEL

ATMEL

Register Mapping
0x0 Control Register CR Write -
0x4 Clock Mode Register CMR Read/Write 0x0
0x8 Reserved - - -
0xC Reserved - - -
0x10 Receive Clock Mode Register RCMR Read/Write 0x0
0x14 Receive Frame Mode Register RFMR Read/Write 0x0
0x18 Transmit Clock Mode Register TCMR Read/Write 0x0
0x1C Transmit Frame Mode Register TFMR Read/Write 0x0
0x20 Receive Holding Register RHR Read 0x0
0x24 Transmit Holding Register THR Write -
0x28 Reserved - - -
0x2C Reserved - - -
0x30 Receive Sync. Holding Register RSHR Read 0x0
0x34 Transmit Sync. Holding Register TSHR Read/Write 0x0
0x38 Receive Compare 0 Register RCOR Read/Write 0x0
0x3C Receive Compare 1 Register RC1R Read/Write 0x0
0x40 Status Register SR Read 0x000000CC
0x44 Interrupt Enable Register IER Write -
0x48 Interrupt Disable Register IDR Write -
0x4C Interrupt Mask Register IMR Read 0x0
0x50-0xFC Reserved - - -
0x100- 0x124 | Reserved for Peripheral Data Controller (PDC) - - -

___|]
32003E-AVR32-05/06

CR
Write-only
31 30 29 28 27 26 25 24
[~ T - T - — 1 - - — 1 -]
23 22 21 20 19 18 17 16
I R — T - - — T -]
15 14 13 12 11 10 9 8
| SWRST | - | - - | - - TXDIS | TXEN |
7 6 5 4 3 2 1 0
| - | - | - - | - - RXDIS | RXEN |
0: No effect.

1: Enables Receive if RXDIS is not set.

0: No effect.

1: Disables Receive. If a character is currently being received, disables at end of current character reception.

0: No effect.

1: Enables Transmit if TXDIS is not set.

0: No effect.

1: Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission.

0: No effect.

1: Performs a software reset. Has priority on any other bit in CR.

32003E-AVR32-05/06

ATMEL

ATMEL

CMR
Read/Write
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I - I - I - I DIV |
7 6 5 4 3 2 1 0

| DIV |

0: The Clock Divider is not active.

Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is MCK/2. The
minimum bit rate is MCK/2 x 4095 = MCK/8190.

___|]
32003E-AVR32-05/06

RCMR
Read/Write
31 30 29 28 27 26 25 24
| PERIOD
23 22 21 20 19 18 17 16
| STDDLY
15 14 13 12 11 10 9 8
| - - | - | STOP START
7 6 5 4 3 2 1 0
| CKG | CKI | CKO | CKS
0x0 Divided Clock
0x1 TK Clock signal
0x2 RK pin
0x3 Reserved
0x0 None Input-only
0x1 Continuous Receive Clock Output
0x2 Receive Clock only during data transfers Output
0x3-0x7 Reserved

0: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock falling edge. The Frame Sync signal out-
put is shifted out on Receive Clock rising edge.

1: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock rising edge. The Frame Sync signal out-
put is shifted out on Receive Clock falling edge.

CKI affects only the Receive Clock and not the output clock signal.

32003E-AVR32-05/06

ATMEL

ATMEL

0x0 None, continuous clock

0x1 Receive Clock enabled only if RF Low
0x2 Receive Clock enabled only if RF High
0x3 Reserved

0x0 Continuous, as soon as the receiver is enabled, and immediately after the end of
transfer of the previous data.

0x1 Transmit start
0x2 Detection of a low level on RF signal
0x3 Detection of a high level on RF signal
0x4 Detection of a falling edge on RF signal
0x5 Detection of a rising edge on RF signal
0x6 Detection of any level change on RF signal
0x7 Detection of any edge on RF signal
0x8 Compare 0

0x9-0xF Reserved

0: After completion of a data transfer when starting with a Compare 0, the receiver stops the data transfer and waits for a
new compare 0.

1: After starting a receive with a Compare 0, the receiver operates in a continuous mode until a Compare 1 is detected.

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied.

Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG
(Receive Sync Data) reception.

This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no
PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD+1) Receive Clock.

