TOSHIBA Digital Integrated Circuit Silicon Monolithic # TC7MPH3125FK,TC7MPH3125FTG Low Voltage/Low Power 2-Bit × 2 Dual Supply Bus Transceiver with Bushold The TC7MPH3125FK/FTG is a dual supply, advanced high-speed CMOS 4-bit dual supply voltage interface bus transceiver fabricated with silicon gate CMOS technology. Designed for use as an interface between a 1.2-V, 1.5-V, 1.8-V, or 2.5-V bus and a 1.8-V, 2.5-V or 3.6-V bus in mixed 1.2-V, 1.5-V, 1.8-V or 2.5-V/1.8-V, 2.5-V or 3.6-V supply systems. The A-port interfaces with the 1.2-V, 1.5-V, 1.8-V or 2.5-V bus, the B-port with the 1.8-V, 2.5-V, 3.3-V bus. The direction of data transmission is determined by the level of the DIR input. The enable input (\overline{OE}) can be used to disable the device so that the buses are effectively isolated. The bus of a B bus side at floating state is maintained in an appropriate logic level due to a bushold circuit to a B bus. Moreover, the bushold circuit which is added to a B bus is off when \overline{OE} is low. All inputs are equipped with protection circuits against static discharge or transient excess voltage. #### **Features** - Bidirectional interface between 1.2-V and 1.8-V, 1.2-V and 2.5-V, 1.2-V and 3.3-V, 1.5-V and 2.5-V, 1.5-V and 3.3-V, 1.8-V and 2.5-V, 1.8-V and 3.3-V or 2.5-V and 3.3-V buses. - High-speed operation: $t_{pd} = 6.8 \text{ ns (max) (VCCA} = 2.5 \pm 0.2 \text{ V},$ $V_{CCB} = 3.3 \pm 0.3 \text{ V}$ $t_{pd} = 8.9 \text{ ns (max) (V_{CCA} = 1.8 \pm 0.15 \text{ V}, V_{CCB} = 3.3 \pm 0.3 \text{ V})}$ $t_{pd} = 10.3 \text{ ns (max) (VCCA} = 1.5 \pm 0.1 \text{ V, VCCB} = 3.3 \pm 0.3 \text{ V)} \\ t_{pd} = 61 \text{ ns (max) (VCCA} = 1.2 \pm 0.1 \text{ V, VCCB} = 3.3 \pm 0.3 \text{ V)} \\$ $t_{pd} = 9.5 \text{ ns (max)} (V_{CCA} = 1.8 \pm 0.15 \text{ V}, V_{CCB} = 2.5 \pm 0.2 \text{ V})$ $t_{pd} = 3.5 \text{ ns (max)} (V_{CCA} = 1.5 \pm 0.15 \text{ V}, V_{CCB} = 2.5 \pm 0.2 \text{ V})$ $t_{pd} = 10.8 \text{ ns (max)} (V_{CCA} = 1.5 \pm 0.15 \text{ V}, V_{CCB} = 2.5 \pm 0.2 \text{ V})$ t_{pd} = 60 ns (max) (V_{CCA} = 1.2 ± 0.15 V, V_{CCB} = 2.5 ± 0.2 V) $t_{pd} = 58 \text{ ns (max)} (V_{CCA} = 1.2 \pm 0.1 \text{ V}, V_{CCB} = 1.8 \pm 0.15 \text{ V})$ • Output current: $I_{OH}/I_{OL} = \pm 12 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$ $I_{OH}/I_{OL} = \pm 9 \text{mA (min)} (V_{CC} = 2.3 \text{ V})$ $I_{OH}/I_{OL} = \pm 3 \text{ mA (min) (V}_{CC} = 1.65 \text{ V)}$ $I_{OH}/I_{OL} = \pm 1 \text{mA (min) (V}_{CC} = 1.4 \text{ V)}$ - Latch-up performance: ±300 mA - ESD performance: Machine model $\geq \pm 200 \text{ V}$ Human body model ≥ ±2000 V - Ultra-small package: VSSOP (US16), VQON16 - Bushold circuit is build in only the B bus side. (Only in \overline{OE} = "H", a former state is maintained.) - Low current consumption: Using the new circuit significantly reduces current consumption when $\overline{OE}=$ "H". Suitable for battery-driven applications such as PDAs and cellular phones. - Floating A-bus and B-bus are permitted. (when $\overline{OE} = \text{"H"}$) - 3.6-V tolerant function provided on A-bus terminal, DIR and \overline{OE} terminal. Note 1: Do not apply a signal to any bus pins when it is in the output mode. Damage may result. Note: When mounting VQON package, the type of recommended flux is RA or RMA. Weight VSSOP16-P-0030-0.50: 0.02 g (typ.) VQON16-P-0303-0.50: 0.013 g (typ.) ## Pin Assignment (top view) ## **IEC Logic Symbol** FTG (VQON16-P-0303-0.50) Marking #### **Truth Table** | Inp | uts | Function | | | Bushold Circuit | | | |-----|------|----------------|----------------|---------|-----------------|---|-----| | 1OE | 1DIR | Bus
1A1-1A2 | Bus
1B1-1B2 | Outputs | (B bus) | | | | L | L | Output Input | | A = B | OFF | | | | L | Н | Input | Output | B = A | OFF | | | | Н | Х | Z | | Z Z | | Z | ON* | | Inp | Inputs | | ction | _ | Bushold Circuit | | |-----|--------|----------------|----------------|---------|-----------------|--| | 2OE | 2DIR | Bus
2A1-2A2 | Bus
2B1-2B2 | Outputs | (B bus) | | | L | L | Output Input | | A = B | OFF | | | L | Н | Input | Output | B=A | OFF | | | Н | Х | Z | | Z | ON* | | X: Don't care Z: High impedance *: Logic state just before becoming disable is maintained. ## **Block Diagram** 3 #### **Absolute Maximum Ratings (Note 1)** | Characteristics | Symbol | Rating | Unit | | |---|-------------------|---|------|--| | Power supply voltage (Note 2) | V _{CCA} | -0.5 to 4.6 | V | | | (Note 2) | V _{CCB} | -0.5 to 4.6 | V | | | DC input voltage (DIR, $\overline{\text{OE}}$) | V _{IN} | -0.5 to 4.6 | ٧ | | | | Viva | -0.5 to 4.6 (Note 3) | | | | DC bus I/O voltage | V _{I/OA} | -0.5 to V _{CCA} + 0.5 (Note 4) | V | | | | V _{I/OB} | -0.5 to V _{CCB} + 0.5 (Note 4) | | | | Input diode current | I _{IK} | -50 | mA | | | Output diode current | I _{I/OK} | ±50 (Note 5) | mA | | | DC output current | I _{OUTA} | ±25 | mA | | | Do output current | I _{OUTB} | ±25 | ША | | | DC V _{CC} /ground current per supply pin | ICCA | ±50 | mA | | | DO VOO/ground current per supply pill | I _{CCB} | ±50 | ША | | | Power dissipation | P_{D} | 180 | mW | | | Storage temperature | T _{stg} | -65 to 150 | °C | | Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction. Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc). Note 2: Don't supply a voltage to V_{CCB} pin when V_{CCA} is in the OFF state. Note 3: Output in OFF state Note 4: High or Low stats. I_{OUT} absolute maximum rating must be observed. Note 5: $V_{OUT} < GND$, $V_{OUT} > V_{CC}$ #### **Operating Ranges (Note 1)** | Characteristics | Symbol | Rating | Unit | | |---------------------------------------|-------------------|--------------------------------|------|--| | Power supply voltage | V_{CCA} | 1.1 to 2.7 | V | | | (Note 2) | V _{CCB} | 1.65 to 3.6 | V | | | Input voltage (DIR, \overline{OE}) | V_{IN} | 0 to 3.6 | V | | | | V _{I/OA} | 0 to 3.6 (Note 3) | | | | Bus I/O voltage | VI/OA | 0 to V _{CCA} (Note 4) | V | | | | V _{I/OB} | 0 to V _{CCB} (Note 4) | | | | | | ±9 (Note 5) | | | | | I _{OUTA} | ±3 (Note 6) | | | | Output current | | ±1 (Note 7) | mA | | | Output current | | ±12 (Note 8) | ША | | | | I _{OUTB} | ±9 (Note 9) | | | | | | ±3 (Note 10) | | | | Operating temperature | T _{opr} | -40 to 85 | °C | | | Input rise and fall time | dt/dv | 0 to 10 (Note 11) | ns/V | | Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs and bus inputs must be tied to either VCC or GND. Please connect both bus inputs and the bus outputs with VCC or GND when the I/O of the bus terminal changes by the function. In this case, please note that the output is not short-circuited. 5 - Note 2: Don't use in V_{CCA} > V_{CCB} - Note 3: Output in OFF state - Note 4: High or low state - Note 5: V_{CCB}= 2.3 to 2.7 V - Note 6: $V_{CCB} = 1.65 \text{ to } 1.95 \text{ V}$ - Note 7: $V_{CCB} = 1.4 \text{ to } 1.6 \text{ V}$ - Note 8: $V_{CCA} = 3.0 \text{ to } 3.6 \text{ V}$ - Note 9: $V_{CCA} = 2.3 \text{ to } 2.7 \text{ V}$ - Note 10: $V_{CCA} = 1.65 \text{ to } 1.95 \text{ V}$ - Note 11: $V_{IN} = 0.8$ to 2.0 V, $V_{CCA} = 2.5$ V, $V_{CCB} = 3.0$ V #### **Electrical Characteristics** #### DC Characteristics (2.3 V \leq V_{CCA} \leq 2.7 V, 2.7 V < V_{CCB} \leq 3.6 V) | Characteristics | Symbol | Toot C | ondition | V _{CCA} (V) | Vee- (\/) | Ta = -40 |) to 85°C | Unit | |-------------------------------------|-------------------|---|----------------------------|----------------------|----------------------|---------------------------|-----------|-------| | Characteristics | Symbol | Test Of | oridition | vCCA(v) | V _{CCB} (V) | Min | Max | Offic | | H-level input voltage | V _{IHA} | DIR, \overline{OE} , An | | 2.3 to 2.7 | 2.7 to 3.6 | 1.6 | _ | V | | Ti-level iliput voltage | V _{IHB} | Bn | | 2.3 to 2.7 | 2.7 to 3.6 | 2.0 | | V | | L-level input voltage | V _{ILA} | DIR, \overline{OE} , An | | 2.3 to 2.7 | 2.7 to 3.6 | _ | 0.7 | V | | L-level input voltage | V _{ILB} | Bn | | 2.3 to 2.7 | 2.7 to 3.6 | _ | 0.8 | V | | | V _{OHA} | | Ι _{ΟΗΑ} = -100 μΑ | 2.3 to 2.7 | 2.7 to 3.6 | V _{CCA}
- 0.2 | _ | V | | H-level output voltage | | V _{IN} = V _{IH} or V _{IL} | I _{OHA} = -9 mA | 2.3 | 2.7 to 3.6 | 1.7 | _ | | | Triever output voltage | V _{OHB} | VIN - VIH OI VIL | I _{OHB} = -100 μA | 2.3 to 2.7 | 2.7 to 3.6 | V _{CCB}
- 0.2 | _ | V | | | | | $I_{OHB} = -12 \text{ mA}$ | 2.3 to 2.7 | 3.0 | 2.2 | _ | | | | V _{OLA} | | $I_{OLA} = 100 \mu A$ | 2.3 to 2.7 | 2.7 to 3.6 | _ | 0.2 | | | L-level output voltage | VOLA | V _{IN} = V _{IH} or V _{IL} | I _{OLA} = 9 mA | 2.3 | 2.7 to 3.6 | _ | 0.6 | V | | L-level output voltage | V _{OLB} | VIN - VIH OI VIL | I _{OLB} = 100 μA | 2.3 to 2.7 | 2.7 to 3.6 | — | 0.2 | V | | | VOLB | | I _{OLB} = 12 mA | 2.3 to 2.7 | 3.0 | — | 0.55 | | | 3-state output OFF state current | I _{OZA} | $V_{IN} = V_{IH}$ or V_{IL}
$V_{OUT} = 0$ to 3.6 V | | 2.3 to 2.7 | 2.7 to 3.6 | _ | ±2.0 | | | | I _{OZB} | $V_{IN} = V_{IH}$ or V_{IL}
$V_{OUT} = 0$ to 3.6 V | | 2.3 to 2.7 | 2.7 to 3.6 | _ | ±2.0 | μА | | Input leakage current | I _{IN} | V _{IN} (DIR, $\overline{\text{OE}}$) = | = 0 to 3.6 V | 2.3 to 2.7 | 2.7 to 3.6 | _ |
±1.0 | μА | | Bushold input minimum drive hold | | V _{IN} = 0.8 V | | 2.3 to 2.7 | 3.0 | 75 | _ | ^ | | current | IHOLD | V _{IN} = 2.0 V | | 2.3 to 2.7 | 3.0 | -75 | _ | μА | | Bushold input over-drive current to | lion | | (Note 1) | 2.3 to 2.7 | 3.6 | _ | 550 | μА | | change state | l _{IOD} | | (Note 2) | 2.3 to 2.7 | 3.6 | _ | -550 | μΑ | | | I _{OFF1} | | | 0 | 0 | _ | 2.0 | | | Power-off leakage current | I _{OFF2} | V_{IN} , $V_{OUT} = 0$ to | 3.6 V | 2.3 to 2.7 | 0 | — | 2.0 | μА | | | l _{OFF3} | | | 2.3 to 2.7 | Open | _ | 2.0 | | | | ICCA | $V_{INA} = V_{CCA}$ or $Q_{INB} = V_{CCB}$ or $Q_{INB} = V_{CCB}$ | | 2.3 to 2.7 | 2.7 to 3.6 | _ | 2.0 | • | | Quiescent supply current | I _{CCB} | $V_{INA} = V_{CCA}$ or $Q_{INB} = V_{CCB}$ or $Q_{INB} = V_{CCB}$ | | 2.3 to 2.7 | 2.7 to 3.6 | _ | 2.0 | μΑ | | | I _{CCA} | V _{CCA} ≤ (V _{IN} , V _O | | 2.3 to 2.7 | 2.7 to 3.6 | _ | ±2.0 | | | | I _{CCB} | V _{CCB} ≤ (V _{IN} , V _O | | 2.3 to 2.7 | 2.7 to 3.6 | _ | ±2.0 | μА | | | Ісств | V _{INB} = V _{CCB} - 0 | .6 V per input | 2.3 to 2.7 | 2.7 to 3.6 | _ | 750.0 | μА | Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH. 6 ## DC Characteristics (1.65 V \leq V $_{\text{CCA}}$ < 2.3 V, 2.7 V < V $_{\text{CCB}}$ \leq 3.6 V) | Characteristics | Symbol | Tost Co | ondition | Voc. (\(\) | Voor (V) | Ta = -40 |) to 85°C | Unit | |----------------------------------|-------------------|--|---|----------------------|----------------------|----------------------------|---|-------| | Characteristics | Syllibol | 1651 01 | oridition | V _{CCA} (V) | V _{CCB} (V) | Min | Max | Offic | | H-level input voltage | V _{IHA} | DIR, $\overline{\text{OE}}$, An | | 1.65 to 2.3 | 2.7 to 3.6 | 0.65 ×
V _{CCA} | | ٧ | | | V _{IHB} | Bn | | 1.65 to 2.3 | 2.7 to 3.6 | 2.0 | _ | | | L-level input voltage | V _{ILA} | DIR, \overline{OE} , An | | 1.65 to 2.3 | 2.7 to 3.6 | | $\begin{array}{c} 0.35 \times \\ V_{CCA} \end{array}$ | ٧ | | | V _{ILB} | Bn | | 1.65 to 2.3 | 2.7 to 3.6 | _ | 0.8 | | | | V _{OHA} | | I _{OHA} = -100 μA | 1.65 to 2.3 | 2.7 to 3.6 | V _{CCA}
- 0.2 | _ | · V | | H-level output voltage | | V _{IN} = V _{IH} or V _{IL} | $I_{OHA} = -3 \text{ mA}$ | 1.65 | 2.7 to 3.6 | 1.25 | _ | | | | V _{OHB} | VIN - VIH OI VIL | I _{OHB} = -100 μA | 1.65 to 2.3 | 2.7 to 3.6 | V _{CCB}
- 0.2 | _ | V | | | | | I _{OHB} = -12 mA | 1.65 to 2.3 | 3.0 | 2.2 | _ | | | | V _{OLA} | | $I_{OLA} = 100 \mu A$ | 1.65 to 2.3 | 2.7 to 3.6 | _ | 0.2 | | | L-level output voltage | VOLA | V _{IN} = V _{IH} or V _{IL} | I _{OLA} = 3 mA | 1.65 | 2.7 to 3.6 | _ | 0.3 | V | | L-ievel output voltage | V _{OLB} | AIM - AIH OLAIC | $I_{OLB} = 100 \mu A$ | 1.65 to 2.3 | 2.7 to 3.6 | _ | 0.2 | v | | | VOLB | | I _{OLB} = 12 mA | 1.65 to 2.3 | 3.0 | _ | 0.55 | | | | I _{OZA} | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$ | V _{IN} = V _{IH} or V _{IL}
