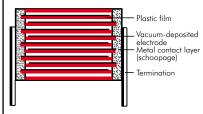
WIMA DC-LINK MKP4

Metallized Polypropylene (PP) Capacitors for DC-Link Applications

Special Features

- Very high volume/capacitance ratio
- Self-healing
- Particularly reliable contactconfigurations: 4-lead versions and screwable plate connections
- Very low dissipation factor
- Negative capacitance change versus temperature
- Very low dielectric absorption
- According to RoHS 2002/95/EC


Typical Applications

As intermediate circuit capacitor e.g. in high power converter technology

Construction

Dielectric:

Polypropylene (PP) film Capacitor electrodes: Vacuum-deposited Internal construction:

L

Encapsulation: Solvent-resistant, flame-retardant plastic case with epoxy resin seal, UL 94 V-0

Terminations:

Tinned wire or plates. **Marking:**

Colour: Red. Marking: Black. Epoxy resin seal: Red

Electrical Data

Capacitance range: 5 µF to 75 µF Rated voltages: 450 VDC, 700 VDC, 900 VDC, 1100 VDC Capacitance tolerances:

 $\pm 20\%, \pm 10\%, \pm 5\%$ **Operating temperature range:** -55° C to +85° C

Climatic test category: 55/085/56 in accordance with IEC Insulation resistance at +20° C: $\geq 30\,000$ sec (M $\Omega \times \mu$ F) (mean value: 100 000 sec) Measuring voltage: 100 V/1 min.

Dissipation factors at +20° C: tan $\delta \le 10 \times 10^{-4}$ at 1 kHz

Test voltage: 1.2 U_r, 2sec Dielectric absorption: 0.05 %

Maximum pulse rise time:

Voltage and current derating:

A derating factor of 1.35 % per K must be applied from 75° C for AC voltages and AC currents (I_{rms} according to graphs).

Reliability:

Operational life > 200 000 hours Failure rate < 2 fit (0.5 x U_r and 40° C) Specific dissipation:

Box size WxHxL in mm	Specific dissipation in Watts per K above the ambient temperature
20x39.5x41.5 24x45.5x41.5 31x46x41.5 33x48x56 37x54x56	

Capacitance	max. pulse rise time V/ μ sec at T _A < 40° C						
μF	450 VDC	700 VDC	900 VDC	1100 VDC			
5 16	-	14	16	21			
20 30	13	14	16	16			
35 45	13	12	12	16			
50 60	11	12	12	-			
75	11	11	-	-			

for pulses equal to the rated voltage

Mounting Recommendation

Excessive mechanical strain, e.g. pressure or shock onto the capacitor body, is to be avoided during mounting and usage of the capacitors. When fixing the plates the screw torque is to be limited to max. 5 Nm.

For further details and graphs please refer to Technical Information.

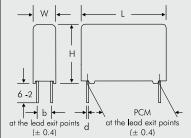
Packing

Transportation-safe packing in cardboard boxes.

Packing units

L	pcs. per packing unit
18	100
26.5	100
31.5	100
41.5	100
56	50

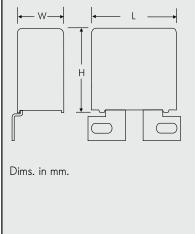
WIMA DC-LINK MKP4


General Data

Carporaitan aa	450 VDC/200 VAC*						700 VDC/220 VAC*				
Capacitance	W	Н	L	PCM**	Part number	W	Η	L	PCM**	Part number	
15 µF						20	39.5	41.5	37.5	DCP4K05150SL	
16 "						20	39.5	41.5	37.5	DCP4K05160SL	
20 "	20	39.5	41.5	37.5	DCP4H05200SL	20	39.5	41.5	37.5	DCP4K05200SL	
22 "	20	39.5	41.5	37.5	DCP4H05220SL	20	39.5	41.5	37.5	DCP4K05220SL	
25 "	20	39.5	41.5	37.5	DCP4H05250SL	24	45.5	41.5	37.5	DCP4K05250SM	
30 "	24	45.5	41.5	37.5	DCP4H05300SM	24	45.5	41.5	37.5	DCP4K05300SM	
35 "	24	45.5	41.5	37.5	DCP4H05350SM	31	46	41.5	37.5	DCP4K05350SN	
40 "	31	46	41.5	37.5	DCP4H05400SN	31	46	41.5	37.5	DCP4K05400SN	
45 "	31	46	41.5	37.5	DCP4H05450SN	33	48	56	48.5	DCP4K05450SR	
50 "	33	48	56	48.5	DCP4H05500SR	33	48	56	48.5	DCP4K05500SR	
55 "	33	48	56	48.5	DCP4H05550SR	33	48	56	48.5	DCP4K05550SR	
60 "	33	48	56	48.5	DCP4H05600SR	37	54	56	48.5	DCP4K05600SS	
75 "	37	54	56	48.5	DCP4H05750SS	37	54	56	48.5	DCP4K05750SS	

