High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

General Description

The MAX19586 is a 3.3 V , high-speed, high-performance analog-to-digital converter (ADC) featuring a fully differential wideband track-and-hold (T/H) and a 16 -bit converter core. The MAX19586 is optimized for multichannel, multimode receivers, which require the ADC to meet very stringent dynamic performance requirements. With a -82 dBFS noise floor, the MAX19586 allows for the design of receivers with superior sensitivity requirements.
At 80Msps, the MAX19586 achieves a 79.2 dB signal-tonoise ratio (SNR) and an $84.3 \mathrm{dBc} / 100 \mathrm{dBc}$ single-tone spurious-free dynamic range (SFDR) performance (SFDR1/SFDR2) at $\mathrm{fin}_{\mathrm{N}}=70 \mathrm{MHz}$. The MAX19586 is not only optimized for excellent dynamic performance in the 2nd Nyquist region, but also for high-IF input frequencies. For instance, at 130 MHz , the MAX19586 achieves an 82.5dBc SFDR and its SNR performance stays flat (within 2.5 dB) throughout the 4th Nyquist region. This level of performance makes the part ideal for high-performance digital receivers.
The MAX19586 operates from a 3.3V analog supply voltage and a 1.8 V digital voltage, features a $2.56 \mathrm{VP}-\mathrm{P}$ full-scale input range, and allows for a guaranteed sampling speed of up to 80 Msps . The input track-and-hold stage operates with a 600 MHz full-scale, full-power bandwidth.

The MAX19586 features parallel, low-voltage CMOScompatible outputs in two's-complement output format. The MAX19586 is manufactured in an $8 \mathrm{~mm} \times 8 \mathrm{~mm}$, 56-pin thin QFN package with exposed paddle (EP) for low thermal resistance, and is specified for the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range.

Applications

Cellular Base-Station Transceiver Systems (BTS)
Wireless Local Loop (WLL)
Multicarrier Receivers
Multistandard Receivers
E911 Location Receivers
High-Performance Instrumentation
Antenna Array Processing

- 80Msps Minimum Sampling Rate
- 82dBFS Noise Floor
- Excellent Dynamic Performance
$80 \mathrm{~dB} / 79.2 \mathrm{~dB}$ SNR at $\mathrm{f} / \mathrm{N}=10 \mathrm{MHz} / 70 \mathrm{MHz}$ and -2dBFS
96dBc/102dBc Single-Tone SFDR1/ SFDR2 at $\mathrm{f} / \mathrm{N}=10 \mathrm{MHz}$
84.3dBc/100dBc Single-Tone SFDR1/ SFDR2 at $\mathrm{f} / \mathrm{N}=70 \mathrm{MHz}$
- Less than 0.1ps Sampling Jitter
- 1.1W Power Dissipation
- 2.56Vp-p Fully Differential Analog Input Voltage Range
- CMOS-Compatible Two's-Complement Data Output
- Separate Data Valid Clock and Over-Range Outputs
- Flexible Input Clock Buffer
- 3.3V Analog Power Supply; 1.8V Digital Output Supply
- Small 8mm x 8mm x 0.8mm 56-Pin Thin QFN Package
- EV Kit Available for MAX19586
(Order MAX19586EVKIT)
Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX19586ETN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	56 Thin QFN-EP	T5688-2
MAX19586ETN+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	56 Thin QFN-EP	$\mathrm{T} 5688-2$

+Denotes lead-free package.
Pin Configuration

TOP VIEW		
D9	43]: 228	AGND
010		REFIN
011		ReFOUT
012		AVod
D13	477: \quad [224	${ }^{\text {AV }}$ D
014		${ }^{\text {AV }}$ D
D15	[99:	AGND
dav	50: \quad MAX19586	AGND
DVod	(5i: \quad	AGND
DGND	52: \quad [99	${ }^{\text {AV }}$ D
DOR	[53: \quad [-1	AVD
N.C.	54: \quad [AVod
${ }_{\text {AV }}^{\text {D }}$		N.C.
$A_{\text {A }}$ D	56: 15 	N.c.
	THIN QFN $8 \mathrm{~mm} \times 8 \mathrm{~mm}$	