V _{OUT} = 0 to 3.6 V | | 2.7 to 3.6 | _ | ±2.0 | | | 3-state output OFF state current | I _{OZB} | $V_{IN} = V_{IH}$ or V_{IL}
$V_{OUT} = 0$ to 3.6 V | | 1.65 to 2.3 | 2.7 to 3.6 | _ | ±2.0 | μΑ | | Input leakage current | I _{IN} | V _{IN} (DIR, $\overline{\text{OE}}$) | = 0 to 3.6 V | 1.65 to 2.3 | 2.7 to 3.6 | _ | ±1.0 | μΑ | | Bushold input minimum drive hold | i . | V _{IN} = 0.8 V | | 1.65 to 2.3 | 3.0 | 75 | _ | ^ | | current | IHOLD | V _{IN} = 2.0 V | | 1.65 to 2.3 | 3.0 | -75 | _ | μА | | Bushold input over-drive current | | | (Note 1) | 1.65 to 2.3 | 3.6 | _ | 550 | ^ | | to change state | I _{IOD} | | (Note 2) | 1.65 to 2.3 | 3.6 | _ | -550 | μΑ | | | I _{OFF1} | | | 0 | 0 | _ | 2.0 | | | Power-off leakage current | I _{OFF2} | V_{IN} , $V_{OUT} = 0$ to | 3.6 V | 1.65 to 2.3 | 0 | _ | 2.0 | μΑ | | | I _{OFF3} | | | 1.65 to 2.3 | Open | | 2.0 | | | | I _{CCA} | $V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$ | | 1.65 to 2.3 | 2.7 to 3.6 | _ | 2.0 | | | Quiescent supply current | ICCB | V _{INA} = V _{CCA} or (| | 1.65 to 2.3 | 2.7 to 3.6 | _ | 2.0 | μΑ | |
1 | I _{CCA} | V _{CCA} ≤ (V _{IN} , V _O | | 1.65 to 2.3 | 2.7 to 3.6 | _ | ±2.0 | _ | | | ICCB | V _{CCB} ≤ (V _{IN} , V _O | | 1.65 to 2.3 | 2.7 to 3.6 | _ | ±2.0 | μА | | | Ісств | V _{INB} = V _{CCB} - 0 | | 1.65 to 2.3 | 2.7 to 3.6 | _ | 750.0 | μА | Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH. ## DC Characteristics (1.4 V \leq V_{CCA} < 1.65 V, 2.7 V < V_{CCB} \leq 3.6 V) | Characteristics | Symbol | Test Co | ondition | V _{CCA} (V) | V _{CCB} (V) | Ta = -40 | to 85°C | Unit | |----------------------------------|--|---|----------------------------|----------------------|----------------------|----------------------------|---|-----------| | on a dotto notice | Cy | | | 1004(1) | * CCB (*) | Min | Max | • · · · · | | H-level input voltage | V_{IHA} | DIR, \overline{OE} , An | | 1.4 to 1.65 | 2.7 to 3.6 | 0.65 ×
V _{CCA} | | V | | | V_{IHB} | Bn | | 1.4 to 1.65 | 2.7 to 3.6 | 2.0 | | | | L-level input voltage | V_{ILA} | DIR, $\overline{\text{OE}}$, An | | 1.4 to 1.65 | 2.7 to 3.6 | ı | $\begin{array}{c} 0.30 \times \\ V_{CCA} \end{array}$ | V | | | V_{ILB} | Bn | | 1.4 to 1.65 | 2.7 to 3.6 | | 0.8 | | | | V _{OHA} | | I _{OHA} = -100 μA | 1.4 to 1.65 | 2.7 to 3.6 | V _{CCA}
- 0.2 | | | | H-level output voltage | | V _{IN} = V _{IH} or V _{IL} | $I_{OHA} = -1 \text{ mA}$ | 1.4 | 2.7 to 3.6 | 1.05 | | V | | 11-level output voltage | V _{OHB} | VIN - VIH OI VIL | $I_{OHB} = -100 \mu A$ | 1.4 to 1.65 | 2.7 to 3.6 | V _{CCB} – 0.2 | | V | | | | | I _{OHB} = -12 mA | 1.4 to 1.65 | 3.0 | 2.2 | | | | | V | | I _{OLA} = 100 μA | 1.4 to 1.65 | 2.7 to 3.6 | _ | 0.2 | | | L-level output voltage | V_{OLA} | V _{IN} = V _{IH} or V _{IL} | I _{OLA} = 1 mA | 1.4 | 2.7 to 3.6 | _ | 0.35 | V | | L-level output voltage | ., | AIM = AIH OL AIF | I _{OLB} = 100 μA | 1.4 to 1.65 | 2.7 to 3.6 | _ | 0.2 | V | | | V_{OLB} | | I _{OLB} = 12 mA | 1.4 to 1.65 | 3.0 | _ | 0.55 | | | | I_{OZA} $V_{IN} = V_{IH} \text{ or } V_{II}$ $V_{OUT} = 0 \text{ to } 3.6$ | | V | 1.4 to 1.65 | 2.7 to 3.6 | | ±2.0 | | | 3-state output OFF state current | I _{OZB} | $V_{IN} = V_{IH}$ or V_{IL}
$V_{OUT} = 0$ to 3.6 | V | 1.4 to 1.65 | 2.7 to 3.6 | _ | ±2.0 | μА | | Input leakage current | I _{IN} | V _{IN} (DIR, $\overline{\text{OE}}$) = | = 0 to 3.6 V | 1.4 to 1.65 | 2.7 to 3.6 | _ | ±1.0 | μΑ | | Bushold input minimum drive hold | | V _{IN} = 0.8 V | | 1.4 to 1.65 | 3.0 | 75 | _ | ^ | | current | IHOLD | V _{IN} = 2.0 V | | 1.4 to 1.65 | 3.0 | -75 | _ | μА | | Bushold input over-drive current | 1 | | (Note 1) | 1.4 to 1.65 | 3.6 | _ | 550 | ^ | | to change state | IOD | | (Note 2) | 1.4 to 1.65 | 3.6 | _ | -550 | μА | | | l _{OFF} | | | 0 | 0 | _ | 2.0 | | | Power-off leakage current | l _{OFF} | V_{IN} , $V_{OUT} = 0$ to | 3.6 V | 1.4 to 1.65 | 0 | _ | 2.0 | μΑ | | | l _{OFF} | | | 1.4 to 1.65 | Open | _ | 2.0 | | | | I _{CCA} | $V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or V_{CCB} | | 1.4 to 1.65 | 2.7 to 3.6 | | 2.0 | | | Quiescent supply current | I _{CCB} | V _{INA} = V _{CCA} or (| | 1.4 to 1.65 | 2.7 to 3.6 | _ | 2.0 | μА | | | I _{CCA} | $V_{CCA} \le (V_{IN}, V_{O})$ | | 1.4 to 1.65 | 2.7 to 3.6 | _ | ±2.0 | | | | I _{CCB} | $V_{CCB} \le (V_{IN}, V_{O})$ | | 1.4 to 1.65 | | _ | ±2.0 | μА | | | Ісств | $V_{INB} = V_{CCB} - 0$ | | 1.4 to 1.65 | 2.7 to 3.6 | _ | 750.0 | μА | Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH. 8 ## DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 2.7 V < V_{CCB} \leq 3.6 V) | Characteristics | Symbol | Test Co | ondition | V _{CCA} (V) | V _{CCB} (V) | Ta = -40 | to 85°C | Unit | |----------------------------------|-------------------|--|--|----------------------|----------------------|----------------------------|---|------| | Characteristics | Symbol | 1631 01 | oridition | VCCA (V) | vCCB(v) | Min | Max | Omt | | H-level input voltage | V _{IHA} | DIR, $\overline{\text{OE}}$, An | | 1.1 to 1.4 | 2.7 to 3.6 | 0.65 ×
V _{CCA} | | V | | | V _{IHB} | Bn | | 1.1 to 1.4 | 2.7 to 3.6 | 2.0 | _ | | | L-level input voltage | V _{ILA} | DIR, OE, An | | 1.1 to 1.4 | 2.7 to 3.6 | _ | $\begin{array}{c} 0.30 \times \\ V_{CCA} \end{array}$ | ٧ | | | V_{ILB} | Bn | | 1.1 to 1.4 | 2.7 to 3.6 | _ | 8.0 | | | | V _{OHA} | | I _{OHA} = -100 μA | 1.1 to 1.4 | 2.7 to 3.6 | V _{CCA}
- 0.2 | _ | | | H-level output voltage | V _{OHB} | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | I _{OHB} = -100 μA | 1.1 to 1.4 | 2.7 to 3.6 | V _{CCB}