* AC voltages: 1.4 x U_{rms} + UDC \leq U_r; at f > 100 Hz the permissible AC current (I_{rms} see graphs) has to be considered.

** PCM = Printed circuit module = lead spacing of the 4-lead version


4-lead version

W	Н	L	PCM	b	d
20	39.5	41.5	37.5	12.5	1
24	45.5	41.5	37.5	12.5	1
31	46	41.5	37.5	20	1
33	48	56	48.5	20	1
37	54	56	48.5	20	1

Part number	Part number completion:					
Version codes see page 110.						
Tolerance:	20 % = M					
	10 % = K					
	5% = J					
Packing:	bulk = S					
Lead length	: none = 00					

Plate versions (example)

Additional plate versions are possible, please refer to the construction principles of WIMA Snubber capacitors page 107.

Rights reserved to amend design data without prior notification..

Continuation page 119

WIMA DC-LINK MKP4

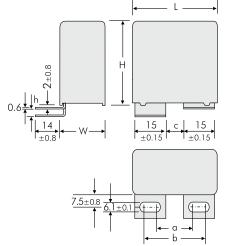
General Data

Capacitance	900 VDC/240 VAC*					1100 VDC/260 VAC*				
Capacitatice	W	Η	L	PCM**	Part number	W	Η	L	PCM**	Part number
5 µF						20	39.5	41.5	37.5	DCP4P04500SL
8 "						20	39.5	41.5	37.5	DCP4P04800SL
10 µF	20	39.5	41.5	37.5	DCP4N05100SL	20	39.5	41.5	37.5	DCP4P05100SL
12 "	20	39.5	41.5	37.5	DCP4N05120SL	24	45.5	41.5	37.5	DCP4P05120SM
14 "	20	39.5	41.5	37.5	DCP4N05140SL	24	45.5	41.5	37.5	DCP4P05140SM
15 "	20	39.5	41.5	37.5	DCP4N05150SL	31	46	41.5	37.5	DCP4P05150SN
16 "	20	39.5	41.5	37.5	DCP4N05160SL	31	46	41.5	37.5	DCP4P05160SN
20 "	24	45.5	41.5	37.5	DCP4N05200SM	33	48	56	48.5	DCP4P05200SR
22 "	24	45.5	41.5	37.5	DCP4N05220SM	33	48	56	48.5	DCP4P05220SR
25 "	31	46	41.5	37.5	DCP4N05250SN	33	48	56	48.5	DCP4P05250SR
30 "	31	46	41.5	37.5	DCP4N05300SN	37	54	56	48.5	DCP4P05300SS
35 "	33	48	56	48.5	DCP4N05350SR	37	54	56	48.5	DCP4P05350SS
40 "	33	48	56	48.5	DCP4N05400SR					
45 "	33	48	56	48.5	DCP4N05450SR					
50 "	37	54	56	48.5	DCP4N05500SS					

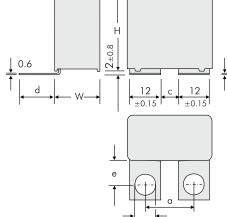
* AC voltages: 1.4 x U_{rms} + UDC $\leq U_{ri}$ at f > 100 Hz the permissible AC current (I_{rms} see graphs) has to be considered.

** PCM = Printed circuit module = lead spacing of the 4-lead version.

Dims. in mm.


Versions and dimensional drawings see page 107.

Part number completion:					
Version codes see page 110.					
Tolerance: $20\% = M$					
10 % = K					
5 % = J					
Packing: bulk = S					
Lead length: none = 00					


Rights reserved to amend design data without prior notification..