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

ABSOLUTE MAXIMUM RATINGS

$A V_{D D}$ to $A G N D$
-0.3 V to +3.6 V
-0.3 V to +2.4 V
DD to DGND
-0.3 V to +0.3 V
AGND to DGND
-0.3 V to (AV DD +0.3 V)
REFIN, REFOUT to AGND............
-0.3 V to ($\mathrm{DV} \mathrm{DD}+0.3 \mathrm{~V}$)
D0-D15, DAV, DOR, DAV to GND
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
56-Pin Thin QFN
(derate $47.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Thermal Resistance θ_{JA}.. $21^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance ӨJc ... $0.6^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(A V_{D D}=3.3 \mathrm{~V}, \mathrm{DV}\right.$ DD $=1.8 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0$, INP and INN driven differentially, internal reference CLKP and CLKN driven differentially, $C_{L}=5 \mathrm{pF}$ at digital outputs, $\mathrm{f}_{\mathrm{CLK}}=80 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to T_{MAX}, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution	N			16		Bits
Offset Error	VOS		0	10	20	mV
Gain Error	GE		-3.5		+3.5	\%FS
ANALOG INPUTS (INP, INN)						
Input Voltage Range	VIIFF	Fully differential input, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INP }}-\mathrm{V}_{\text {INN }}$		2.56		VP-P
Common-Mode Voltage	V_{CM}	Internally self-biased		2.2		V
Differential Input Resistance	RIN			$\begin{gathered} 10 \\ \pm 20 \% \end{gathered}$		$\mathrm{k} \Omega$
Differential Input Capacitance	CIN			7		pF
Full-Power Analog Bandwidth	BW-3dB	-3dB rolloff for FS Input		600		MHz
REFERENCE INPUT/OUTPUT (REFIN, REFOUT)						
Reference Input Voltage Range	REFIN			$\begin{gathered} 1.28 \\ \pm 10 \% \end{gathered}$		V
Reference Output Voltage	REFOUT			1.28		V
DYNAMIC SPECIFICATIONS (fCLK = 80Msps)						
Thermal Plus Quantization Noise Floor	NF	AIN $<-35 \mathrm{dBFS}$		-82		dBFS
Signal-to-Noise Ratio (First 4 Harmonics Excluded) (Notes 2, 3)	SNR	$\mathrm{fin}^{\prime}=10 \mathrm{MHz}, \mathrm{Als}^{\mathrm{I}}=-2 \mathrm{dBFS}$		80		dB
		$\mathrm{fin}^{\prime}=70 \mathrm{MHz}, \mathrm{AlN}^{\mathrm{N}}=-2 \mathrm{dBFS}$	77.5	79.2		
		$\mathrm{fin}^{\prime}=100 \mathrm{MHz}, \mathrm{AlN}^{\text {I }}=-2 \mathrm{dBFS}$		78.5		
		$\mathrm{fin}^{\mathrm{N}}=130 \mathrm{MHz}, \mathrm{AlN}^{\prime}=-2 \mathrm{dBFS}$		77.9		
		$\mathrm{fin}^{\text {N }}=168 \mathrm{MHz}, \mathrm{AlN}_{\text {I }}=-2 \mathrm{dBFS}$		77.2		
Signal-to-Noise Plus Distortion (Notes 2, 3)	SINAD	$\mathrm{fin}^{\prime}=10 \mathrm{MHz}, \mathrm{AlN}_{\text {IN }}=-2 \mathrm{dBFS}$		79.6		dB
		$\mathrm{fin}^{\prime}=70 \mathrm{MHz}, \mathrm{AlN}^{\mathrm{I}}=-2 \mathrm{dBFS}$	75	77.6		
		$\mathrm{fin}^{\mathrm{N}}=100 \mathrm{MHz}, \mathrm{AlN}^{\text {I }}=-2 \mathrm{dBFS}$		77.4		
		$\mathrm{fin}^{\mathrm{N}}=130 \mathrm{MHz}, \mathrm{AlN}^{\mathrm{I}}=-2 \mathrm{dBFS}$		76.4		
		$\mathrm{fin}=168 \mathrm{MHz}, \mathrm{AlN}^{\mathrm{N}}=-2 \mathrm{dBFS}$		72.7		

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

ELECTRICAL CHARACTERISTICS (continued)

$\left(A V_{D D}=3.3 V, D V_{D D}=1.8 V, A G N D=D G N D=0, I N P\right.$ and $I N N$ driven differentially, internal reference CLKP and CLKN driven differentially, $C_{L}=5 p F$ at digital outputs, $f_{C L K}=80 \mathrm{MHz}, T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Spurious-Free Dynamic Range (Worst Harmonic, 2nd and 3rd)	SFDR1	$\mathrm{fin}^{\prime}=10 \mathrm{MHz}, \mathrm{Al}_{\text {IN }}=-2 \mathrm{dBFS}$	96		dBc
		$\mathrm{fin}_{\text {I }}=70 \mathrm{MHz}, \mathrm{Al}_{\text {IN }}=-2 \mathrm{dBFS}$	$80 \quad 84.3$		
		$\mathrm{f} / \mathrm{N}=100 \mathrm{MHz}, \mathrm{AlN}^{\text {I }}=-2 \mathrm{dBFS}$	84		
		$\mathrm{fin}^{\text {l }}$ = 130MHz, $\mathrm{A}_{\text {IN }}=-2 \mathrm{dBFS}$	82.5		
		$\mathrm{f} / \mathrm{N}=168 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-2 \mathrm{dBFS}$	78		
Spurious-Free Dynamic Range (Worst Harmonic, 4th and Higher) (Note 3)	SFDR2	$\mathrm{fin}^{\prime}=10 \mathrm{MHz}, \mathrm{AlN}^{\text {I }}=-2 \mathrm{dBFS}$	102		dBc
			$90 \quad 100$		
			92		
		$\mathrm{fin}^{\prime}=130 \mathrm{MHz}, \mathrm{AlN}^{\text {d }}=-2 \mathrm{dBFS}$	94		
		$\mathrm{f} / \mathrm{N}=168 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-2 \mathrm{dBFS}$	90		
Second-Order Harmonic Distortion	HD2	$\mathrm{fin}_{\text {I }}=10 \mathrm{MHz}, \mathrm{Al}_{\text {IN }}=-2 \mathrm{dBFS}$	-100		dBc
		$\mathrm{fin}^{\prime}=70 \mathrm{MHz}, \mathrm{A}_{\mathrm{I}} \mathrm{N}=-2 \mathrm{dBFS}$	-95	-84	
			-94		
			-88.8		
		$\mathrm{f} / \mathrm{N}=168 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-2 \mathrm{dBFS}$	-78		
Third-Order Harmonic Distortion	HD3		-96		dBc
		$\mathrm{fin}^{\text {a }}$ 70MHz, AIN $=-2 \mathrm{dBFS}$	-84.3	-80	
		$\mathrm{f} / \mathrm{N}=100 \mathrm{MHz}, \mathrm{AlN}^{\text {I }}=-2 \mathrm{dBFS}$	-84		
		$\mathrm{fIN}=130 \mathrm{MHz}, \mathrm{AlN}^{\text {I }}=-2 \mathrm{dBFS}$	-82.5		
		$\mathrm{fin}^{\text {I }}=168 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-2 \mathrm{dBFS}$	-78		
Two-Tone Intermodulation Distortion	TTIMD	$\begin{aligned} & \text { fin1 }=65.1 \mathrm{MHz}, \text { AIN }=-8 \mathrm{dBFS} \\ & \mathrm{fIN2}=70.1 \mathrm{MHz}, \text { AIN }=-8 \mathrm{dBFS} \end{aligned}$	-85.2		dBc
Two-Tone SFDR	TTSFDR	$\begin{aligned} & \text { fin1 }=65.1 \mathrm{MHz}, \mathrm{f} / \mathrm{N} 2=70.1 \mathrm{MHz} \\ & -100 \mathrm{dBFS}<\text { AIN }<-10 \mathrm{dBFS} \end{aligned}$	99		dBFS
CONVERSION RATE					
Maximum Conversion Rate	fCLKMAX		80		MHz
Minimum Conversion Rate	fClkmin			20	MHz
Aperture Jitter	tJ		0.094		psRMS
CLOCK INPUTS (CLKP, CLKN)					
Differential Input Swing	V DIFFCLK	Fully differential inputs	$\begin{gathered} 1.0 \text { to } \\ 5.0 \end{gathered}$		VP-P
Common-Mode Voltage	VCMCLK	Self-biased	1.6		V
Differential Input Resistance	Rinclk		10		$\mathrm{k} \Omega$
Differential Input Capacitance	CINCLK		3		pF
CMOS-COMPATIBLE DIGITAL OUTPUTS (D0-D15, DOR, DAV)					
Digital Output High Voltage	VOH	ISOURCE $=200 \mu \mathrm{~A}$	$\begin{gathered} \text { DVDD - } \\ 0.2 \end{gathered}$		V
Digital Output Low Voltage	VOL	ISINK $=200 \mu \mathrm{~A}$		0.2	V

