

| STRUCTURE      | Silicon monolithic integrated circuits |
|----------------|----------------------------------------|
| PRODUCT SERIES | 2-in-1 motor driver for VTR            |
| TYPE           | BD6904FP                               |
| FUNCTION       | VTR cylinder motor driver (Sensor      |

· VTR cylinder motor driver (Sensorless 3-phase full-wave soft switching drive system)

VTR loading motor driver

OAbsolute maximum ratings (Ta=25°C)

| Parameter                               | Symbol | Limit              | Unit |
|-----------------------------------------|--------|--------------------|------|
|                                         | VCC    | 7                  | V    |
| Supply voltage                          | VM     | 15                 | V    |
|                                         | VG     | 20                 | V    |
| Power dissipation                       | Pd     | 1450 <sup>×1</sup> | mW   |
| Operating temperature range             | Topr   | -20~+75            | °C   |
| Storage temperature range               | Tstg   | -55~+150           | °C   |
| Maximum output current (cylinder block) | lomax1 | 800 <sup>**2</sup> | mA   |
| Maximum output current (loading block)  | lomax2 | 800 <sup>**2</sup> | mA   |
| Junction temperature                    | Tjmax  | +150               | °C   |

 $^{*1}$  90mm × 90mm × 1.6mm glass epoxy board. Derating in done at 11.6mW/°C for operating above Ta=25°C.  $^{*2}$  Do not, however exceed Pd, ASO and Tjmax=150°C.

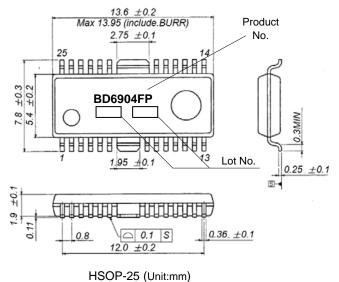
## ORecommended operating conditions (Ta= $-25 \sim +75^{\circ}$ C)

| Parameter                           | Symbol | Min  | Тур | Max    | Unit |
|-------------------------------------|--------|------|-----|--------|------|
|                                     | VCC    | 4.5  | 5   | 5.5    | V    |
| Supply voltage                      | VM     | 9    | 12  | 14     | V    |
|                                     | VG     | VM+2 | 17  | 19     | V    |
| COM input in-phase voltage range    | VCOMD  | 0    | -   | VM-2.5 | V    |
| PG amp in-phase input voltage range | VPD    | 1.5  | -   | 3.7    | V    |

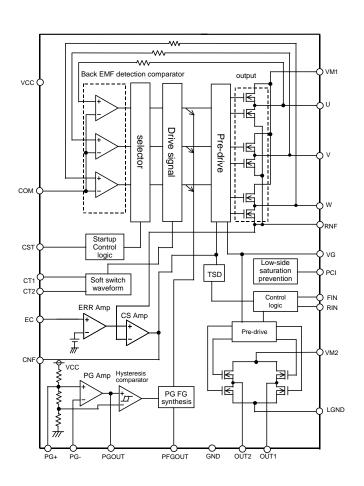
This product described in this specification isn't judged whether it applies to COCOM regulations. Please confirm in case of export.

This product isn't designed for protection against radioactive rays.