- 0.2 | | V | | | | | I _{OHB} = -12 mA | 1.1 to 1.4 | 3.0 | 2.2 | _ | | | | V _{OLA} | | I _{OLA} = 100 μA 1 | | 2.7 to 3.6 | _ | 0.2 | | | L-level output voltage | V _{OLB} | $V_{IN} = V_{IH}$ or V_{IL} | I _{OLB} = 100 μA | 1.1 to 1.4 | 2.7 to 3.6 | _ | 0.2 | V | | L level output voltage | VOLB | | I _{OLB} = 12 mA | 1.1 to 1.4 | 3.0 | _ | 0.55 | | | | IOZA | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$V_{OUT} = 0 \text{ to } 3.6$ | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$ | | 2.7 to 3.6 | _ | ±2.0 | | | 3-state output OFF state current | I _{OZB} | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$V_{OUT} = 0 \text{ to } 3.6$ | V | 1.1 to 1.4 | 2.7 to 3.6 | _ | ±2.0 | μΑ | | Input leakage current | I _{IN} | V _{IN} (DIR,
$\overline{\text{OE}}$): | | 1.1 to 1.4 | 2.7 to 3.6 | _ | ±1.0 | μΑ | | Bushold input minimum drive hold | | V _{IN} = 0.8 V | | 1.1 to 1.4 | 3.0 | 75 | _ | | | current | IHOLD | V _{IN} = 2.0 V | | 1.1 to 1.4 | 3.0 | -75 | _ | μА | | Bushold input over-drive current | | | (Note 1) | 1.1 to 1.4 | 3.6 | _ | 550 | | | to change state | l _{IOD} | | (Note 2) | 1.1 to 1.4 | 3.6 | _ | -550 | μΑ | | | I _{OFF1} | | | 0 | 0 | _ | 2.0 | | | Power-off leakage current | I _{OFF2} | V _{IN} , V _{OUT} = 0 to | 3.6 V | 1.1 to 1.4 | 0 | _ | 2.0 | μА | | | I _{OFF3} | | | 1.1 to 1.4 | Open | _ | 2.0 | | | | I _{CCA} | V _{INA} = V _{CCA} or V _{INB} = V _{CCB} or V _{INB} | | 1.1 to 1.4 | 2.7 to 3.6 | _ | 2.0 | | | Quiescent supply current | I _{CCB} | $V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or | GND | 1.1 to 1.4 | 2.7 to 3.6 | _ | 2.0 | μΑ | | | ICCA | $V_{CCA} \le (V_{IN}, V_{CCA})$ | _{UT}) ≤ 3.6 V | 1.1 to 1.4 | 2.7 to 3.6 | _ | ±2.0 | | | | ICCB | $V_{CCB} \le (V_{IN}, V_{C})$ | _{UT}) ≤ 3.6 V | 1.1 to 1.4 | 2.7 to 3.6 | _ | ±2.0 | μΑ | | | Ісств | $V_{INB} = V_{CCA} - 0$ | .6 V per input | 1.1 to 1.4 | 2.7 to 3.6 | _ | 750.0 | | Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH. 9 ## DC Characteristics (1.65 V \leq V_{CCA} < 2.3 V, 2.3 V \leq V_{CCB} \leq 2.7 V) | Characteristics | Symbol | Test Co | ondition | V _{CCA} (V) | V _{CCB} (V) | Ta = -40 | to 85°C | Unit | |----------------------------------|------------------|---|--|----------------------|----------------------|----------------------------|---|-------| | | Cy2C. | | | * COA (*) | *CCB (*/ | Min | Max | • | | H-level input voltage | V_{IHA} | DIR, \overline{OE} , An | | 1.65 to 2.3 | 2.3 to 2.7 | 0.65 ×
V _{CCA} | | V | | | V_{IHB} | Bn | | 1.65 to 2.3 | 2.3 to 2.7 | 1.6 | _ | | | L-level input voltage | V_{ILA} | DIR, $\overline{\text{OE}}$, An | | 1.65 to 2.3 | 2.3 to 2.7 | | $\begin{array}{c} 0.35 \times \\ V_{CCB} \end{array}$ | ٧ | | | V_{ILB} | Bn | | 1.65 to 2.3 | 2.3 to 2.7 | | 0.7 | | | | V _{OHA} | | $I_{OHA} = -100 \mu A$ | 1.65 to 2.3 | 2.3 to 2.7 | V _{CCA}
- 0.2 | | | | H-level output voltage | | V _{IN} = V _{IH} or V _{IL} | $I_{OHA} = -3 \text{ mA}$ | 1.65 | 2.3 to 2.7 | 1.25 | _ | V | | Thevel output voltage | V _{OHB} | VIN - VIH OI VIL | I _{OHB} = -100 μA | 1.65 to 2.3 | 2.3 to 2.7 | V _{CCB} – 0.2 | | V | | | | | $I_{OHB} = -9 \text{ mA}$ | 1.65 to 2.3 | 2.3 | 1.7 | _ | | | | V _{OLA} | | $I_{OLA} = 100 \mu A$ | 1.65 to 2.3 | 2.3 to 2.7 | _ | 0.2 | | | L-level output voltage | VOLA | V _{IN} = V _{IH} or V _{IL} | I _{OLA} = 3 mA | 1.65 | 2.3 to 2.7 | _ | 0.3 | V | | L-level output voltage | V _{OLB} | AIM - AIH OL AIF | $I_{OLB} = 100 \mu A$ | 1.65 to 2.3 | 2.3 to 2.7 | _ | 0.2 | V | | | VOLB | | I _{OLB} = 9mA | 1.65 to 2.3 | 2.3 | _ | 0.6 | | | | loza | $V_{IN} = V_{IH}$ or V_{IL} | | 1.65 to 2.3 | 2.3 to 2.7 | _ | ±2.0 | | | 3-state output OFF state current | IOZA | V _{OUT} = 0 to 3.6 V | | 1.00 to 2.0 | 2.0 to 2.7 | | ± 2 .0 | μА | | | I _{OZB} | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$V_{OUT} = 0 \text{ to } 3.6 \text{ V}$ | | 1.65 to 2.3 | 2.3 to 2.7 | _ | ±2.0 | • | | Input leakage current | I _{IN} | V _{IN} (DIR, OE) | | 1.65 to 2.3 | 2.3 to 2.7 | _ | ±1.0 | μА | | Bushold input minimum drive hold | | V _{IN} = 0.7 V | | 1.65 to 2.3 | 2.3 | 45 | _ | | | current | IHOLD | V _{IN} = 1.6 V | | 1.65 to 2.3 | 2.3 | -45 | _ | μΑ | | Bushold input over-drive current | | | (Note 1) | 1.65 to 2.3 | 2.7 | _ | 450 | | | to change state | lIOD | | (Note 2) | 1.65 to 2.3 | 2.7 | _ | -450 | μΑ | | | l _{OFF} | | | 0 | 0 | _ | 2.0 | | | Power-off leakage current | l _{OFF} | V_{IN} , $V_{OUT} = 0$ to | 3.6 V | 1.65 to 2.3 | 0 | _ | 2.0 | μΑ | | | l _{OFF} | | | 1.65 to 2.3 | Open | _ | 2.0 | | | | 1 | V _{INA} = V _{CCA} or | GND | 1.65 to 2.3 | 2.2 to 2.7 | | 2.0 | | | | ICCA | V _{INB} = V _{CCB} or 0 | V _{INB} = V _{CCB} or GND | | 2.3 to 2.7 | _ | 2.0 | Δ | | Quiescent supply current | I _{CCB} | V _{INA} = V _{CCA} or 0 | V _{INA} = V _{CCA} or GND | | 2.3 to 2.7 | | 2.0 | μΑ | | Quiocooni ouppry ourron | 'CCB | $V_{INB} = V_{CCB}$ or | GND | 1.65 to 2.3 | 2.0 to 2.7 | | 2.0 | | | | ICCA | $V_{CCA} \le (V_{IN}, V_{O})$ | _{UT}) ≤ 3.6 V | 1.65 to 2.3 | 2.3 to 2.7 | _ | ±2.0 | μА | | | I _{CCB} | $V_{CCB} \le (V_{IN}, V_{O})$ | _{UT}) ≤ 3.6 V | 1.65 to 2.3 | 2.3 to 2.7 | _ | ±2.0 | L-, , | Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH. ## DC Characteristics (1.4 V \leq V_{CCA} < 1.65 V, 2.3 V \leq V_{CCB} \leq 2.7 V) | Characteristics | Symbol | Test Co | ondition | V _{CCA} (V) | V _{CCB} (V) | Ta = -40 | to 85°C | Unit | |-----------------------------------|-------------------|---|----------------------------|----------------------|----------------------|----------------------------|----------------------------|------| | | Cy2C. | | | 1004(1) | *CCB (*/ | Min | Max | • | | H-level input voltage | V_{IHA} | DIR, \overline{OE} , An | | 1.4 to 1.65 | 2.3 to 2.7 | 0.65 ×
V _{CCA} | _ | V | | | V_{IHB} | Bn | | 1.4 to 1.65 | 2.3 to 2.7 | 1.6 | _ | | | L-level input voltage | V_{ILA} | DIR, $\overline{\text{OE}}$, An | | 1.4 to 1.65 | 2.3 to 2.7 | | 0.30 ×
V _{CCA} | ٧ | | | V_{ILB} | Bn | | 1.4 to 1.65 | 2.3 to 2.7 | _ | 0.7 | | | | V _{OHA} | | $I_{OHA} = -100 \mu A$ | 1.4 to 1.65 | 2.3 to 2.7 | V _{CCA}