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

ELECTRICAL CHARACTERISTICS (continued)

$\left(A V_{D D}=3.3 V, D V_{D D}=1.8 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0\right.$, INP and INN driven differentially, internal reference CLKP and CLKN driven differentially, $C_{L}=5 p F$ at digital outputs, $f_{C L K}=80 \mathrm{MHz}, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TIMING SPECIFICATION (Figures 4, 5), $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (D0-D15, DOR); $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (DAV)						
CLKP - CLKN High	tCLKP	(Note 2)	5			ns
CLKP - CLKN Low	tCLKN	(Note 2)	5			ns
Effective Aperture Delay	$\mathrm{t}_{\text {AD }}$			-300		ps
Output Data Delay	tDAT			3.3		ns
Data Valid Delay	tDAV	(Note 2)	2.8	3.8	5.0	ns
Pipeline Latency	tp			7		Clock Cycles
CLKP Rising Edge to DATA Not Valid	tDNV	(Note 2)	1.2			ns
CLKP Rising Edge to DATA Guaranteed Valid	tDGV	(Note 2)			6.5	ns
DATA Setup Time Before Rising DAV	ts	Clock duty cycle $=50 \%($ Note 2$)$	3			ns
DATA Hold Time After Rising DAV	th	Clock duty cycle $=50 \%($ Note 2)	3			ns
POWER SUPPLIES						
Analog Power-Supply Voltage	AVDD		3.13	3.3	3.46	V
Digital Output Power-Supply Voltage	DV ${ }_{\text {DD }}$		1.7	1.8	1.9	V
Analog Power-Supply Current	IAVDD			320	382	mA
Digital Output Power-Supply Current	IDVDD			28	35	mA
Power Dissipation	Pdiss			1105	1325	mW

Note 1: $\geq+25^{\circ} \mathrm{C}$ guaranteed by production test, $<+25^{\circ} \mathrm{C}$ guaranteed by design and characterization. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 2: Parameter guaranteed by design and characterization.
Note 3: AC parameter measured in a 32,768-point FFT record, where the first 2 bins of the FFT and 2 bins on either side of the carrier are excluded.

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

Typical Operating Characteristics

($\mathrm{AV} \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{DV} \mathrm{DD}=1.8 \mathrm{~V}$, INP and INN driven differentially, internal reference, CLKP and CLKN driven differentially, $\mathrm{CL}=5 \mathrm{pF}$ at digital outputs, $\mathrm{fCLK}=80 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Unless otherwise noted, all AC data based on 32k-point FFT records and under coherent sampling conditions.)

FFT PLOT
(32,768-POINT RECORD)

SNR/SINAD vs. ANALOG INPUT FREQUENCY
(fCLK $=80 \mathrm{MHz}, A_{\text {IN }}=-2 \mathrm{dBFS}$)

SNR vs. ANALOG INPUT AMPLITUDE (f CLK $=\mathbf{8 0 M H z}, \mathrm{f}_{\mathrm{N}}=\mathbf{1 0 . 1 0 0 1 1} \mathrm{MHz}$)

FFT PLOT
(32,768-POINT RECORD)

SFDR1/SFDR2 vs. ANALOG INPUT FREQUENCY
(fclk $=80 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=\mathbf{- 2 d B F S}$)

SFDR1 vs. ANALOG INPUT AMPLITUDE (f CLK $=\mathbf{8 0 M H z}, \mathrm{f}_{\mathrm{IN}}=\mathbf{1 0 . 1 0 0 1 1} \mathrm{MHz}$)

FFT PLOT
(261,244-POINT DATA RECORD)

HD2/HD3 vs. ANALOG INPUT FREQUENCY
(fCLK $\left.=80 \mathrm{MHz}, A_{I N}=-2 \mathrm{dBFS}\right)$

SFDR2 vs. ANALOG INPUT AMPLITUDE (\mathbf{f} CLK $=\mathbf{8 0 M H z}, \mathrm{f} \mathbf{f}=\mathbf{1 0 . 1 0 0 1 1} \mathrm{MHz}$)

Typical Operating Characteristics (continued)

$\left(A V_{D D}=3.3 \mathrm{~V}, \mathrm{DV} V_{D D}=1.8 \mathrm{~V}, \mathrm{INP}\right.$ and $I N N$ driven differentially, internal reference, CLKP and CLKN driven differentially, $\mathrm{CL}=5 \mathrm{pF}$ at digital outputs, $\mathrm{f}_{\mathrm{CLK}}=80 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Unless otherwise noted, all AC data based on 32k-point FFT records and under coherent sampling conditions.)

