Preferred Device

Transient Voltage Suppressor Diode Array

SOT-23 Dual Common Anode Diodes for ESD Protection

These dual monolithic silicon TVS diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common anode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

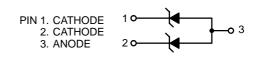
Specification Features:

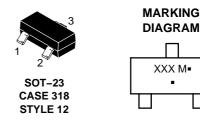
- SOT-23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Working Peak Reverse Voltage Range 5.0 V to 12 V
- Peak Power 300 Watt (8 X 20 µs)
- Low Leakage
- Flammability Rating UL 94 V-0
- Pb–Free Packages are Available

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic case FINISH: Corrosion resistant finish, easily solderable MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds


Package designed for optimal automated board assembly Small package size for high density applications Available in 8 mm Tape and Reel


Use the Device Number to order the 7 inch/3,000 unit reel. Replace the "T1" with "T3" in the Device Number to order the 13 inch/10,000 unit reel.

ON Semiconductor®

http://onsemi.com

XXX = Specific Device Code M = Date Code = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
SM05T1	SOT-23	3000/Tape & Reel
SM05T1G	SOT-23 (Pb-Free)	3000/Tape & Reel
SM12T1	SOT-23	3000/Tape & Reel
SM12T1G	SOT-23 (Pb-Free)	3000/Tape & Reel

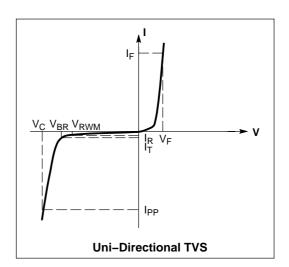
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Peak Power Dissipation @ 20 μs (Note 1) @ $T_L \leq 25^\circ C$		P _{pk}	300	Watts
IEC 61000–4–2 (ESD)	Air Contact		±15 ±8.0	kV
IEC 61000–4–4 (EFT)			40	А
IEC 61000-4-5 (Lightening)			12	А
Total Power Dissipation on FR–5 Board (Note 2) @ T _A = 25°C Derate above 25°C		P _D	225 1.8	mW mW/°C
Thermal Resistance Junction to Ambient		R_{\thetaJA}	556	°C/W
Total Power Dissipation on Alumina Substrate (Note 3) @ $T_A = 25^{\circ}C$ Derate above 25°C		P _D	300 2.4	mW mW/°C
Thermal Resistance Junction to Ambient		R_{\thetaJA}	417	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	– 55 to +150	°C
Lead Solder Temperature – Maximum (10 Second Duration)		ΤL	260	°C

1. Non-repetitive current pulse per Figure 3 2. $FR-5 = 1.0 \times 0.75 \times 0.62$ in.


3. Alumina = $0.4 \times 0.3 \times 0.024$ in., 99.5% alumina *Other voltages may be available upon request

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter					
I _{PP}	Maximum Reverse Peak Pulse Current					
V _C	Clamping Voltage @ I _{PP}					
V _{RWM}	Working Peak Reverse Voltage					
I _R	Maximum Reverse Leakage Current @ V_{RWM}					
V _{BR} Breakdown Voltage @ I _T						
Ι _Τ	Test Current					
ΘV_{BR}	Maximum Temperature Coefficient of V_{BR}					
١ _F	Forward Current					
V _F	Forward Voltage @ I _F					
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}					
I _{ZK}	Reverse Current					
Z _{ZK}	Maximum Zener Impedance @ I _{ZK}					

ELECTRICAL CHARACTERISTICS

				V _{BR} , Breakdown Voltage			V _C @ I _{PP} =	Max Ipp	Typical Capacitance
		V _{RWM}	I _R @ V _{RWM}	(Volts)		IT	1 Amp	(Note 4)	(pF)
Device	Device Marking	(Volts)	(μA)	Min	Мах	mA	(Volts)	(Amps)	Pin 1 to 3 @ 0 Volts
SM05T1, G	05M	5	10	6.2	7.3	1.0	9.8	17	225
SM12T1, G	12M	12	1.0	13.3	15.75	1.0	19	12	95