- 0.2 | _ | | | H-level output voltage | | V _{IN} = V _{IH} or V _{IL} | $I_{OHA} = -1 \text{ mA}$ | 1.4 | 2.3 to 2.7 | 1.05 | _ | V | | Thevel output voltage | V _{OHB} | VIN - VIH OI VIL | I _{OHB} = -100 μA | 1.4 to 1.65 | 2.3 to 2.7 | V _{CCB}
- 0.2 | _ | V | | | | | $I_{OHB} = -9 \text{ mA}$ | 1.4 to 1.65 | 2.3 | 1.7 | _ | | | | V _{OLA} | | $I_{OLA} = 100 \mu A$ | 1.4 to 1.65 | 2.3 to 2.7 | _ | 0.2 | | | L-level output voltage | VOLA | V _{IN} = V _{IH} or V _{IL} | I _{OLA} = 1 mA | 1.4 | 2.3 to 2.7 | _ | 0.35 | V | | L-level output voltage | V _{OLB} | AIM - AIH OL AIF | $I_{OLB} = 100 \mu A$ | 1.4 to 1.65 | 2.3 to 2.7 | _ | 0.2 | V | | | VOLB | | I _{OLB} = 9mA | 1.4 to 1.65 | 2.3 | _ | 0.6 | | | | loza | $V_{IN} = V_{IH}$ or V_{IL} | | 1.4 to 1.65 | 2.3 to 2.7 | _ | ±2.0 | | | 3-state output OFF state current | IOZA | V _{OUT} = 0 to 3.6 V | | 1.4 to 1.00 | 2.0 to 2.1 | | ± 2 .0 | μА | | o class carpar or r class carroin | I _{OZB} | $V_{IN} = V_{IH}$ or V_{IL}
$V_{OUT} = 0$ to 3.6 V | | 1.4 to 1.65 | 2.3 to 2.7 | _ | ±2.0 | μ | | Input leakage current | I _{IN} | V _{IN} (DIR, $\overline{\text{OE}}$) = | | 1.4 to 1.65 | 2.3 to 2.7 | _ | ±1.0 | μА | | Bushold input minimum drive hold | | V _{IN} = 0.7 V | | 1.4 to 1.65 | 2.3 | 45 | _ | • | | current | IHOLD | V _{IN} = 1.6 V | | 1.4 to 1.65 | 2.3 | -45 | _ | μΑ | | Bushold input over-drive current | | | (Note 1) | 1.4 to 1.65 | 2.7 | _ | 450 | | | to change state | lIOD | | (Note 2) | 1.4 to 1.65 | 2.7 | _ | -450 | μΑ | | | I _{OFF1} | | | 0 | 0 | _ | 2.0 | | | Power-off leakage current | I _{OFF2} | V _{IN} , V _{OUT} = 0 to | 3.6 V | 1.4 to 1.65 | 0 | _ | 2.0 | μΑ | | | I _{OFF3} | | | 1.4 to 1.65 | Open | _ | 2.0 | | | | los: | V _{INA} = V _{CCA} or | GND | 1.4 to 1.65 | 2.3 to 2.7 | | 2.0 | | | | ICCA | V _{INB} = V _{CCB} or 0 | GND | 1.4 (0 1.05 | 2.3 10 2.7 | | 2.0 | Δ | | Quiescent supply current | I _{CCB} | V _{INA} = V _{CCA} or 0 | GND | 1.4 to 1.65 | 2.3 to 2.7 | _ | 2.0 | μА | | Quicocont Supply Sufferin | ICCB | $V_{INB} = V_{CCB}$ or Q | GND | 1.4 to 1.00 | 2.0 to 2.1 | | 2.0 | | | | ICCA | $V_{CCA} \le (V_{IN}, V_{O})$ | _{UT}) ≤ 3.6 V | 1.4 to 1.65 | 2.3 to 2.7 | — | ±2.0 | μА | | | I _{CCB} | $V_{CCB} \le (V_{IN}, V_{O})$ | _{UT}) ≤ 3.6 V | 1.4 to 1.65 | 2.3 to 2.7 | — | ±2.0 | L , | Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH. ## DC Characteristics (1.1 V \leq VCCA < 1.4 V, 2.3 V \leq VCCB \leq 2.7 V) | Characteristics | Symbol | Test Co | ondition | V _{CCA} (V) | V _{CCB} (V) | Ta = -40 |) to 85°C | Unit | |----------------------------------|-------------------|---|---------------------------|----------------------|----------------------|----------------------------|----------------------------|------| | Characteriotics | Cymbol | 1000 | Situation | VCCA (V) | VCCB (V) | Min | Max | Onic | | H-level input voltage | V _{IHA} | DIR, $\overline{\text{OE}}$, An | | 1.1 to 1.4 | 2.3 to 2.7 | 0.65 ×
V _{CCA} | | ٧ | | | V _{IHB} | Bn | | 1.1 to 1.4 | 2.3 to 2.7 | 1.6 | _ | | | L-level input voltage | V _{ILA} | DIR, $\overline{\text{OE}}$, An | | 1.1 to 1.4 | 2.3 to 2.7 | _ | 0.30 ×
V _{CCA} | ٧ | | | V _{ILB} | Bn | | 1.1 to 1.4 | 2.3 to 2.7 | _ | 0.7 | | | | V _{OHA} | | $I_{OHA} = -100 \mu A$ | 1.1 to 1.4 | 2.3 to 2.7 | V _{CCA}
- 0.2 | | | | H-level output voltage | V _{OHB} | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | $I_{OHB} = -100 \mu A$ | 1.1 to 1.4 | 2.3 to 2.7 | V _{CCB}
- 0.2 | _ | V | | | | | $I_{OHB} = -9 \text{ mA}$ | 1.1 to 1.4 | 2.3 | 1.7 | _ | | | | V _{OLA} | | $I_{OLA} = 100 \mu A$ | 1.1 to 1.4 | 2.3 to 2.7 | — | 0.2 | | | L-level output voltage | V _{OLB} | $V_{IN} = V_{IH}$ or V_{IL} | $I_{OLB} = 100 \mu A$ | 1.1 to 1.4 | 2.3 to 2.7 | — | 0.2 | V | | | VOLB | | I _{OLB} = 9 mA | 1.1 to 1.4 | 2.3 | _ | 0.6 | | | | I _{OZA} | $V_{IN} = V_{IH}$ or V_{IL}
$V_{OUT} = 0$ to 3.6 V | | 1.1 to 1.4 | 2.3 to 2.7 | _ | ±2.0 | | | 3-state output OFF state current | I _{OZB} | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$V_{OUT} = 0 \text{ to } 3.6 \text{ V}$ | | 1.1 to 1.4 | 2.3 to 2.7 | _ | ±2.0 | μА | | Input leakage current | I _{IN} | V _{IN} (DIR, $\overline{\text{OE}}$) = | = 0 to 3.6
V | 1.1 to 1.4 | 2.3 to 2.7 | _ | ±1.0 | μА | | Bushold input minimum drive hold | | V _{IN} = 0.7 V | | 1.1 to 1.4 | 2.3 | 45 | _ | ^ | | current | IHOLD | V _{IN} = 1.6 V | | 1.1 to 1.4 | 2.3 | -45 | _ | μΑ | | Bushold input over-drive current | 1 | | (Note 1) | 1.1 to 1.4 | 2.7 | _ | 450 | ^ | | to change state | l _{IOD} | | (Note 2) | 1.1 to 1.4 | 2.7 | _ | -450 | μΑ | | | I _{OFF1} | | | 0 | 0 | _ | 2.0 | | | Power-off leakage current | I _{OFF2} | V_{IN} , $V_{OUT} = 0$ to | 3.6 V | 1.1 to 1.4 | 0 | _ | 2.0 | μΑ | | | I _{OFF3} | | | 1.1 to 1.4 | Open | _ | 2.0 | | | | I _{CCA} | $V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$ | | 1.1 to 1.4 | 2.3 to 2.7 | _ | 2.0 | | | Quiescent supply current | I _{CCB} | VINA = VCCB or | | 1.1 to 1.4 | 2.3 to 2.7 | _ | 2.0 | μА | | accessive supply surroun | ICCB | V _{INB} = V _{CCB} or | GND | 1.1 10 1.4 | 2.0 10 2.7 | | | | | | ICCA | $V_{CCA} \le (V_{IN}, V_{O})$ | UT) ≤ 3.6 V | 1.1 to 1.4 | 2.3 to 2.7 | — | ±2.0 | μА | | | I _{CCB} | $V_{CCB} \le (V_{IN}, V_{O})$ | UT) ≤ 3.6 V | 1.1 to 1.4 | 2.3 to 2.7 | _ | ±2.0 | F ' | Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH. ## DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 1.65 V \leq V_{CCB} < 2.3 V) | Characteristics | Symbol | Toot Co | ondition | \/aa. (\/) | V ()() | Ta = -40 | to 85°C | Unit | |---|-------------------|--|---|----------------------|----------------------|--|---|-------| | Characteristics | Symbol | Test Co | Ditalilori | V _{CCA} (V) | V _{CCB} (V) | Min | Max | Offic | | H-level input voltage | V _{IHA} | DIR, \overline{OE} , An | | 1.1 to 1.4 | 1.65 to 2.3 | $\begin{array}{c} 0.65 \times \\ V_{CCAB} \end{array}$ | | V | | THEVEL INput Voltage | V_{IHB} | Bn | | 1.1 to 1.4 | 1.65 to 2.3 | 0.65 ×