SNR/SINAD vs. SAMPLING FREQUENCY ($\mathrm{f}_{\mathrm{IN}}=9.9757395 \mathrm{MHz}, \mathrm{A}_{\mathrm{IN}}=-2 \mathrm{dBFS}$)

SNR/SINAD vs. SAMPLING FREQUENCY ($\mathrm{f}_{\mathrm{IN}}=\mathbf{7 0 . 1 6 3 6 8 3} \mathrm{MHz}, \mathrm{A}_{\mathrm{IN}}=-2 \mathrm{dBFS}$)

SFDR1 vs. ANALOG INPUT AMPLITUDE (fclk $=\mathbf{8 0 M H z}, \mathrm{f}_{\mathrm{IN}}=\mathbf{7 0 . 1 6 3 6 8 3 M H z}$)

SFDR/SFDR2 vs. SAMPLING FREQUENCY

SFDR1/SFDR2 vs. SAMPLING FREQUENCY ($\mathrm{f}_{\mathrm{IN}}=\mathbf{7 0 . 1 6 3 6 8 3 M H z}, A_{\text {IN }}=\mathbf{- 2 d B F S}$)

SFDR2 vs. ANALOG INPUT AMPLITUDE (fCLK $=\mathbf{8 0 M H z}, \mathrm{f} / \mathrm{N}=\mathbf{7 0 . 1 6 3 6 8 3 M H z}$)

HD2/HD3 vs. SAMPLING FREQUENCY
($\mathrm{f}_{\mathrm{IN}}=\mathbf{1 0 . 1 0 0 1 1 \mathrm { MHz } , A _ { I N } = - 2 d B F S}$)

HD2/HD3 vs. SAMPLING FREQUENCY ($\mathrm{f}_{\mathrm{IN}}=\mathbf{7 0 . 1 6 3 6 8 3 M H z}, \mathrm{A}_{\mathrm{IN}}=\mathbf{- 2 d B F S}$)

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

Typical Operating Characteristics (continued)
($\mathrm{AV} \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{DV} \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$, INP and INN driven differentially, internal reference, CLKP and CLKN driven differentially, $\mathrm{CL}=5 \mathrm{pF}$ at digital outputs, $\mathrm{f}_{\mathrm{CLK}}=80 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Unless otherwise noted, all AC data based on 32k-point FFT records and under coherent sampling conditions.)

SNR/SINAD vs. TEMPERATURE
(fCLK $=80 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=\mathbf{7 0 . 1 6 3 6 8 3} \mathrm{MHz}$, $\left.A_{I N}=-2 d B F S\right)$

POWER DISSIPATION vs. TEMPERTURE

SFDR1/SFDR2 vs. TEMPERATURE (fcLK $=\mathbf{8 0 M H z}, \mathrm{f}_{\mathrm{IN}}=\mathbf{1 0 . 1 0 0 1 1} \mathrm{MHz}$, $\left.A_{I N}=-2 d B F S\right)$

SFDR1/SFDR2 vs. TEMPERATURE
(fCLK $=80 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=70.163683 \mathrm{MHz}$,
$\left.A_{I N}=-2 d B F S\right)$

REFERENCE VOLTAGE vs. TEMPERTURE

HD2/HD3 vs. TEMPERATURE
(fCLK $=80 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=\mathbf{1 0 . 1 0 0 1 1 M H z}$, $\left.A_{I N}=-2 d B F S\right)$

HD2/HD3 vs. TEMPERATURE
($\mathrm{f} \mathrm{CLK}=80 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=\mathbf{7 0 . 1 6 3 6 8 3 M H z}$, $\left.A_{I N}=-2 d B F S\right)$

POWER DISSIPATION vs. ANALOG SUPPLY VOLTAGE

Typical Operating Characteristics (continued)
$\left(A V_{D D}=3.3 \mathrm{~V}, \mathrm{DV} \mathrm{DD}^{2}=1.8 \mathrm{~V}, \mathrm{INP}\right.$ and INN driven differentially, internal reference, CLKP and CLKN driven differentially, $\mathrm{CL}=5 \mathrm{pF}$ at digital outputs, $\mathrm{fCLK}=80 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Unless otherwise noted, all AC data based on 32k-point FFT records and under coherent sampling conditions.)

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

Pin Description

PIN	NAME	FUNCTION
$\begin{aligned} & 1,2,17,18, \\ & 19,23,24, \\ & 25,55,56 \end{aligned}$	$A V_{D D}$	Analog Supply Voltage. Provide local bypassing to ground with $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors.
$\begin{aligned} & 3,6-9,12, \\ & 13,14,20, \\ & 21,22,28 \end{aligned}$	AGND	Converter Ground. Analog, digital, and output-driver grounds are internally connected to the same potential. Connect the converter's exposed paddle (EP) to GND.
4	CLKP	Differential Clock, Positive Input Terminal
5	CLKN	Differential Clock, Negative Input Terminal
10	INP	Differential Analog Input, Positive Terminal
11	INN	Differential Analog Input, Negative/Complementary Terminal
15, 16, 54	N.C.	No Connection. Do not connect to this pin.
26	REFOUT	Internal Bandgap Reference Output
27	REFIN	Reference Voltage Input
$\begin{gathered} 29,41,42, \\ 51 \end{gathered}$	DV ${ }_{\text {DD }}$	Digital Supply Voltage. Provide local bypassing to ground with $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors.
30, 31, 52	DGND	Converter Ground. Digital output-driver ground.
32	D0	Digital CMOS Output Bit 0 (LSB)
33	D1	Digital CMOS Output Bit 1
34	D2	Digital CMOS Output Bit 2
35	D3	Digital CMOS Output Bit 3
36	D4	Digital CMOS Output Bit 4
37	D5	Digital CMOS Output Bit 5
38	D6	Digital CMOS Output Bit 6
39	D7	Digital CMOS Output Bit 7
40	D8	Digital CMOS Output Bit 8
43	D9	Digital CMOS Output Bit 9
44	D10	Digital CMOS Output Bit 10
45	D11	Digital CMOS Output Bit 11
46	D12	Digital CMOS Output Bit 12
47	D13	Digital CMOS Output Bit 13
48	D14	Digital CMOS Output Bit 14
49	D15	Digital CMOS Output Bit 15 (MSB)
50	DAV	Data Valid Output. This output can be used as a clock control line to drive an external buffer or dataacquisition system. The typical delay time between the falling edge of the converter clock and the rising edge of DAV is 3.8 ns .
53	DOR	Data Over-Range Bit. This control line flags an over-/under-range condition in the ADC. If DOR transitions high, an over-/under-range condition was detected. If DOR remains low, the ADC operates within the allowable full-scale range.
-	EP	Exposed Paddle. Must be connected to AGND.

