

M54678FP

2-Phase Stepper Motor Driver

REJ03F0046-0100Z Rev.1.0 Sep.19.2003

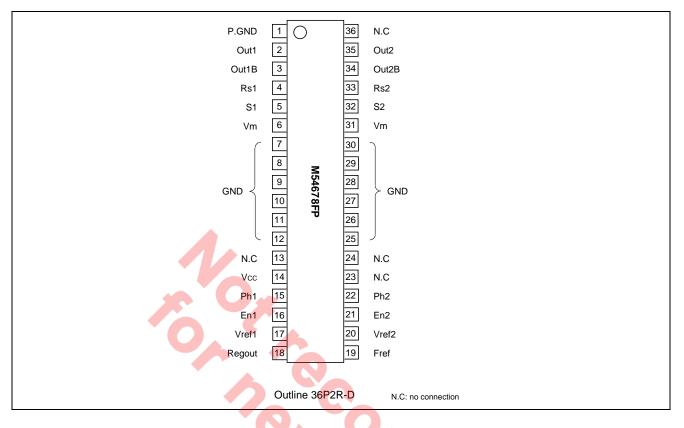
Description

The M54678FP is a semiconductor integrated circuit designed for stepper motor driver used to printer, PPC and facsimile.

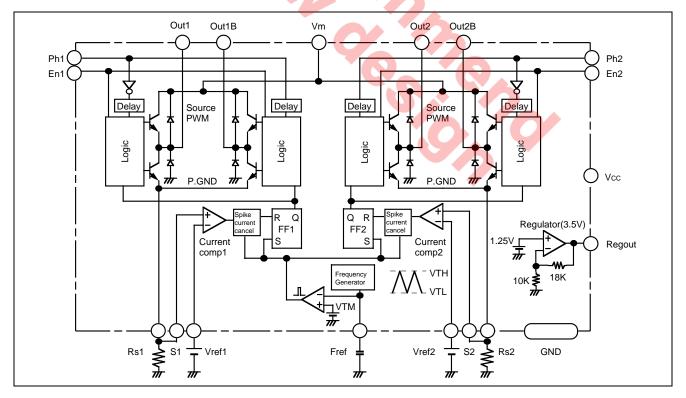
Features

- Wide supply voltage range (10 35V)
- Output current is controlled by PWM operation
- Few external components (This IC can be operated with 1 capacitor and 2 resistances)
- Voltage stabilizer circuit (Regout = 3.5V)
- Thermal protection circuit
- Flywheel diode

Application


Printers, PPC, facsimile

Function


The M54678FP is a integrated circuit which can drive two phase stepper motor. The output current direction is determined by phase terminal function, and the output current level is controlled by Vref terminals voltage.

Pin Configuration

Block Diagram

M54678FP

Pin Function

Terminal	Symbol	Functions		
Output stage supply voltage	Vm	Power supply for motor working		
Output terminal	Out1, Out1B, Out2, Out2B	Motor drive output terminal		
Current sensor	Rs1,Rs2	Output current sensing resistor (Rs) connect terminal		
Power supply	VCC	Control circuit power supply		
Phase input	Ph1, Ph2	Output current direction switch		
Enable input	En1, En2	"L" input \rightarrow Motor on "H" input \rightarrow Enable		
Sense input	S1, S2	Comparator input voltage terminal		
Vref input	Vref1, Vref2	Comparator reference voltage terminal		
Voltage stabilizer output	Regout	Constant voltage output (Vout = 3.5V)		

Absolute Maximum Ratings

					$(Ta = 25^{\circ}C \text{ unless otherwise noted.})$
Parameter		Symbol	Ratings	Unit	Condition
Output stage supply voltage		Vm	-0.3 – 37	V	
Output current		lout	±1.0	А	1 phase
Supply voltage		VCC	-0.3 – 7	V	
Logic input voltage		Vlogic	-0.3 – VCC	V	Ph, En Pin
Analog input voltage		Vanalog	-0.3 – VCC	V	Vref, S Pin
Current sensor voltage		VRs	1.5	V	Rs Pin
Power dissipation		Pd	2.0	W	100mm $ imes$ 100mm, t = 1.6mm glassfiber epoxy resin circuit board
Thermal derating		KÐ	6.25	°C/W	100mm \times 100mm, t = 1.6mm glassfiber epoxy resin circuit board
Junction temperature		Tj	150	°C	
Operating temperature		Topr	-20 – 75	°C	
Storage temperature		Tstg	-40 – 125	°C	
Recommended Operat	ing Co	onditions	6		0