V _{CC} | l | V | | L-level input voltage | V_{ILA} | DIR, \overline{OE} , An | | 1.1 to 1.4 | 1.65 to 2.3 | | $\begin{array}{c} 0.30 \times \\ V_{CCA} \end{array}$ | V | | E-level input voltage | V_{ILB} | Bn | | 1.1 to 1.4 | 1.65 to 2.3 | | $\begin{array}{c} 0.35 \times \\ V_{CCB} \end{array}$ | V | | | V _{OHA} | | $I_{OHA} = -100 \mu A$ | 1.1 to 1.4 | 1.65 to 2.3 | V _{CCA}
- 0.2 | ı | | | H-level output voltage | V _{OHB} | $V_{IN} = V_{IH}$ or V_{IL} | $I_{OHB} = -100 \mu A$ | 1.1 to 1.4 | 1.65 to 2.3 | V _{CCB}
- 0.2 | ı | V | | | | | $I_{OHB} = -3 \text{ mA}$ | 1.1 to 1.4 | 1.65 | 1.25 | | | | | V_{OLA} | | I _{OLA} = 100 μA 1.1 | | 1.65 to 2.3 | | 0.2 | | | L-level output voltage | Vols | $V_{IN} = V_{IH}$ or V_{IL} | $I_{OLB} = 100 \ \mu A$ | 1.1 to 1.4 | 1.65 to 2.3 | | 0.2 | ٧ | | | V_{OLB} | | $I_{OLB} = 3 \text{ mA}$ | 1.1 to 1.4 | 1.65 | | 0.3 | | | 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | I _{OZA} | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$ | $V_{IN} = V_{IH}$ or V_{IL}
$V_{OUT} = 0$ to 3.6 V | | 1.65 to 2.3 | | ±2.0 | • | | 3-state output OFF state current | I _{OZB} | $V_{IN} = V_{IH}$ or V_{IL}
$V_{OUT} = 0$ to 3.6 V | | 1.1 to 1.4 | 1.65 to 2.3 | | ±2.0 | μА | | Input leakage current | I _{IN} | V _{IN} (DIR, $\overline{\text{OE}}$) = | = 0 to 3.6 V | 1.1 to 1.4 | 1.65 to 2.3 | _ | ±1.0 | μΑ | | Bushold input minimum drive hold | | V _{IN} = 0.58 V | | 1.1 to 1.4 | 1.65 | 20 | _ | | | current | IHOLD | V _{IN} = 1.07 V | | 1.1 to 1.4 | 1.65 | -20 | _ | | | Bushold input over-drive current | | | (Note 1) | 1.1 to 1.4 | 1.95 | _ | 300 | | | to change state | lIOD | | (Note 2) | 1.1 to 1.4 | 1.95 | _ | -300 | | | | I _{OFF1} | | | 0 | 0 | | 2.0 | | | Power-off leakage current | I _{OFF2} | V_{IN} , $V_{OUT} = 0$ to | 3.6 V | 1.1 to 1.4 | 0 | | 2.0 | μΑ | | | I _{OFF3} | | | 1.1 to 1.4 | Open | _ | 2.0 | | | | I _{CCA} | V _{INA} = V _{CCA} or | | 1.1 to 1.4 | 1.65 to 2.3 | | 2.0 | | | | ·OOA | V _{INB} = V _{CCB} or | V _{INB} = V _{CCB} or GND | | 1.00 to 2.3 | | | μА | | Quiescent supply current | I _{CCB} | V _{INA} = V _{CCA} or GND | | 1.1 to 1.4 | 1.65 to 2.3 | s — | 2.0 | , | | | - | V _{INB} = V _{CCB} or GND | | 441.4 | 4.05 / 0.5 | | | | | | ICCA | $V_{CCA} \le (V_{IN}, V_{O})$ | | 1.1 to 1.4 | 1.65 to 2.3 | | ±2.0 | μΑ | | | ICCB | $V_{CCB} \le (V_{IN}, V_{O})$ | UT) ≤ 3.6 V | 1.1 to 1.4 | 1.65 to 2.3 | _ | ±2.0 | | Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH. ## AC Characteristics (Ta = -40 to 85°C, Input: $t_r = t_f = 2.0$ ns) $V_{CCA} = 2.5 \pm 0.2$ V, $V_{CCB} = 3.3 \pm 0.3$ V | Characteristics | Symbol | Test Condition | Min | Max | Unit | |-----------------------------|-------------------|--------------------|-----|-----|------| | Propagation delay time | t _{pLH} | Figure 1, Figure 2 | 1.0 | 5.4 | | | $(Bn \rightarrow An)$ | t _{pHL} | rigule 1, rigule 2 | 1.0 | 3.4 | | | 3-state output enable time | t _{pZL} | Figure 1, Figure 3 | 1.0 | 8.4 | ns | | $(\overline{OE} \to An)$ | t _{pZH} | rigule 1, rigule 3 | 1.0 | 0.4 | 113 | | 3-state output disable time | t _{pLZ} | Figure 1, Figure 3 | 1.0 | 6.7 | | | $(\overline{OE} \to An)$ | t _{pHZ} | rigule 1, rigule 3 | 1.0 | 0.7 | | | Propagation delay time | t _{pLH} | Figure 1 Figure 2 | 1.0 | 6.8 | | | $(An \rightarrow Bn)$ | t _{pHL} | Figure 1, Figure 2 | 1.0 | 0.0 | | | 3-state output enable time | t _{pZL} | Figure 1 Figure 2 | 1.0 | 8.7 | ns | | $(\overline{OE} \to Bn)$ | t _{pZH} | Figure 1, Figure 3 | 1.0 | 0.7 | 115 | | 3-state output disable time | t _{pLZ} | Figure 1 Figure 2 | 1.0 | 3.9 | | | $(\overline{OE} \to Bn)$ | t _{pHZ} | Figure 1, Figure 3 | 1.0 | 3.9 | | | Output to output skow | t _{osLH} | /Notal | | 0.5 | ne | | Output to output skew | t _{osHL} | (Note) | | 0.5 | ns | Note: Parameter guaranteed by design. $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$ $V_{CCA} = 1.8 \pm 0.15$ V, $V_{CCB} = 3.3 \pm 0.3$ V | Characteristics | Symbol | Test Condition | Min | Max | Unit | |-----------------------------|-------------------|--------------------|-----|------|------| | Propagation delay time | t _{pLH} | Figure 1 Figure 2 | 1.0 | 8.9 | | | $(Bn \rightarrow An)$ | t _{pHL} | Figure 1, Figure 2 | 1.0 | 0.9 | | | 3-state output enable time | t _{pZL} | Figure 1 Figure 2 | 1.0 | 13.4 | ns | | $(\overline{OE} \to An)$ | t _{pZH} | Figure 1, Figure 3 | 1.0 | 13.4 | 113 | | 3-state output disable time | t _{pLZ} | Figure 1 Figure 2 | 1.0 | 10.9 | | | $(\overline{OE} \to An)$ | t _{pHZ} | Figure 1, Figure 3 | 1.0 | 10.9 | | | Propagation delay time | t _{pLH} | Figure 1 Figure 2 | 1.0 | 7.8 | | | $(An \rightarrow Bn)$ | t _{pHL} | Figure 1, Figure 2 | 1.0 | 7.0 | | | 3-state output enable time | t _{pZL} | Figure 1, Figure 3 | 1.0 | 10.7 | ns | | $(\overline{OE} \to Bn)$ | t _{pZH} | rigule 1, rigule 3 | 1.0 | 10.7 | 115 | | 3-state output disable time | t _{pLZ} | Figure 1, Figure 3 | 1.0 | 5.2 | | | $(\overline{OE} \to Bn)$ | t _{pHZ} | rigule 1, rigule 3 | 1.0 | 5.2 | | | Output to output skow | t _{osLH} | (Note) | | 0.5 | ns | | Output to output skew | t _{osHL} | (Note) | | 0.5 | 115 | Note: Parameter guaranteed by design. $(t_{\text{OSLH}} = |t_{\text{pLHm}} - t_{\text{pLHn}}|, \, t_{\text{OSHL}} = |t_{\text{pHLm}} - t_{\text{pHLn}}|)$ $V_{CCA} = 1.5 \pm 0.1$ V, $V_{CCB} = 3.3 \pm 0.3$ V | Characteristics | Symbol | Test Condition | Min | Max | Unit | |------------------------------------|-------------------|--------------------|-----|------|------| | Propagation delay time | t _{pLH} | Figure 1, Figure 2 | 1.0 | 10.3 | | | $(Bn \rightarrow An)$ | t _{pHL} | rigure 1, rigure 2 | 1.0 | 10.5 | | | 3-state output enable time | t _{pZL} | Figure 1, Figure 3 | 1.0 | 18.5 | ns | | $(\overline{OE} \to An)$ | t _{pZH} | rigule 