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

____Detailed Description
Figure 1 provides an overview of the MAX19586 architecture. The MAX19586 employs an input track-andhold (T/H) amplifier, which has been optimized for low thermal noise and low distortion. The high-impedance differential inputs to the T/H amplifier (INP and INN) are self-biased at 2.2 V , and support a full-scale $2.56 \mathrm{VP-P}$ differential input voltage. The output of the T/H amplifier is applied to a multistage pipelined ADC core, which is designed to achieve a very low thermal noise floor and low distortion.
A clock buffer receives a differential input clock waveform and generates a low-jitter clock signal for the input T / H. The signal at the analog inputs is sampled at the rising edge of the differential clock waveform. The differential clock inputs (CLKP and CLKN) are highimpedance inputs, are self-biased at 1.6 V , and support differential clock waveforms from 1 VP -P to $5 \mathrm{~V}_{\mathrm{P}}$-P.

The outputs from the multistage pipelined ADC core are delivered to error correction and formatting logic, which deliver the 16-bit output code in two's-complement format to digital output drivers. The output drivers provide 1.8 V CMOS-compatible outputs.

Analog Inputs (INP, INN) The signal inputs to the MAX19586 (INP and INN) are balanced differential inputs. This differential configuration provides immunity to common-mode noise coupling and rejection of even-order harmonic terms. The differ-
ential signal inputs to the MAX19586 should be AC-coupled and carefully balanced to achieve the best dynamic performance (see Differential, AC-Coupled Analog Inputs in the Applications Information section for more details). AC-coupling of the input signal is required because the MAX19586 inputs are self-biasing as shown in Figure 2. Although the track-and-hold inputs are high impedance, the actual differential input impedance is nominally $10 \mathrm{k} \Omega$ because of the two $5 \mathrm{k} \Omega$ resistors connected to the common-mode bias circuitry.
Avoid injecting any DC leakage currents into these analog inputs. Exceeding a DC leakage current of $10 \mu \mathrm{~A}$ shifts the self-biased common-mode level, adversely affecting the converter's performance.

On-Chip Reference Circuit The MAX19586 incorporates an on-chip 1.28V, low-drift bandgap reference. This reference potential establishes the full-scale range for the converter, which is nominally 2.56 V P-P differential (Figure 3). The internal reference voltage can be monitored by REFOUT. To use the internal reference voltage the reference input (REFIN) must be connected to REFOUT through a $10 k \Omega$ resistor. Bypass both pins with separate $1 \mu \mathrm{~F}$ capacitors to AGND.
The MAX19586 also allows an external reference source to be connected to REFIN, enabling the user to overdrive the internal bandgap reference. REFIN accepts a $1.28 \mathrm{~V} \pm 10 \%$ input voltage range.

Figure 1. Block Diagram

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

Clock Inputs (CLKP, CLKN)

The differential clock buffer for the MAX19586 has been designed to accept an AC-coupled clock waveform. Like the signal inputs, the clock inputs are self-biasing. In this case, the self-biased potential is 1.6 V and each input is connected to the reference potential with a $5 \mathrm{k} \Omega$ resistor. Consequently, the differential input resistance associated with the clock inputs is $10 \mathrm{k} \Omega$. While differential clock signals as low as $0.5 V_{\text {P_P }}$ can be used to drive the clock inputs, best dynamic performance is achieved with 1VP-P to 5VP-P clock input voltage levels. Jitter on the clock signal translates directly to jitter (noise) on the sampled signal. Therefore, the clock source must be a very low-jitter (low-phase-noise) source. Additionally, extremely low phase-noise oscillators and bandpass filters should be used to obtain the true AC performance of this converter. See the Differential, AC-Coupled Clock Inputs and Testing the MAX19586 topics in the Applications Information section for additional details on the subject of driving the clock inputs.

System Timing Requirements
Figure 4 depicts the general timing relationships for the signal input, clock input, data output, and DAV output. Figure 5 shows the detailed timing specifications and signal relationships, as defined in the Electrical Characteristics table.
The MAX19586 samples the input signal on the rising edge of the input clock. Output data is valid on the rising edge of the DAV signal, with a 7 clock-cycle data latency. Note that the clock duty cycle should typically be $50 \% \pm 10 \%$ for proper operation.

