

Low-Voltage PCM Repeater

GENERAL DESCRIPTION

The XR-C277 is a monolithic repeater circuit for Pulse-Code Modulated (PCM) telephone systems. It is designed to operate as a regenerative repeater at 1.544 Megabits per second (MBPS) data rate on T1-type PCM lines. It is packaged in a hermetic 16-Pin CERDIP package and is designed to operate over a temperature range of -40°C to +85°C. It contains all the basic functional blocks of a regenerative repeater system, including Automatic Line Build-Out (ALBO) and equalization, and is insensitive to reflections caused by cable discontinuities.

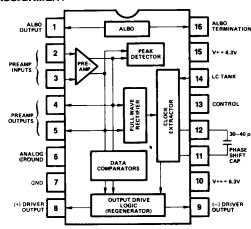
The key feature of the XR-C277 is its ability to operate with low supply voltage (6.3 volts and 4.3 volts) with a supply current of less than 13mA. Compared to conventional repeater designs using discrete components, the XR-C277 monolithic repeater IC offers greatly improved reliability and performance, along with significant savings in power consumption and system cost.

The XR-C277-5F is an improved version of XR-C277 with an internal feedback that improved the phase gain margin which enables the system to be more stable and less sensitive to PC board layouts.

Other versions of the XR-C277-5F are XR-C277-F and XR-C277-FL. XR-C277-F is an AC tested device of XR-C277-5F at 2 Mbit while XR-C277-FL Is the equivalent at 1.544 MBPS.

FEATURES

Contains all the Active Components of a PCM Repeater Low-Voltage Operation (6.3 volts)
Low-Power Dissipation (13mA)
On-Chip ALBO Port
High-Current Output Drivers
Increased Reliability over Discrete Designs
2 Megabit Operation Capability
Pin-Compatible with XR-C240


ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Supply Voltage	-0.5 to +10V
Input Voltage (Except Pin 1, 16)	0.5 to +7V
Input Voltage (Pin 1, 16)	-0.5 to +0.5V
Data Output Voltage (Pin 8, 9)	20V
Voltage Surge (Pin 2, 3, 8, 9) (10 mse	ec only) 50V

APPLICATIONS

PCM Repeater for T1 Systems
PCM Repeater for 2 M Bit/s Systems

PIN ASSIGNMENT

ORDERING INFORMATION

Part Number	Package	Operating Temperature
XR-C277	Ceramic	-40°C to +85°C
XR-C277-5F	Ceramic	-40°C to +85°C
XR-C277-F	Ceramic	-40°C to +85°C
XR-C277-FL	Ceramic	-40°C to +85°C

SYSTEM DESCRIPTION

The XR-C277 contains all the active circuits required to build one side of a T1 or 2 MBPS PCM repeater. T1 is the most widely used PCM transmission system, operating at 1.544 MBPS. It can operate on either pulp or plastic insulated twisted pair cables. Although the cable gauge may vary, the total cable loss should not exceed 36dB at 772kHz. For a 22 gauge pulp insulated cable and a bit error rate (BER) of less than 10-6 the max allowable repeater to repeater spacing is about 6300 feet.

Bipolar PCM signal is attenuated and dispersed in time as it travels along a transmission cable. This signal, when received, is amplified and reconstructed by the preamplifier Automatic Line Build Out (ALBO), clock and data threshold detector circuits contained within the XR-C277. Amplitude equalization and frequency spectrum shaping is achieved through the variable impedance of the ALBO port and its associated ALBO network.

Incoming pulse stream is full wave rectified and timing information is extracted by the clock threshold detector. Clock recovery is then achieved by pulsing a tank circuit tuned to 1.544MHz. Either injection locking or pulsed tank type clock extraction are possible with the XR-C277. By grounding Pin 13, the circuit works in the injection lock mode. Floating (open) Pin 13 switches the XR-C277 to

a pulse tank mode. The oscillator's sinusoidal waveform is amplified and phase shifted by 90 degrees with the help of a capacitor between Pins 11 and 12.

Data is sampled and stored in the output data latches by an internally generated sampling pulse. Buffer drivers are then enabled to produce precisely timed output pulses whose width and time of occurence are controlled by the regenerated clock signal.

ELECTRICAL CHARACTERISTICS

Test Conditions: $+25^{\circ}$ C, VCC1 = 6.3V \pm 5%, VCC2 = 4.4V \pm 5%, unless specified otherwise.

PARAMETERS		LIMITS		1	
	MIN	TYP.	MAX.	UNITS	CONDITIONS
Supply Current					
I _A		3.5		mA	Measured at Pin 10
l _B		7.5		m A	Measured at Pin 15
Total Current	8	11	13	mA	(I _A + I _B)
Preamplifier					
Input Offset Voltage		1.5	15	mV	Measured at Pins 2 and 3
Input Bias Current		0.3	4	μΑ	Measured at Pins 2 and 3
Voltage Gain	44	48	51	dB	Single-ended Gain
Preamp Output Swing					Measured at Pins 4 and 5
High Swing	3.45	3.6	3.75	V	Maximum Voltage Swing
Low Swing	1.25	1.4	1.55	V	Minimum Voltage Swing
Output DC Level	2.47	2.55	2.72	V	
ALBO Section			•		
ALBO "Off" Voltage		10	75	mV	Measured from Pin 1 and 16 to Ground
ALBO "On" Voltage	0.6	0.87	1,1	V	Measured at Pin 1
ALBO "On Voltage	1.2	1.5	2.1	V	Measured at Pin 16
ALBO Threshold Differential Threshold	1.35	1.50	1.65	V	Measured Differentially Across Pins 4 and 5
Dillerential Inresnoid	-75		+75	mV	Threshold Difference for Polarity Reversal
ALBO "On" Impedance		5	10	Ω	at Pins 4 and 5 Measured at Pin 1
ALBO "Off" Impedance	20	50	10	kΩ	Measured at Pin 1
Comparator Thresholds					
Clock Threshold	68	73	78	%	% of ALBO Threshold
Data Threshold	47	50	53	%	% of ALBO Threshold
Clock Extractor					
Oscillator Current	10	14	20	μА	
Tank Drive Impedance		50		kΩ	
Recommended OSC, Q	100				
Injection/IOSC	6.0	7	7.5		
Output Driver					1
Low Output Voltage	0.65	0.75	0.95	٧	Measured at Pins 8 and 9
Output "Off" Current		5	100	μА	$V_{\text{out}} = 20V$
Output Pulse				,	
Max. Pulse Width Error			±30	nsec	
Rise Time			80	nsec	
Full Time			80	nsec	