Recommended Operating Conditions

		Limits			
Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Output stage supply voltage	Vm	10	_	35	V
Output current	lout	50	_	800	mA
Logic input rise time	tPLH	_	_	2	μS
Logic input fall time	tPHL	_	_	2	μS
PWM on time	Ton	5	_	50	μS
PWM off time	Toff	5	_	50	μS
Thermal shutdown temperature	TSDon	_	160	_	°C

Electrical characteristics

 $(Ta = 25^{\circ}C, VCC = 5.0V, VM = 24V \text{ unless otherwise noted.})$

Control Circuit

		Limits				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply current	ICC1	19	33	50	mA	VCC = 5V, En = H
	ICC2	34	58	87	_	VCC = 5V, En = L
Logic input voltage	VIH	2.4	_	Vcc	V	
(Ph, En terminal)	VIL	0		0.6	_	
Logic input current	IIH	-5	_	5	μΑ	Vin = 5V
(Ph, En terminal)	IIL	-20		5	_	Vin = 0V
Comparator input offset voltage	IC	-5	+1	+7	mV	Vref = 500mV, VCH = Vref-S
Comparator input current	IC	-20	-5	_	μA	S terminal input current
						S = 0V, Vref = 500mV
Comparator input voltage	VC	0	_	1.5	V	
range						
Vref input current	Iref	-20	-5	—	μΑ	Vref terminal input current
						Vref = 0V, 2 = 500mVÅj
Vref input voltage range	Vref	0		1.5	V	
Fref terminal output voltage	FrefH	2.4	2.5	2.6	V	Fref terminal
	FrefL	0.4	0.5	0.6	_	
Fref oscillation frequency	FC 🧹	20	30	40	kHz	Fref terminal, C = 390pF
Regulator output voltage	Vreg	3.4	3.5	3.6	V	lout = -0.1mA - +1mA

Output Circuit

 $(Ta = 25^{\circ}C, VCC = 5.0V, VM = 24V unless otherwise noted.)$

50

		Limits	5			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Output saturation voltage	Vsat	_	1.8	2.6	V	Sensing resistor not included. Io = 0.75A
Output leak current	lleak	-100	_	+100	μA	
Output turn-on delay	tdon	_	0.5	2.0	μS	Time until output on after Fref 2.5V \rightarrow 0.5V
Output turn-off delay	tdoff		2.0	3.5	μS	Time until output off after S < Vref

Application Directions

(1) Ph input, En input determines output function.

Ph*A	Ph*B	Out*A	Out*B
Н	L	Н	L
L	L	L	Н
Н	Н	Z	Z
L	Н	Z	Z

*: 1 or 2

Z: High impedance

M54678FP

(2) Vref (reference voltage)

Output current level is controlled by Vref voltage.

(3) Current comparator

Under VRS (current sensing resistor voltage) > Vref (reference voltage) condition, the current comparator switches, fip-flop is reset and output circuit is set to off.

(4) Oscillating circuit

Frequency of PWM operation synchronize with Fref terminal frequency.

If you change frequency of PWM operation, please change capacitor value of Fref terminal.

This IC is designed oscillating frequency to be 30kHz when capacitor = 390pF is connected to Fref terminal. Oscillating frequency is inversely proportional to capacitor value. When capacitor value become half, Oscillating frequency will be two times.

(5) Spike current cancellation circuit

This IC includes Spike cancellation circuit to prevent the failure function of current comparator by influence of this spike current.

Thus, current comparator don't function during approximately 2mS from the moment of output transistor is set to on.

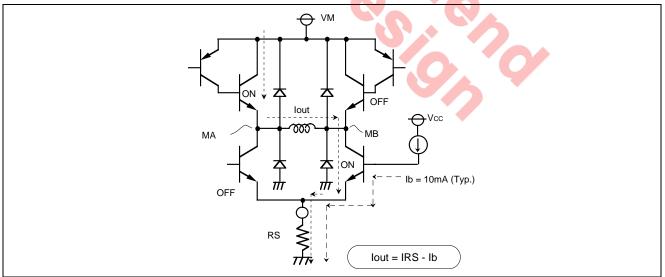
(6) Phase delay circuit

This IC includes Phase delay circuit to prevent output through current at Ph switching time.