Digital Outputs (D0-D15, DAV, DOR) Although designed for low-voltage 1.8 V logic systems, the logic-high level of the low-voltage CMOS-compatible digital outputs (D0-D15, DAV, and DOR) offer some flexibility, as it allows the user to select the digital voltage within the 1.7 V to 1.9 V range.
For best performance, the capacitive loading on the digital outputs of the MAX19586 should be kept as low as possible (<10pF). Due to the current-limited dataoutput driver of the MAX19586, large capacitive loads increase the rise and fall time of the data and can make it more difficult to register the data into the next IC. The loading capacitance can be kept low by keeping the output traces short and by driving a single CMOS buffer or latch input (as opposed to multiple CMOS inputs). The output data is in two's-complement format, as illustrated in Table 1.
Data is valid at the rising edge of DAV (Figures 4, 5). DAV may be used as a clock signal to latch the output data. Note that the DAV output driver is not current limited, hence it allows for higher capacitive loading.

Figure 2. Simplified Analog Input Architecture

Figure 3. Full-Scale Voltage Range

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

Figure 4. General System and Output Timing Diagram

Figure 5. Detailed Timing Information for Clock Operation

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

Table 1. MAX19586 Digital Output Coding

INP ANALOG VOLTAGE LEVEL	INN ANALOG VOLTAGE LEVEL	D15-DO TWO'S-COMPLEMENT CODE
$V_{C M}+0.64 \mathrm{~V}$	$V_{\mathrm{CM}}-0.64 \mathrm{~V}$	0111111111111111 (positive full-scale)
V_{CM}	V_{CM}	0000000000000000
(midscale $+\delta$)		

The converter's DOR output signal is used to identify over- and under-range conditions. If the input signal exceeds the positive or negative full-scale range for the MAX19586 then DOR will be asserted high. The timing for DOR is identical to the timing for the data outputs, and DOR therefore provides an over-range indication on a sample-by-sample basis.

Applications Information

Differential, AC-Coupled Clock Inputs
The clock inputs to the MAX19586 are driven with an AC-coupled differential signal, and best performance is achieved under these conditions. However, it is often the case that the available clock source is single-ended. Figure 6 demonstrates one method for converting a sin-gle-ended clock signal into a differential signal with a transformer. In this example, the transformer turns ratio from the primary to secondary side is $1: 1.414$. The impedance ratio from primary to secondary is the square of the turns ratio, or 1:2. So terminating the secondary side with a 100Ω differential resistance results in a 50Ω load looking into the primary side of the transformer. The termination resistor in this example is comprised of the series combination of two 50Ω resistors with their common node AC-coupled to ground.
Figure 6 illustrates the secondary side of the transformer to be coupled directly to the clock inputs. Since the clock inputs are self-biasing, the center tap of the transformer must be AC-coupled to ground or left floating. If the center tap of the transformer's secondary side is DC-coupled to ground, it is necessary to add blocking capacitors in series with the clock inputs.
Clock jitter is generally improved if the clock signal has a high slew rate at the time of its zero-crossing. Therefore, if a sinusoidal source is used to drive the clock inputs the clock amplitude should be as large as
possible to maximize the zero-crossing slew rate. The back-to-back Schottky diodes shown in Figure 6 are not required as long as the input signal is held to a differential voltage potential of 3VP-p or less. If a larger amplitude signal is provided (to maximize the zero-crossing slew rate), then the diodes serve to limit the differential signal swing at the clock inputs. Note that all AC specifications for the MAX19586 are measured within this configuration and with an input clock amplitude of approximately 12 dBm .
Any differential mode noise coupled to the clock inputs translates to clock jitter and degrades the SNR performance of the MAX19586. Any differential mode coupling of the analog input signal into the clock inputs results in harmonic distortion. Consequently, it is important that the clock lines be well isolated from the analog signal input and from the digital outputs. See the Signal Routing section for more discussion on the subject of noise coupling.

Differential, AC-Coupled Analog Inputs

The analog inputs INP and INN are driven with a differential AC-coupled signal. It is important that these inputs be accurately balanced. Any common-mode signal applied to these inputs degrades even-order distortion terms. Therefore, any attempt at driving these inputs in a single-ended fashion will result in significant even-order distortion terms.
Figure 7 presents one method for converting a singleended signal to a balanced differential signal using a transformer. The primary-to-secondary turns ratio in this example is $1: 1.414$. The impedance ratio is the square of the turns ratio, so in this example the impedance ratio is $1: 2$. To achieve a 50Ω input impedance at the primary side of the transformer, the secondary side is terminated with a 100Ω differential load. This load, in shunt with the differential input resistance of the MAX19586, results in a 100Ω differential load on the secondary side. It is rea-

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

sonable to use a larger transformer turns ratio to achieve a larger signal step-up, and this may be desirable to relax the drive requirements for the circuitry driving the MAX19586. However, the larger the turns ratio, the larger the effect of the differential input impedance of the MAX19586 on the primary-referred input impedance.

As stated previously, the signal inputs to the MAX19586 must be accurately balanced to achieve the best evenorder distortion performance.

Figure 6. Transformer-Coupled Clock Input Configuration

Figure 7. Transformer-Coupled Analog Input Configuration with Primary-Side Balun Transformer

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

One note of caution in relation to transformers is important. Any DC current passed through the primary or secondary windings of a transformer may magnetically bias the transformer core. When this happens the transformer is no longer accurately balanced and a degradation in the distortion of the MAX19586 may be observed. The core must be demagnetized to return to balanced operation.