A A 5 Irms A 5 Permissible AC current in relation to frequency at 10° C internal temperature rise 2 2 (general guide): 10¹ 10¹ 5 5 450 VDC 900 VDC 2 2 1 10 10 10 A A 5 Irms A 5 2 2 10¹ 10¹ 5 700 VDC 11100 VDC 2 5 10 5 10 5 <u>f</u> 10⁵ Hz 2 5 10 2 5 104

Versions of WIMA Snubberand DC-LINK MKP 4 Capacitors

Version	L	a ±0.5	b ±0.5	с ±0.5	h ±0.8
A1	41.5	17.5	27.5	7.5	0
A1.5	41.5	17.5	27.5	7.5	3.5
A1	56	20	30	10	0
A1.1.1	56	28	38	18	3.5
A1.4	56	20	30	10	3.5
A1.4.1	56	28	38	18	3.5

a ±0.5

18 22 29

L

41.5

41.5

56

Version

A1.6

A1.6

A1.6.1

7±0.1

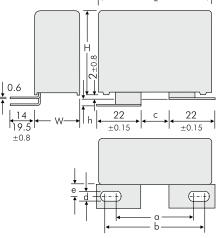
с ±0.5

6 10 17

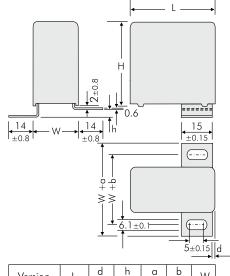
d ±0.8

21.5

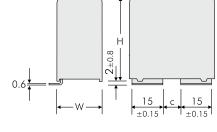
18.5 21.5

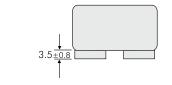

- L -

e ±0.8

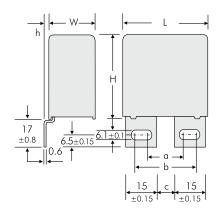

16

13


16

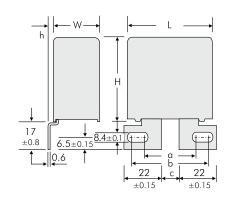


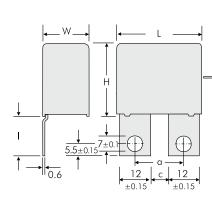
Version	L	a ±0.5	b ±0.5	с ±0.5	d ±0.1	e ±0.8	h ±0.8
A2	41.5	40.5	46.5	14.5	8.4	7.5	0
A2.2	41.5	31	37	5	8.4	7.5	3.5
A2.3	41.5	31	37	5	8.4	13	3.5
A2.4	41.5	33.5	39.5	7.5	8.4	13	3.5
A2.4.1	41.5	33.5	39.5	7.5	8.4	13	0
A2.5	41.5	29.5	39.5	5.5	6.1	7.5	3.5
A2.6	41.5	31.5	41.5	7.5	6.1	13	3.5
A2.6.1	41.5	31.5	41.5	14	6.1	13	3.5
A2.6.2	41.5	31.5	41.5	14	6.1	13	0
A2.8	41.5	40.5	46.5	14.5	8.4	7.5	3.5
A2.1	56	39.5	45.5	13.5	8.4	7.5	0
A2.7	56	39.5	45.5	13.5	8.4	7.5	3.5

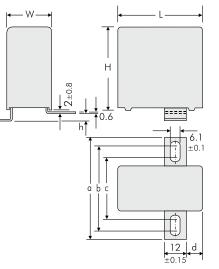


Version	L	d ±1.0	h ±0.8	a ±0.8	b ±0.8	W
A1.3.1 A1.3.2 A1.2 A1.8 A1.8.1 A1.8.1 A1.8.2	31.5 31.5 41.5 41.5 41.5 41.5 41.5	2 2 2 2 2 2 2	0 3.5 3.5 0 0 3.5	47 47 47 47 56 56	34 34 34 34 43 43	19 19 19 19 28 28