4. $8 \times 20~\mu s$ pulse waveform per Figure 3

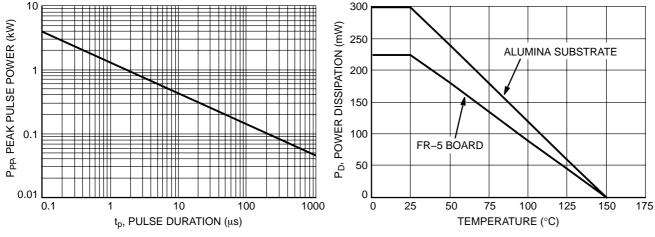


Figure 1. Non–Repetitive Peak Pulse Power versus Pulse Time

Figure 2. Steady State Power Derating Curve

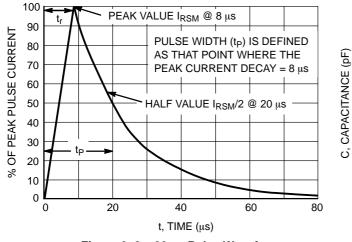


Figure 3. 8 \times 20 μs Pulse Waveform

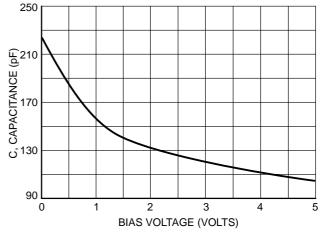
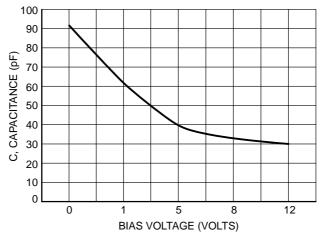
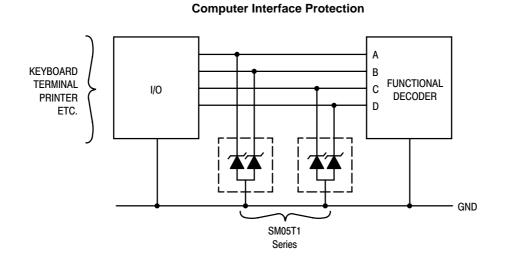
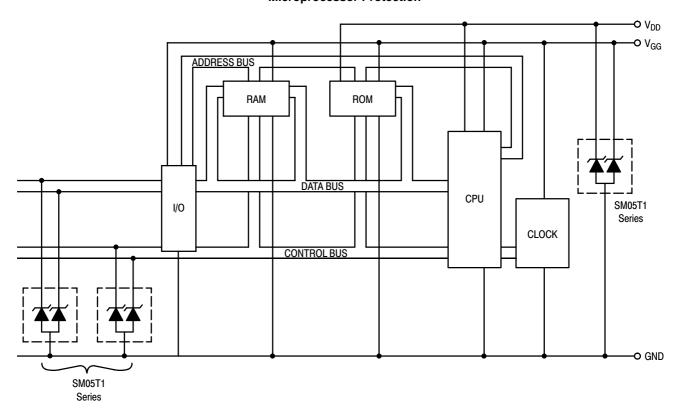



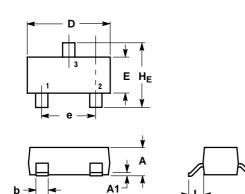
Figure 4. Typical Diode Capacitance (SM05)




TYPICAL COMMON ANODE APPLICATIONS

A quad junction common anode design in a SOT-23 package protects four separate lines using only one package. This adds flexibility and creativity to PCB design especially

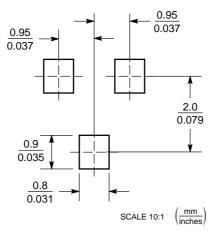
when board space is at a premium. Two simplified examples of TVS applications are illustrated below.



Microprocessor Protection

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AL**



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL
- BASE MATERIAL.
 318–01 THRU –07 AND –09 OBSOLETE, NEW STANDARD 318–08.

	м	ILLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.040	0.044	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.018	0.020	
С	0.09	0.13	0.18	0.003	0.005	0.007	
D	2.80	2.90	3.04	0.110	0.114	0.120	
Е	1.20	1.30	1.40	0.047	0.051	0.055	
e	1.78	1.90	2.04	0.070	0.075	0.081	
L	0.35	0.54	0.69	0.014	0.021	0.029	
HE	2.10	2.40	2.64	0.083	0.094	0.104	

STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters witch with the soluce of the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or uses SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persores and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized sopyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.