___|]
32003E-AVR32-05/06

RFMR
Read/Write
31 30 29 28 27 26 25 24
| - | - = - | - - = FSEDGE |
23 22 21 20 19 18 17 16
| - | FSOS [FSLEN |
15 14 13 12 11 10 9 8
| - [= = - [DATNB |
7 6 5 4 3 2 1 0
[MSBF | - LOOP DATLEN

0: Forbidden value (1-bit data length not supported).
Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the

PDC2 assigned to the Receiver. If DATLEN is lower or equal to 7, data transfers are in bytes. If DATLEN is between 8 and

15 (included), half-words are transferred, and for any other value, 32-bit words are transferred.

0: Normal operating mode.

1: RD is driven by TD, RF is driven by TF and TK drives RK.

0: The lowest significant bit of the data register is sampled first in the bit stream.

1: The most significant bit of the data register is sampled first in the bit stream.

This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1).

This field defines the length of the Receive Frame Sync Signal and the number of bits sampled and stored in the Receive
Sync Data Register. When this mode is selected by the START field in the Receive Clock Mode Register, it also deter-

mines the length of the sampled data to be compared to the Compare 0 or Compare 1 register.

Pulse length is equal to (FSLEN + 1) Receive Clock periods. Thus, if FSLEN is 0, the Receive Frame Sync signal is gener-

ated during one Receive Clock period.

32003E-AVR32-05/06

ATMEL

ATMEL

0x0 None Input-only
0x1 Negative Pulse Output
0x2 Positive Pulse Output
0x3 Driven Low during data transfer Output
0x4 Driven High during data transfer Output
0x5 Toggling at each start of data transfer Output
0x6-0x7 Reserved Undefined

Determines which edge on Frame Sync will generate the interrupt RXSYN in the SSC Status Register.

0x0 Positive Edge Detection

0x1 Negative Edge Detection

___|]
32003E-AVR32-05/06

TCMR
Read/Write
31 30 29 28 27 26 25 24
| PERIOD
23 22 21 20 19 18 17 16
| STTOLY
15 14 13 12 11 10 9 8
| - - | - | - START
7 6 5 4 3 2 1 0
| CKG | CKI | CKO | CKS
0x0 Divided Clock
0x1 RK Clock signal
0x2 TK Pin
0x3 Reserved
0x0 None Input-only
0x1 Continuous Transmit Clock Output
0x2 Transmit Clock only during data transfers Output
0x3-0x7 Reserved

0: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock falling edge. The Frame sync signal
input is sampled on Transmit clock rising edge.

1: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock rising edge. The Frame sync signal
input is sampled on Transmit clock falling edge.

CKI affects only the Transmit Clock and not the output clock signal.

ATMEL

32003E-AVR32-05/06

ATMEL

0x0 None, continuous clock
0x1 Transmit Clock enabled only if TF Low
0x2 Transmit Clock enabled only if TF High
0x3 Reserved
0x0 Continuous, as soon as a word is vyritten in the THR Register (if Transmit is enabled), and immediately
after the end of transfer of the previous data.
0x1 Receive start
0x2 Detection of a low level on TF signal
0x3 Detection of a high level on TF signal
0x4 Detection of a falling edge on TF signal
0x5 Detection of a rising edge on TF signal
0x6 Detection of any level change on TF signal
0x7 Detection of any edge on TF signal
0x8 - OxF Reserved

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission
of data. When the Transmitter is programmed to start synchronously with the Receiver, the delay is also applied.

Note: STTDLY must be set carefully. If STTDLY is too short in respect to TAG (Transmit Sync Data) emission, data is emit-
ted instead of the end of TAG.

This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync Signal. If 0, no period
signal is generated. If not 0, a period signal is generated at each 2 x (PERIOD+1) Transmit Clock.

___|]
32003E-AVR32-05/06

TFMR
Read/Write
31 30 29 28 27 26 25 24
| - | - | - - | - - - FSEDGE |
23 22 21 20 19 18 17 16
| FSDEN | FSOS | FSLEN |
15 14 13 12 11 10 9 8
I - I - I - I - I DATNB |
7 6 5 4 3 2 1 0
| MSBF | - | DATDEF | DATLEN |

0: Forbidden value (1-bit data length not supported).

Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDC2 assigned to the Transmit. If DATLEN is lower or equal to 7, data transfers are bytes, if DATLEN is between 8 and 15
(included), half-words are transferred, and for any other value, 32-bit words are transferred.

This bit defines the level driven on the TD pin while out of transmission. Note that if the pin is defined as multi-drive by the
PIO Controller, the pin is enabled only if the SCC TD output is 1.

0: The lowest significant bit of the data register is shifted out first in the bit stream.

1: The most significant bit of the data register is shifted out first in the bit