Version	L	с ±0.5
A1.7	41.5	7.5
A1.7	56	10
A1.7.1	56	18

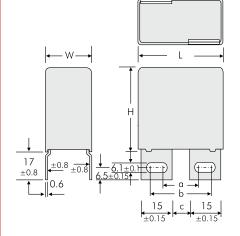


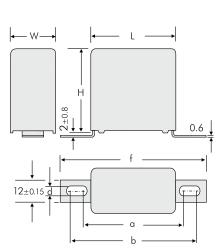

Version	L	a ±0.5	b ±0.5	с ±0.5	h ±0.8
A3 A3.5 A3 A3.1 A3.5 A3.10	41.5 41.5 56 56 56 56 56	17.5 17.5 20 28 20 28	27.5 27.5 30 38 30 38	7.5 7.5 10 18 10 18	0 3 0 0 3 3


L

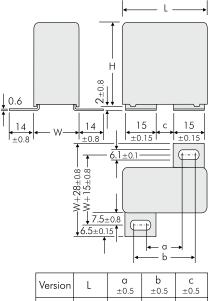
L

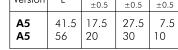
Versions of WIMA Snubber and DC-LINK MKP 4 Capacitors

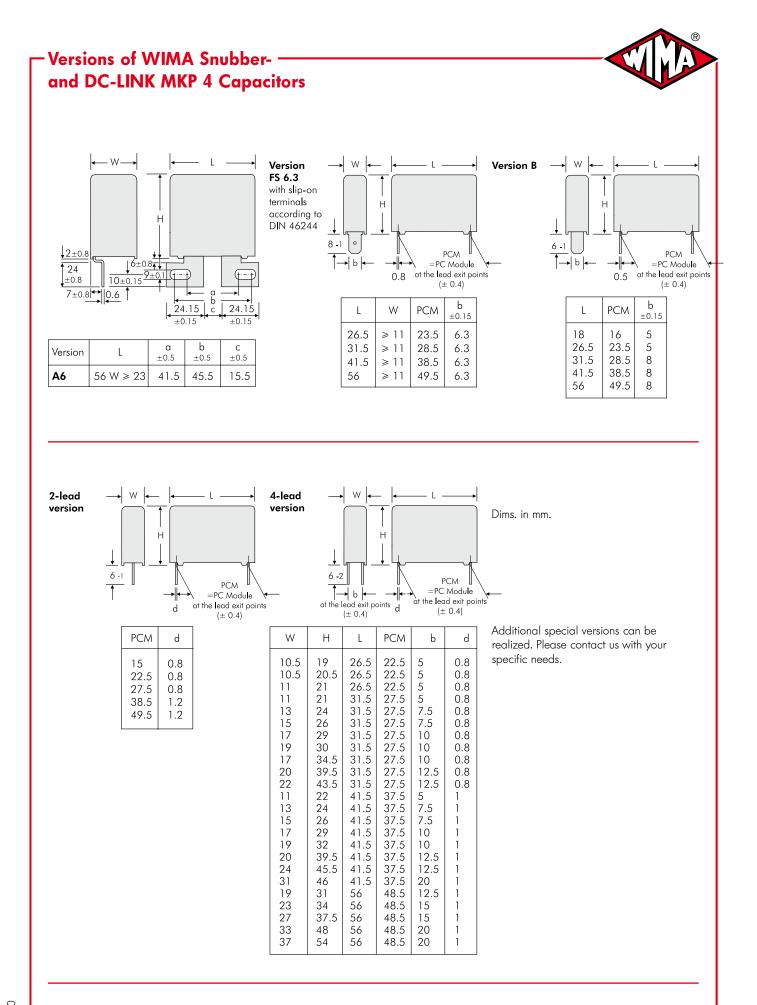



Version	L	a ±0.5	b ±0.5	с ±0.5	h ±0.8
A3.9	41.5	40.5	46.5	14.5	0
A3.11	41.5	40.5	46.5	14.5	3
A3.2	56	40.5	46.5	14.5	0
A3.3	56	40.5	46.5	14.5	3

Version	L	±0.5	±0.5	±0.8
	.5 W≥17	18	6	23
	.5 W≥17	22	10	17.5


Version	L	a ±0.8	b ±0.8	с ±0.8	d ±1.0	h ±0.8	W
A4.3	31.5	57	47	31	1	3.5	19
A4.4	31.5	57	47	31	1	0	19
A4.6	31.5	44.6	34.6	31.6	1	3.5	19
A4.8	31.5	44.6	34.6	31.6	1	0	19
A4.1	41.5	57	47	31	6	3.5	19
A4.5	41.5	57	47	31	6	0	19
A4.5.1	41.5	63.5	53.5	37.5	6	0	28
A4.5.2	41.5	63.5	53.5	37.5	6	3.5	28

