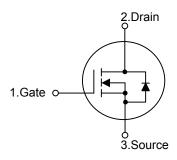
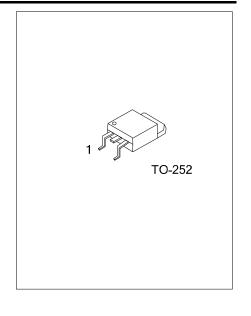
UNISONIC TECHNOLOGIES CO., LTD

UTT60N06 Power MOSFET

N-CHANNEL ENHANCEMENT MODE POWER MOSFET

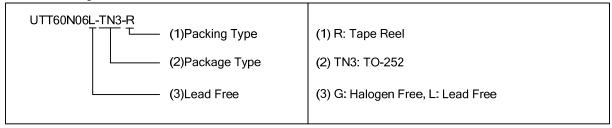

■ DESCRIPTION


The UTC **UTT60N06** is n-channel enhancement mode power field effect transistors with stable off-state characteristics, fast switching speed and low thermal resistance. usually used at telecom and computer applications.

■ FEATURES

- * $R_{DS(ON)} = 18m\Omega @V_{GS} = 10 V$
- * Fast switching capability
- * Avalanche energy Specified

■ SYMBOL



■ ORDERING INFORMATION

Ordering Number		Dealtage	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT60N06L-TN3-R	UTT60N06G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

UTT60N06 Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain to Source Voltage		V_{DSS}	60	V	
Gate to Source Voltage		V_{GS}	±20	V	
Continuous Drain Current	T _C = 25°C	I _D	60	Α	
	T _C = 100°C		39	Α	
Drain Current Pulsed (Note 2)	n Current Pulsed (Note 2)		120	Α	
Avalanche Energy	Single Pulsed	E _{AS}	100	mJ	
Power Dissipation (T _C =25°C)		P_D	83	W	
Junction Temperature		T_J	+150	Ô	
Storage Temperature		T_{STG}	-55 ~ + 150	°C	

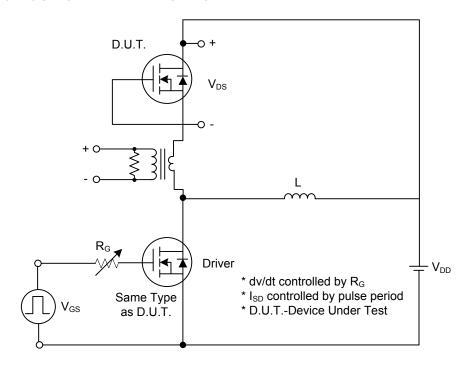
Note:1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

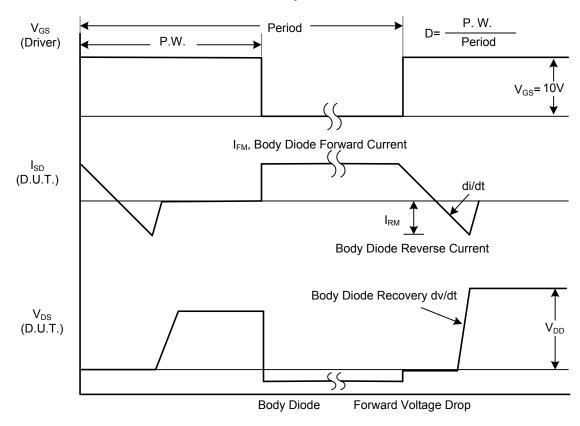
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	110	°C/W
Junction to Case	θ_{JC}	1.8	°C/W

^{2.} Repeativity rating: pulse width limited by junction temperature

UTT60N06

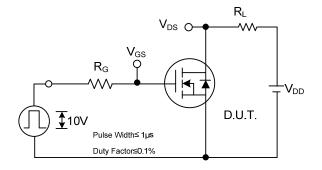

■ **ELECTRICAL CHARACTERISTICS** (T_C = 25°C, unless otherwise specified)

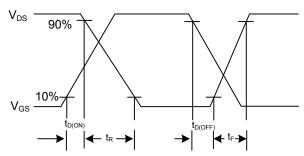
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu A$	60			V			
Drain-Source Leakage Current	I _{DSS}	$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ			
Gate-Source Leakage Current Forward		$V_{GS} = 20V, V_{DS} = 0 V$			100	nA			
Reverse	I_{GSS}	$V_{GS} = -20V, V_{DS} = 0 V$			-100	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V			
Static Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$		14	18	mΩ			
DYNAMIC CHARACTERISTICS									
Input Capacitance	C _{ISS}			2000		pF			
Output Capacitance	Coss	$V_{GS} = 0V$, $V_{DS} = 25V$, $f = 1MHz$		400		pF			
Reverse Transfer Capacitance	C _{RSS}			115		pF			
SWITCHING CHARACTERISTICS									
Turn-On Delay Time	t _{D(ON)}			12	30	ns			
Rise Time	t _R	V_{DD} =48V, I_{D} =60A, R_{L} =0.5 Ω ,		11	30	ns			
Turn-Off Delay Time	t _{D(OFF)}	V _{GS} =10V (Note 1, 2)		25	50	ns			
Fall Time	t _F			15	30	ns			
Total Gate Charge	Q_{G}	$V_{DS} = 30V, V_{GS} = 10 V$		39	60	nC			
Gate-Source Charge	Q_GS	$I_D = 60A \text{ (Note 1, 2)}$		12		nC			
Gate-Drain Charge (Miller Charge)	Q_GD	ID = OOA (Note 1, 2)		10		nC			
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS									
Diode Forward Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 60 \text{A}$			1.6	V			
Continuous Source Current	Is				60				
Pulsed Source Current	I _{SM}				120	Α			
Reverse Recovery Time	t _{RR}	$I_S = 60A$, $V_{GS} = 0 V$,		60		ns			
Reverse Recovery Charge	Q_{RR}	dI _F /dt = 100 A/µs (Note 1)		3.4		μC			


Notes: 1. Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

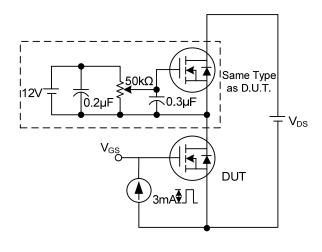
^{2.} Essentially independent of operating temperature.