1, rigule 3 | 1.0 | 10.5 | 113 | | 3-state output disable time | t _{pLZ} | Figure 1, Figure 3 | 1.0 | 13.0 | | | $(\overline{OE} \to An)$ | t _{pHZ} | rigule 1, rigule 3 | 1.0 | 13.0 | | | Propagation delay time | t _{pLH} | Figure 1, Figure 2 | 1.0 | 8.6 | | | $(An \rightarrow Bn)$ | t _{pHL} | rigule 1, rigule 2 | 1.0 | 0.0 | | | 3-state output enable time | t _{pZL} | Figure 1, Figure 3 | 1.0 | 14.3 | ns | | $(\overline{\sf OE} \ \to \sf Bn)$ | t _{pZH} | rigule 1, rigule 3 | 1.0 | 14.3 | 115 | | 3-state output disable time | t _{pLZ} | Figure 1 Figure 2 | 1.0 | 6.6 | | | $(\overline{OE} \to Bn)$ | t _{pHZ} | Figure 1, Figure 3 | 1.0 | 0.0 | | | Output to output skow | t _{osLH} | (Note) | | 1.5 | ns | | Output to output skew | t _{osHL} | (Note) | | 1.0 | 115 | Note: Parameter guaranteed by design. $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$ $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 3.3 \pm 0.3$ V | Characteristics | Symbol | Test Condition | Min | Max | Unit | |-----------------------------|-------------------|--------------------|-----|-----|------| | Propagation delay time | t _{pLH} | Figure 1, Figure 2 | 1.0 | 61 | | | $(Bn \rightarrow An)$ | t _{pHL} | rigure 1, rigure 2 | 1.0 | 01 | | | 3-state output enable time | t _{pZL} | Figure 1, Figure 3 | 1.0 | 95 | ns | | $(\overline{OE} \to An)$ | t _{pZH} | rigule 1, rigule 3 | 1.0 | 93 | 113 | | 3-state output disable time | t _{pLZ} | Figure 1, Figure 3 | 1.0 | 44 | | | $(\overline{OE} \to An)$ | t _{pHZ} | rigule 1, rigule 3 | 1.0 | 44 | | | Propagation delay time | t _{pLH} | Figure 1, Figure 2 | 1.0 | 22 | | | $(An \rightarrow Bn)$ | t _{pHL} | rigule 1, rigule 2 | 1.0 | 22 | | | 3-state output enable time | t _{pZL} | Figure 1 Figure 2 | 1.0 | 52 | 20 | | $(\overline{OE} \to Bn)$ | t _{pZH} | Figure 1, Figure 3 | 1.0 | 52 | ns | | 3-state output disable time | t _{pLZ} | Figure 1 Figure 2 | 1.0 | 18 | | | $(\overline{OE} \to Bn)$ | t _{pHZ} | Figure 1, Figure 3 | 1.0 | 10 | | | Output to output akow | t
_{osLH} | /Notal | | 1.5 | 20 | | Output to output skew | t _{osHL} | (Note) | | 1.5 | ns | Note: Parameter guaranteed by design. $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$ $V_{CCA} = 1.8 \pm 0.15$ V, $V_{CCB} = 2.5 \pm 0.2$ V | Characteristics | Symbol | Test Condition | Min | Max | Unit | |--|--|--------------------|-----|------|------| | Propagation delay time $(Bn \to An)$ | t _{pLH} | Figure 1, Figure 2 | 1.0 | 9.1 | | | 3-state output enable time (OE → An) | t _{pZL} | Figure 1, Figure 3 | 1.0 | 13.5 | ns | | 3-state output disable time (OE → An) | t _{pLZ} | Figure 1, Figure 3 | 1.0 | 11.8 | | | Propagation delay time $(An \to Bn)$ | t _{pLH} | Figure 1, Figure 2 | 1.0 | 9.5 | | | 3-state output enable time (OE → Bn) | t _{pZL} | Figure 1, Figure 3 | 1.0 | 12.6 | ns | | 3-state output disable time (OE → Bn) | t _{pLZ} | Figure 1, Figure 3 | 1.0 | 5.1 | | | Output to output skew | t _{osLH}
t _{osHL} | (Note) | _ | 0.5 | ns | Note: Parameter guaranteed by design. $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$ $V_{CCA} = 1.5 \pm 0.1 \text{ V}, V_{CCB} = 2.5 \pm 0.2 \text{ V}$ | Characteristics | Symbol | Test Condition | Min | Max | Unit | |---|-------------------|--------------------|-----|------|------| | Propagation delay time $(Bn \rightarrow An)$ | t _{pLH} | Figure 1, Figure 2 | 1.0 | 10.8 | | | 3-state output enable time $(\overline{OE} \rightarrow An)$ | t _{pZL} | Figure 1, Figure 3 | 1.0 | 18.3 | ns | | 3-state output disable time (OE → An) | t _{pLZ} | Figure 1, Figure 3 | 1.0 | 14.2 | | | Propagation delay time (An → Bn) | t _{pLH} | Figure 1, Figure 2 | 1.0 | 10.5 | | | 3-state output enable time $(\overrightarrow{OE} \rightarrow Bn)$ | t _{pZL} | Figure 1, Figure 3 | 1.0 | 15.4 | ns | | 3-state output disable time (OE → Bn) | t _{pLZ} | Figure 1, Figure 3 | 1.0 | 6.4 | | | Output to output skew | t _{osLH} | (Note) | _ | 1.5 | ns | 16 Note: Parameter guaranteed by design. $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$ $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 2.5 \pm 0.2$ V | Characteristics | Symbol | Test Condition | Min | Max | Unit | |-----------------------------|-------------------|--------------------|-----|-----|------| | Propagation delay time | t _{pLH} | Figure 1 Figure 2 | 1.0 | 60 | | | $(Bn \rightarrow An)$ | t _{pHL} | Figure 1, Figure 2 | 1.0 | 00 | | | 3-state output enable time | t _{pZL} | Figure 1, Figure 3 | 1.0 | 95 | ns | | $(\overline{OE} \to An)$ | t _{pZH} | rigule 1, rigule 3 | 1.0 | 95 | 113 | | 3-state output disable time | t _{pLZ} | Figure 1, Figure 3 | 1.0 | 45 | | | $(\overline{OE} \to An)$ | t _{pHZ} | rigule 1, rigule 3 | 1.0 | 45 | | | Propagation delay time | t _{pLH} | Figure 1 Figure 2 | 1.0 | 23 | | | $(An \rightarrow Bn)$ | t _{pHL} | Figure 1, Figure 2 | 1.0 | 23 | | | 3-state output enable time | t _{pZL} | Figure 1, Figure 3 | 1.0 | 54 | ns | | $(\overline{OE} \to Bn)$ | t _{pZH} | rigule 1, rigule 3 | 1.0 | 34 | 115 | | 3-state output disable time | t _{pLZ} | Figure 1 Figure 2 | 1.0 | 17 | | | $(\overline{OE} \to Bn)$ | t _{pHZ} | Figure 1, Figure 3 | 1.0 | 17 | | | Output to output skew | t _{osLH} | (Note) | | 1.5 | ns | | Output to output skew | t _{osHL} | (Note) | | 1.0 | 115 | Note: Parameter guaranteed by design. $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, \, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$ $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 1.8 \pm 0.15$ V | Characteristics | Symbol | Test Condition | Min | Max | Unit | |--|--------------------------------------|--------------------|-----|-----|------| | Propagation delay time $(Bn \to An)$ | t _{pLH}
t _{pHL} | Figure 1, Figure 2 | 1.0 | 58 | | | 3-state output enable time (OE → An) | t _{pZL} | Figure 1, Figure 3 | 1.0 | 92 | ns | | 3-state output disable time (OE → An) | t _{pLZ} | Figure 1, Figure 3 | 1.0 | 47 | | | Propagation delay time