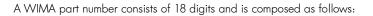



Version	L	a ±0.5	b ±0.5	с ±0.5
A3.6	41.5	17.5	27.5	7.5
A3.7	56	20	30	10

Version	1	а	b	†	d
VEISION	L	±0.8	±0.8	±0.8	±0.1
A4.9	21 C M > 1C		47	<i>г</i> 7	4.5
A4.9	31.5 W ≥15	44	47	57	4.5
A4.10	31.5 W ≥15	43	59	69	6.1
A4.2	41.5 W ≥15	54	57	67	4.5
A4	41.5 W ≥15	53	69	79	6.1
A4.7	56	65	68	78	4.5
A 4	56	64	80	90	6.1

Versions of WIMA Snubber and DC-LINK MKP 4 Capacitors

Version	code	D2	D4	B5	B 8	١A	18	<u>1</u>	<u>ם</u>	<u>н</u> н	_ ເ	<u>1</u>	E	1]	١K	1L	₹I	Ĺ	0	2A	2B	22	2E	2H	21	2J	2K	2L	2W	3A		ה ה	365	20	3]	ЗK	3Г	S S S S S	2 C	J L
WxHxL	Size code	2-lead	4-lead	B5	B8	Al	A1.1.1	A1.2*	<u>A1.3.1</u>	AI.3.2	A1.4 A1 4 1	A1.5	A1.6	A1.6.1	A1.7	A1.7.1	A1.8*	A1.8.1	A1.8.2	A2 ; ; ;	A2.1	A7 3	A2.4	A2.5	A2.6	A2.6.1	A2.6.2	A2.7	A2.8	A3	A3.1	A3.2 A3.3	A3.5	A3.6	A3.7	A3.8	A3.8.1	A3.9	A3.1U	AJ.11
7x14x18	S2																																						T	
8x15x18	S 3																																						Τ	1
7 x 16.5 x 26.5	S4																																						Τ	
8.5x18.5x26.5	S5																																							
10.5×19×26.5	S6																																						Τ	
10.5 x 20.5 x 26.5	S7																																						Τ	
11x21x26.5	S8																																							
11x21x31.5	S9																																					Τ		
13x24x31.5	SA																																						Τ	
15x26x31.5	SB																																							
17x29x31.5	SC																																						Τ	
19x30x31.5	ST																																						Τ	
17x34.5x31.5	SD																																							
11x22x41.5	SG																																						Τ	
13x24x41.5	SH																																							
15x26x41.5	SI																																							
17x29x41.5	SJ																																						Τ	
19x32x41.5	SK																																							
20x39.5x41.5	SL																																							
24x45.5x41.5	SM																																							
31x46x41.5	SN																																							
19x31x56	SO																																							
23x34x56	SP																																							
27x37.5x56	SQ																																							
33x48x56	SR																																							
37 x 54 x 56	SS																																							


Version	code	4A	4B	4C	4D	4E	4F	9 6	4H	41	4J	4K	4L	4M	5A	A ð	FS
WxHxL	Size code		A4.1*	A4.2	A4.3*	A4.4*	A4.5*	A4.5.1	A4.5.2	A4.6*	A4.7	A4.8*	A4.9	A4.10	A5	A6	FS 6.3
11x21x26.5	S8																
11x21x31.5	S9																
13x24x31.5	SA																
15x26x31.5																	
17x29x31.5																	
19x30x31.5																	
17x34.5x31.5																	
11x22x41.5																	
13x24x41.5																	
15x26x41.5																	
17x29x41.5																	
19x32x41.5																	
20x39.5x41.5																	
24x45.5x41.5																	
31x46x41.5																	
19x31x56																	
23x34x56																	
27x37.5x56																	
33x48x56																	
37x54x56	SS																

Possible connecting respective plate versions - depending on box size.