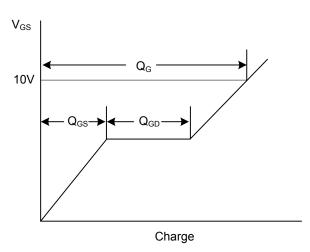
■ TEST CIRCUITS AND WAVEFORMS



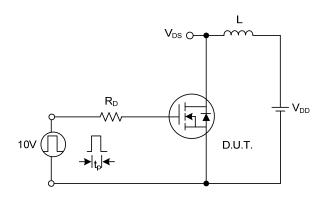

Peak Diode Recovery dv/dt Test Circuit

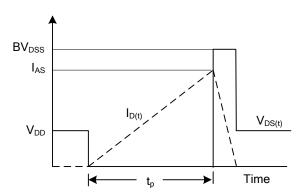
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)



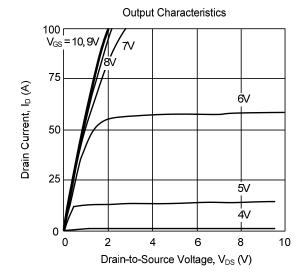
Switching Test Circuit

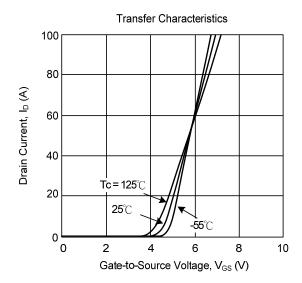

Switching Waveforms

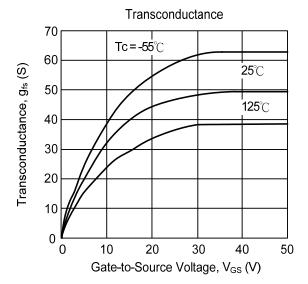


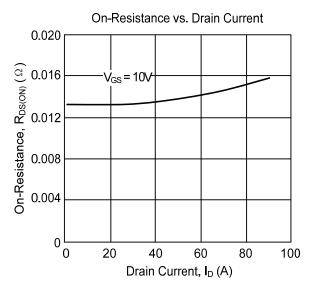
Gate Charge Test Circuit

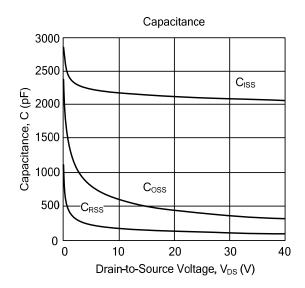
Gate Charge Waveform

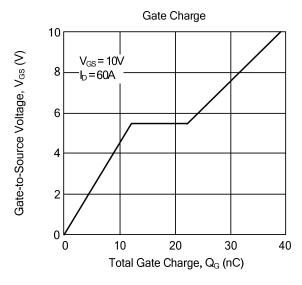


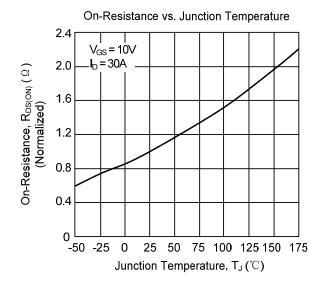


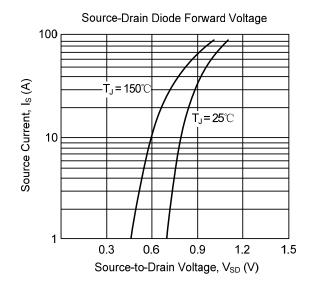

Unclamped Inductive Switching Test Circuit

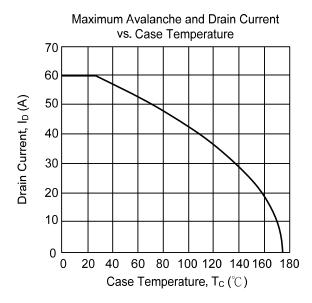

Unclamped Inductive Switching Waveforms

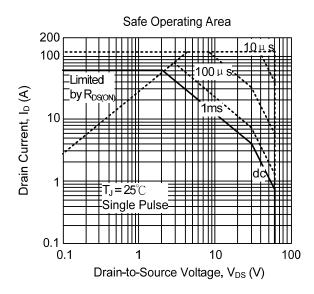

■ TYPICAL CHARACTERISTICS

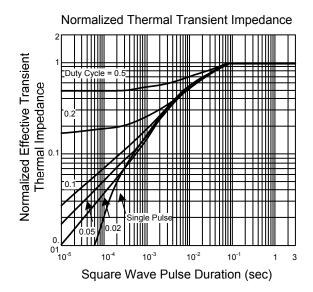











■ TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