Four output transistors of H bridge don't function during approximately 3mS at Ph switching time.

(7) Rs terminal and S terminal

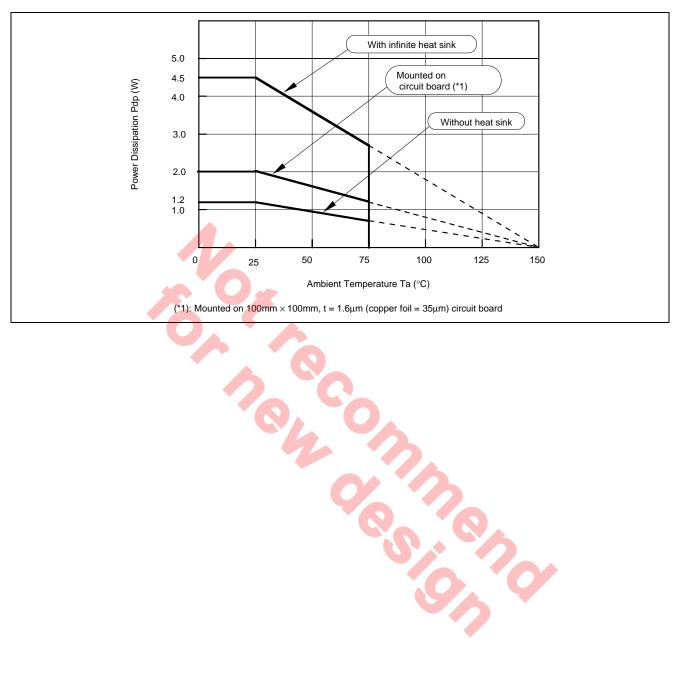
Difference of current sensing that caused by wiring resistance of board (wiring resistance between RS terminal and current sensing resistor) can be prevented by connecting S terminal (plus input of current comparator) to current sensing resistor as close as possible.


(8) Voltage stabilizer circuit

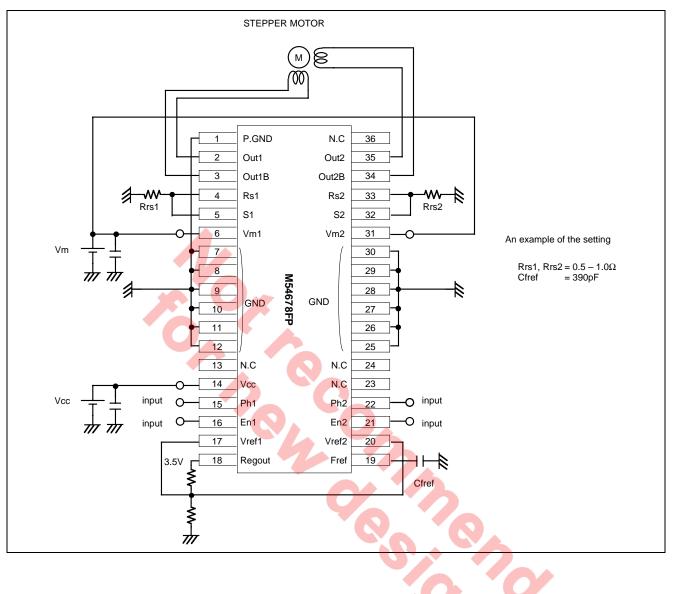
This IC includes voltage stabilizer circuit. (3.5volts output). Vref reference voltage can be generated by resistance potential dividing from constant voltage output terminal (Regout). Current capability of constant voltage output terminal is I source = +1mA, I sink = -0.1mA

(9) Setting of output current

Since output circuit of this IC consists of NPN type transistor, current flow through the motor coil (Iout) becomes approximately 20mA (typical value) smaller than current flow through the current sensing resistor (IRS) by influence of the base current (Ib) of transistor.


Thus, please consider this current when you set up output current.

*If Vcc, Tj and manufacturing dispersion are considered, dispersion of Ib will vary maximum \pm 5mA (minimum = 5mA, maximum = 15mA)



Thermal Derating

Application Circuit

Package Dimensions

Renesas Technology Corp., Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

Reep salety inst in your circuit designs: 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, and are subject to change by Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information on products at the time of publication ethere materials, and are subject to change by Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information onbilised by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage or manufactured for using a not decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp, or an authorized Renesas Technology Corp. p

- use. use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
- - (ENESA

RENESAS SALES OFFICES

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.

26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

http://www.renesas.com