(An → Bn) | t _{pLH} | Figure 1, Figure 2 | 1.0 | 30 | | | 3-state output enable time $(\overrightarrow{OE} \rightarrow Bn)$ | t _{pZL} | Figure 1, Figure 3 | 1.0 | 55 | ns | | 3-state output disable time (OE → Bn) | t _{pLZ} | Figure 1, Figure 3 | 1.0 | 17 | | | Output to output skew | t _{osLH} | (Note) | _ | 1.5 | ns | Note: Parameter guaranteed by design. $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$ ## Dynamic Switching Characteristics (Ta = 25°C, Input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF) | Characteristics | Characteristics | | Test Condition | | | | Тур. | Unit | | | | | | |---|-------------------|------------------|---------------------------------|---------------------------------|----------------------|----------------------------------|-------|--------|---------------------------------|-----|-----|------|-----| | Characteriotics | | Symbol | rest condition | | V _{CCA} (V) | V _{CCB} (V) | τyp. | Onic | | | | | | | | | | | | 2.5 | 3.3 | 8.0 | | | | | | | | | $A\toB$ | | | | 1.8 | 3.3 | 0.8 | | | | | | | | Quiet output maximum | | V _{OLP} | $V_{IH} = V_{CC}, V_{IL} = 0 V$ | | 1.8 | 2.5 | 0.6 | V | | | | | | | dynamic V _{OL} | | VOLP | | (Note) | 2.5 | 3.3 | 0.6 | V | | | | | | | | $B\toA$ | | | | 1.8 | 3.3 | 0.25 | | | | | | | | | | | | | 1.8 | 2.5 | 0.25 | | | | | | | | | | | | | 2.5 | 3.3 | -0.8 | | | | | | | | | $A\toB$ | | | | 1.8 | 3.3 | -0.8 | | | | | | | | Quiet output minimum | | V _{OLV} | V _{OLV} | $V_{IH} = V_{CC}, V_{IL} = 0 V$ | | 1.8 | 2.5 | -0.6 | V | | | | | | dynamic V _{OL} | | | | VOLV | VOLV | V OLV | VOLV | | (Note) | 2.5 | 3.3 | -0.6 | V | | | $B\toA$ | | | | 1.8 | 3.3 | -0.25 | - | | | | | | | | | | | | 1.8 | 2.5 | -0.25 | | | | | | | | | | Vонр | V _{ОНР} | V _{ОНР} | V _{ОНР} | V _{OHP} V _{IH} | | | 2.5 | 3.3 | 4.6 | | | | | $A\toB$ | | | | | | Vaus | | | 1.8 | 3.3 | 4.6 | | | Quiet output maximum | | | | | | | | V- | $V_{IH} = V_{CC}, V_{IL} = 0 V$ | | 1.8 | 2.5 | 3.3 | | dynamic V _{OH} | | | | | | | | (Note) | 2.5 | 3.3 | 3.3 | V | | | | $B\toA$ | | | | 1.8 | 3.3 | 2.3 | | | | | | | | | | | | | 1.8 | 2.5 | 2.3 | | | | | | | | | | | | | 2.5 | 3.3 | 2.0 | | | | | | | | Quiet output minimum
dynamic V _{OH} | $A\toB$ | | | | 1.8 | 3.3 | 2.0 | | | | | | | | | | ., | $V_{IH} = V_{CC}, V_{IL} = 0 V$ | | 1.8 | 2.5 | 1.7 | V | | | | | | | | $B \rightarrow A$ | V _{OHV} | | (Note) | 2.5 | 3.3 | 1.7 | V | | | | | | | | | | | | 1.8 | 3.3 | 1.3 | | | | | | | | | | | | | 1.8 | 2.5 | 1.3 | | | | | | | Note: Parameter guaranteed by design. ## **Capacitive Characteristics (Ta = 25°C)** | Characteristics | | Symbol | | Test Circuit | | _ | Тур. | Unit | | | | | | |-------------------------------|--------|------------------|-------------------------------|-------------------------------|-------------------------------|----------------------|------|----------|-------------------------------|-----|-----|---|--| | Characteristics | | Symbol | | rest offcult | V _{CCA} (V) | V _{CCB} (V) | τyp. | Offic | | | | | | | Input capacitance | | C _{IN} | DIR, OE | | 2.5 | 3.3 | 7 | pF | | | | | | | Bus I/O capacitance | | C _{I/O} | An, Bn | | 2.5 | 3.3 | 8 | pF | | | | | | | | | | OE = "L" | $A \rightarrow B (DIR = "H")$ | 2.5 | 3.3 | 3 | | | | | | | | | | C _{PDA} | OL - L | $B \rightarrow A (DIR = "L")$ | 2.5 | 3.3 | 16 | | | | | | | | | | | OPDA | OPDA | OPDA | OPDA | | OE = "H" | $A \rightarrow B (DIR = "H")$ | 2.5 | 3.3 | 0 | | | Power dissipation capacitance | | | OL = II | $B \rightarrow A (DIR = "L")$ | 2.5 | 3.3 | 0 | pF | | | | | | | | (Note) | | OE = "L" | $A \rightarrow B (DIR = "H")$ | 2.5 | 3.3 | 16 | ы | | | | | | | | Cooo | OE = L | $B \rightarrow A (DIR = "L")$ | 2.5 | 3.3 | 5 | | | | | | | | | | | | C _{PDB} ¯ | OE = "H" | $A \rightarrow B (DIR = "H")$ | 2.5 | 3.3 | 0 | | | | | | | | | | | OL- II | $B \rightarrow A (DIR = L")$ | 2.5 | 3.3 | 1 | | | | | | Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4 \text{ (per bit)}$ ## **AC Test Circuit** **TOSHIBA** | Parameter | Switch | | | | | |-------------------------------------|-------------------|--|--|--|--| | t _{pLH} , t _{pHL} | | Open | | | | | | 6.0 V | $@V_{CC} = 3.3 \pm 0.3 \text{ V}$ | | | | | | $V_{CC} \times 2$ | $\textcircled{0}$ V_{CC} = 2.5 \pm 0.2 V | | | | | t_{pLZ}, t_{pZL} | | $@V_{CC} = 1.8 \pm 0.15 V$ | | | | | | | @ $V_{CC} = 1.5 \pm 0.1 \text{ V}$ | | | | | | | $@V_{CC} = 1.2 \pm 0.1 \text{ V}$ | | | | | t_{pHZ} , t_{pZH} | | GND | | | | | Symbol | | V _{CC} (c | output) | | |----------------|---|--------------------|-------------|-------------| | Symbol | $\begin{array}{c} 3.3 \pm 0.3 \ \text{V} \\ 2.5 \pm 0.2 \ \text{V} \end{array}$ | 1.8 ± 0.15 V | 1.5 ± 0.1 V | 1.2 ± 0.1 V | | R_{L} | 500 Ω | 1 kΩ | 2 kΩ | 10 kΩ | | C _L | 30 pF | 30 pF | 15 pF | 15 pF | Figure 1 19 #### **AC Waveform** Figure 2 t_{pLH}, t_{pHL} Figure 3 t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH} | Symbol | Vcc | | | |----------------|-------------------------|-----------------------------|---| | | $3.3\pm0.3~\textrm{V}$ | 2.5 ± 0.2 V
1.8 ± 0.15 V | $\begin{array}{c} 1.5 \pm 0.1 \ V \\ 1.2 \pm 0.1 \ V \end{array}$ | | V_{IH} | 2.7 V | V _{CC} | V _{CC} | | V _M | 1.5 V | V _{CC} /2 | V _{CC} /2 | | VX | V _{OL} + 0.3 V | V _{OL} + 0.15 V | V _{OL} + 0.1 V | | VY | V _{OH} – 0.3 V | V _{OH} – 0.15 V | V _{OH} – 0.1 V | ## **Package Dimensions** Weight: 0.02 g (typ.) ## **Package
Dimensions** VQON16-P-0303-0.50 Unit: mm Weight: 0.013 g (typ.) 22 #### **RESTRICTIONS ON PRODUCT USE** 20070701-EN GENERAL - The information contained herein is subject to change without notice. - TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. - The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk. - The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. - Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.