Testing the MAX19586

The MAX19586 has a very low thermal noise floor (-82dBFS) and very low jitter (< 100fs). As a consequence, test system limitations can easily obscure the

Figure 8a. Standard High-Speed ADC Test Setup (Simplified Block Diagram)

Figure 8b. 70MHz FFT with Standard High-Speed ADC Test Setup
performance of the ADC. Figure 8 a is a block diagram of a conventional high-speed ADC test system. The input signal and the clock source are generated by low-phase-noise synthesizers (e.g., Agilent 8644B). Bandpass filters in both the signal and the clock paths then attenuate noise and harmonic components.
Figure 8 b shows the resulting power spectrum, which results from this setup for a 70 MHz input tone and an 80 Msps clock. Note the substantial lift in the noise floor near the carrier. The bandwidth of this particular noisefloor lift near the carrier corresponds to the bandwidth of the filter in the input signal path.
Figure 8c illustrates the impact on the spectrum if the input frequency is shifted away from the center frequency of the input signal filter. Note that the fundamental tone has moved, but the noise-floor lift remains in the same location. This is evidence of the validity of the claim that the lift in the noise floor is due to the test system and not the ADC. In this figure, the magnitude of the lift in the noise floor increased relative to the previous figure because the signal is located on the skirt of the filter and the signal amplitude had to be increased to obtain a signal near full scale.
To truly reveal the performance of the MAX19586, the test system performance must be improved substantially. Figure 8d depicts such an improved test system. In this system, the synthesizers provide reference inputs to two dedicated low-noise phase-locked loops (PLLs), one centered at approximately 80 MHz (for the clock path) and the other centered at 70 MHz (for the signal path). The oscillators in these PLLs are very low-noise oscillators, and the

Figure 8c. 68MHz FFT with Standard High-Speed ADC Test Setup

High-Dynamic-Range, 16-Bit,
 80Msps ADC with -82dBFS Noise Floor

Figure 8d. Improved Test System Employing Narrowband PLLs (Simplified Block Diagram)

Figure 8e. 70MHz FFT with Improved High-Speed ADC Test Setup

PLLs act as extremely narrow bandwidth filters (on the order of 20 Hz) to attenuate the noise of the synthesizers. The system provides a total system jitter on the order of 20fs. Note that while the low-noise oscillators could be used by themselves without being locked to their respective signal sources, this would result in FFTs that are not coherent and which would require windowing.

Figure 8f. SNR vs. System Jitter Performance Graph

Figure 8 e is an FFT plot of the spectrum obtained when the improved test system is employed. The noise-floor lift in the vicinity of the carrier is now almost completely eliminated. The SNR associated with this FFT is about 79.1 dB , whereas the SNR obtained using the standard test system is on the order of 77.6 dB .

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

Figure $8 f$ demonstrates the impact of test system jitter on measured SNR. The figure plots SNR due to test system jitter only, neglecting all other sources of noise, for two different input frequencies. For example, note that for a 70 MHz input frequency a test system jitter number of 100fs results in an SNR (due to the test system alone) of about 87.1 dB . In the case of the MAX19586, which has a -82dBFS noise floor, this is not an inconsequential amount of additional noise.
In conclusion, careful attention must be paid to both the input signal source and the clock signal source, if the true performance of the MAX19586 is to be properly characterized. Dedicated PLLs with low-noise VCOs, such as those used in Figure 8d, are capable of providing signals with the required low jitter performance.

Layer Assignments

The MAX19586 EV kit is a 6-layer board, and the assignment of layers is discussed in this context. It is recommended that the ground plane be on a layer between the signal routing layer and the supply routing layer(s). This prevents coupling from the supply lines into the signal lines. The MAX19586 EV kit PC board places the signal lines on the top (component) layer and the ground plane on layer 2. Any region on the top layer not devoted to signal routing is filled with the ground plane with vias to layer 2. Layers 3 and 4 are devoted to supply routing, layer 5 is another ground plane, and layer 6 is used for the placement of additional components and for additional signal routing.
A four-layer implementation is also feasible using layer 1 for signal lines, layer 2 as a ground plane, layer 3 for supply routing, and layer 4 for additional signal routing. However, care must be taken to ensure that the clock and signal lines are isolated from each other and from the supply lines.

Signal Routing
To preserve good even-order distortion, the signal lines (those traces feeding the INP and INN inputs) must be carefully balanced. To accomplish this, the signal traces should be made as symmetric as possible, meaning that each of the two signal traces should be the same length and should see the same parasitic environment. As mentioned previously, the signal lines must be isolated from the supply lines to prevent coupling from the supplies to the inputs. This is accomplished by making the necessary layer assignments as described in the previous section. Additionally, it is crucial that the clock lines be isolated from the signal lines. On the MAX19586 EV kit this is done by routing the clock lines on the bottom layer (layer 6). The clock lines
then connect to the ADC through vias placed in close proximity to the device. The clock lines are isolated from the supply lines as well by virtue of the ground plane on layer 5.
As with all high-speed designs, digital output traces should be kept as short as possible to minimize capacitive loading. The ground plane on layer 2 beneath these traces should not be removed so that the digital ground return currents have an uninterrupted path back to the bypass capacitors.

Grounding
The practice of providing a split ground plane in an attempt to confine digital ground-return currents has often been recommended in ADC application literature. However, for converters such as the MAX19586 it is strongly recommended to employ a single, uninterrupted ground plane. The MAX19586 EV kit achieves excellent dynamic performance with such a ground plane.
The exposed paddle of the MAX19586 should be soldered directly to a ground pad on layer 1 with vias to the ground plane on layer 2. This provides excellent electrical and thermal connections to the PC board.

Supply Bypassing

The MAX19586 EV kit uses $220 \mu \mathrm{~F}$ capacitors (and smaller values such as $47 \mu \mathrm{~F}$ and $2 \mu \mathrm{~F}$) on power-supply lines $A V_{D D}$ and $D V_{D D}$ to provide low-frequency bypassing. The loss (series resistance) associated with these capacitors is beneficial in eliminating high-Q supply resonances. Ferrite beads are also used on each of the power-supply lines to enhance supply bypassing (Figure 9).
Combinations of small value ($0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$), lowinductance surface-mount capacitors should be placed at each supply pin or each grouping of supply pins to attenuate high-frequency supply noise. Place these capacitors on the top side of the board and as close to the converter as possible with short connections to the ground plane.