* on request

WIMA Part Number System

- Field 1 4: Type description
- Field 5 6: Rated voltage
- Field 7 10: Capacitance
- Field 11 12: Size and PCM
- Field 13 14: Special features (e.g. Snubber versions)
- Field 15: Capacitance tolerance
- Field 16: Packing
- Field 17 18: Lead length (untaped)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
м	к	S	2	с	0	2	1	0	0	1	Α	0	0	м	S	S	D
	MKS	2		63 \	/DC		0.0	D1 µF		2.5×6	.5×7.2	-		20%	bulk	6	-2
SMD-F SMD-F SMD-P FKP 02 MKS 0 FKP 2 FKM 2 FKP 2 MKS 2 FKM 2 FKP 2 MKS 2 FKM 3 FKP 3 MKS 4 MKP 4 MKP 4 MKP 1 FKP 4 MKP 1 FKP 1 MKP-X MKP-X MKP-X MKP-X MKP-X MKP-3-) MP 3-1 MP 3-1 MP 3R	PEN PPS 22 22 22 24 4 0 22 2 2 2 2 2 2 2 2 2 2)	ADI ADI KS2 KS2 KS2 KS2 KS2 KS2 KS2 KS2 KS2 KS2	Rated v 16 VDC 2.5 VDC 4 VDC 14 VDC 28 VDC 5 VDC 5 VDC 5 VDC 63 VDC 63 VDC 160 VDC 400 VDC 400 VDC 400 VDC 630 VDC 160 VDC 100 VDC	= AC = A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	⁷ pF 30 pF 30 pF 30 pF 30 pF 30 pF 30 pF 300 pF 22 μF 47 μF 47 μF 2 μF 7 μF 2 μF	ance: = 0022 = 0047 = 0100 = 0150 = 0220 = 0330 = 0470 = 100 = 1150 = 1220 = 1330 = 1470 = 1680 = 2100 = 2220 = 3470 = 3220 = 3470 = 4470 = 5100 = 5220 = 5470 = 6100 = 6220 = A010	4.8x 5.7x 5.7x 7.2x 7.2x 10.2 12.7y 15.3; 2.5x 3x7, 2.5x 3x7, 2.5x 3x8, 3x9, 4x9, 5x11 6x12 5x14 6x12 5x14 6x12 9x19 11x2 9x19	3.3 x 3 9 3.3 x 4 9 5.1 x 3.5 5.1 x 4.5 6.1 x 3 9 6.1 x 5 9 x 7.6 x 5 x 7.6 x 5 x 10.2 x 6 f x 10.2 x 6 f x 10.2 x 6 f x 10.2 x 6 f x 10.2 x 7.2 f x 10.2 x 7.2	CM7.5 CM7.5 M 10 M 10 CM 15 PCM 15 PCM 22 PCM 22 PCM 27 PCM 27 PCM 37 PCM 37 DCH_	2 = X2 = Y2 = Y2 = Y2 = Y2 = Y2 = Y2 = Y	1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Toleran 20% 10% 5% 2.5% 1% Packing AMMO AMMO AMMO AMMO AMMO AMMO AMMO AMM	= M = K = J = H = E H16.5 3 H16.5 4 H18.5 3 H18.5 4 6.5 360 6.5 360 8.5 360 8.5 360 8.5 360 8.5 500 (6.5 8.5 W12 18 W12 33 W16 33 W12 33 W16 33 W12 4 33 hi ndard xi i	90 x 37(40 x 34(90 x 37(30 30) = B) = C
DC-LIN DC-LIN Super(NK MKP 4 NK MKP (NK HC		CPC CH_ CSC	4000 VE 6000 VE 250 VAC 275 VAC 300 VAC 400 VAC	$\begin{array}{l} OC = YC \\ C = 0V \\ C = 1V \\ C = 2V \end{array}$) 50 V 10 V 11 V 60) F)0 F 0 F)0 F	= A025 = A500 = B100 = B110 = B600 = C120	Stand Versid Versid	on Al on Al.l	tures: = 00 = 1A .1 = 1B = 1C			Lead le 3.5 ±0.5 6 -2 16 -1		ntaped)	
SuperC		= SC = SC	CSR	440 VAC 500 VAC	=4V	V		0.20			.0						

The data on this page is not complete and serves only to explain the part number system. Part number information is listed on the pages of the respective WIMA range.

01.10