Parameter Definitions

Offset Error
Offset error is a figure of merit that indicates how well the actual transfer function matches the ideal transfer function at a single point. Ideally, the midscale MAX19586 transition occurs at 0.5 LSB above midscale. The offset error is the amount of deviation between the measured midscale transition point and the ideal midscale transition point.

High-Dynamic-Range, 16-Bit,
 80Msps ADC with -82dBFS Noise Floor

Figure 9. Grounding, Bypassing, and Decoupling Recommendations for the MAX19586

Gain Error
Gain error is a figure of merit that indicates how well the slope of the actual transfer function matches the slope of the ideal transfer function. The slope of the actual transfer function is measured between two data points: positive full scale and negative full scale. Ideally, the positive full-scale MAX19586 transition occurs at 1.5 LSBs below positive full scale, and the negative fullscale transition occurs at 0.5 LSB above negative full scale. The gain error is the difference of the measured transition points minus the difference of the ideal transition points.

Small-Signal Noise Floor (SSNF)

Small-signal noise floor is the integrated noise and distortion power in the Nyquist band for small-signal inputs. The DC offset is excluded from this noise calculation. For this converter, a small signal is defined as a single tone with an amplitude of less than -35dBFS. This parameter captures the thermal and quantization noise characteristics of the data converter and can be used to help calculate the overall noise figure of a digital receiver signal path.

Signal-to-Noise Ratio (SNR)
For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization error only and results directly from the ADC's resoIution (N bits):

$$
\text { SNR[max] }=6.02 \times \mathrm{N}+1.76
$$

In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise. RMS noise includes all spectral components to the Nyquist frequency excluding the fundamental, the first four harmonics (HD2 through HD5), and the DC offset.

$$
\text { SNR = } 20 \times \log \text { (SIGNALRMS / NOISERMS) }
$$

Signal-to-Noise Plus Distortion (SINAD) SINAD is computed by taking the ratio of the RMS signal to the RMS noise plus distortion. RMS noise plus distortion includes all spectral components to the Nyquist frequency excluding the fundamental and the DC offset.

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

Spurious-Free Dynamic Range

(SFDR1 and SFDR2)
SFDR is the ratio expressed in decibels of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest spurious component, excluding DC offset. SFDR1 reflects the MAX19586 spurious performance based on worst 2ndor 3rd-order harmonic distortion. SFDR2 is defined by the worst spurious component excluding 2nd- and 3rdorder harmonic spurs and DC offset.

Two-Tone Spurious-Free Dynamic
 Range (TTSFDR)

Two-tone SFDR is the ratio of the full scale of the converter to the RMS value of the peak spurious component. The peak spurious component can be related to the intermodulation distortion components, but does not have to be. Two-tone SFDR for the MAX19586 is expressed in dBFS.

Two-Tone Intermodulation Distortion (TTIMD)

IMD is the total power of the IM2 to IM5 intermodulation products to the Nyquist frequency relative to the total input power of the two input tones $\mathrm{f}_{\mathrm{I} 1} 1$ and $\mathrm{f}_{\mathrm{IN} 2}$. The individual input tone levels are at -8 dBFS . The intermodulation products are as follows:

Second-Order Intermodulation Products (IM2):
$\mathrm{fin}_{\mathrm{N}}+\mathrm{fin}_{\mathrm{N}}$, fin2-fin1
Third-Order Intermodulation Products (IM3):
$2 \times \mathrm{ff}_{\mathrm{N}} 1-\mathrm{f} / \mathrm{N} 2,2 \times \mathrm{f} / \mathrm{N} 2-\mathrm{f} / \mathrm{N} 1,2 \times \mathrm{f} / \mathrm{N} 1+\mathrm{f}_{\mathrm{I}} \mathrm{N} 2,2 \times \mathrm{f} / \mathrm{N} 2+\mathrm{f}_{\mathrm{f}}^{\mathrm{N}} 1$
Fourth-Order Intermodulation Products (IM4):
 $2 \times$ fin1- $2 \times$ fin2
Fifth-Order Intermodulation Products (IM5):
$3 \times$ fin $1-2 \times$ fin2, $3 \times$ fin2 $-2 \times$ fin $1,3 \times$ fin $1+2 \times$ fin2, $3 \times$ fin2 $+2 \times$ fin1, $4 \times$ fin1-fin2
Note that the two-tone intermodulation distortion is measured with respect to a single-carrier amplitude and not the peak-to-average input power of both input tones.

Aperture Jitter

Aperture jitter (tAJ) represents the sample-to-sample variation in the aperture delay specification.

Aperture Delay
Aperture delay (tAD) is the time defined between the rising edge of the sampling clock and the instant when an actual sample is taken (Figure 5).

High-Dynamic-Range, 16-Bit, 80Msps ADC with -82dBFS Noise Floor

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

MAX19586

Part Number Table

Notes:

1. See the MAX19586 QuickView Data Sheet for further information on this product family or download the MAX19586 full data sheet (PDF, 388kB).
2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.
3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
4. Part number suffixes: T or T\&R = tape and reel; + = RoHS/lead-free; \# = RoHS/lead-exempt. More: See full data sheet or Part Naming Conventions.
5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses.

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
MAX19586ETN-TD				-40C to +85 C	RoHS/Lead-Free: No
MAX19586ETN+TD				-40C to +85C	RoHS/Lead-Free: Yes
MAX19586ETN-D			THIN QFN; 56 pin; $8 \times 8 \times 0.8 \mathrm{~mm}$ Dwg: 21-0135E (PDF) Use pkgcode/variation: T5688-2*	-40C to +85 C	RoHS/Lead-Free: No Materials Analysis
MAX19586ETN+D			THIN QFN;56 pin; $8 \times 8 \times 0.8 \mathrm{~mm}$ Dwg: 21-0135E (PDF) Use pkgcode/variation: T5688+2*	-40C to +85C	RoHS/Lead-Free: Yes Materials Analysis

[^0]
[^0]: Didn't Find What You Need?