### OElectrical characteristics (Unless otherwise specified, Ta=25°C, VCC=5V, VM1=VM2=12V, VG=17V)

| Parameter                           | Symbol | Limit     |         |           | Unit | Conditions                          |  |
|-------------------------------------|--------|-----------|---------|-----------|------|-------------------------------------|--|
| Parameter                           | Symbol | Min.      | Тур.    | Max.      | Unit | Conditions                          |  |
| Overall                             | 1      | 1         |         | 1 1       |      | T                                   |  |
| VCC total supply current            | ICC    | -         | 9       | 13        | mA   |                                     |  |
| Output                              |        |           |         |           |      |                                     |  |
| High-side output saturation voltage | VOH    | -         | 0.4     | 0.7       | V    | lo=-300mA                           |  |
| Low-side output saturation voltage  | VOL    | -         | 0.55    | 0.85      | V    | lo=300mA                            |  |
| BEMF comparator                     |        |           |         |           |      |                                     |  |
| BEMF comparator hysteresis width +  | VHYSB+ | +24       | +36     | +48       | mV   |                                     |  |
| BEMF comparator hysteresis width -  | VHYSB- | -59       | -43     | -27       | mV   |                                     |  |
| Torque reference                    |        |           |         |           |      |                                     |  |
| Torque reference start voltage      | VECR   | 2.35      | 2.5     | 2.65      | V    |                                     |  |
|                                     | Cia    | 0.00      | 4.00    | 4.00      |      | EC=2.3V-2.2V                        |  |
| Torque reference I/O gain           | Gio    | 0.80      | 1.06    | 1.33      | A/V  | Gain output (HLM) RRNF=0.689        |  |
| Current limit voltage               | VCL    | 239       | 295     | 345       | mV   | RRNF=0.68Ω                          |  |
| Soft switch                         |        |           |         |           |      |                                     |  |
| CT1, CT2 charge current             | ICTD   | -53       | -39     | -25       | μA   |                                     |  |
| CT1, CT2 discharge current          | ICTI   | 29        | 45      | 61        | μA   |                                     |  |
| High CT1, CT2 clamp voltage         | VCTH   | 3.4       | 3.8     | 4.2       | V    |                                     |  |
| Low CT1, CT2 clamp voltage          | VCTL   | 0.85      | 1.05    | 1.25      | V    |                                     |  |
| Startup control logic               |        |           |         |           |      |                                     |  |
| CST charge current                  | ICSTO  | -20       | -14     | -8        | μA   |                                     |  |
| CST discharge current               | ICSTI  | 2         | 5.5     | 9         | μA   |                                     |  |
| High CST clamp voltage              | VCSTH  | 2.4       | 2.8     | 3.2       | V    |                                     |  |
| Low CST clamp voltage               | VCSTL  | 0.8       | 1.0     | 1.2       | V    |                                     |  |
| CST off voltage                     | VCSTO  | 3.6       | 3.8     | 4.0       | V    |                                     |  |
| PG amp                              |        |           |         |           |      |                                     |  |
| Input bias current                  | IPG-   | -         | 1       | 3         | μA   | PG-=2.5V                            |  |
| Input offset voltage                | VIOP   | -8        | -       | +8        | mV   |                                     |  |
| DC bias voltage                     | VBP    | 2.25      | 2.5     | 2.75      | V    |                                     |  |
| Voltage gain 1                      | AV1    | 50        | 71      | -         | dB   | f=1kHz                              |  |
| High output voltage                 | VOHP   | 3.4       | 3.75    | -         | V    | IOH=-1mA                            |  |
| Low output voltage                  | VOLP   | -         | 1.2     | 1.6       | V    | IOL=1mA                             |  |
| PFG output                          |        |           |         |           |      |                                     |  |
| PG detection level                  | VPGTH  | VBP-0.075 | VBP-0.1 | VBP-0.125 | V    |                                     |  |
| High output voltage                 | VPFGH  | 3.5       | -       | -         | V    | IO=-30 μ A                          |  |
| Middle output voltage               | VPFGM  | 2.1       | -       | 2.9       | V    | $IO=\pm 10 \mu$ A                   |  |
| Low output voltage                  | VPFGL  | -         | -       | 0.9       | V    | IO=30 μ A                           |  |
| Loading                             |        |           |         |           |      |                                     |  |
| High-level FIN input                | VFINH  | 3.5       | -       | -         | V    |                                     |  |
| High-level RIN input                | VRINH  | 3.5       | -       | -         | V    |                                     |  |
| Low-level FIN input                 | VFINL  | -         | -       | 1.5       | V    |                                     |  |
| Low-level RIN input                 | VRINL  | -         | -       | 1.5       | V    |                                     |  |
|                                     |        |           |         |           |      | IO=200mA,                           |  |
| Output saturation voltage           | VCE    | -         | 0.3     | 0.6       | V    | total of output transistor high-sid |  |
|                                     |        |           |         |           |      | and low-side voltage                |  |


%Source currents are treated as negative while sinking currents are treated as positive.



**OPackage** outline



OBlock diagram



### OPin No. / Pin name

| Pin No. | Pin name |
|---------|----------|
| 1       | VM2      |
| 2       | OUT1     |
| 3       | LGND     |
| 4       | OUT2     |
| 5       | FIN      |
| 6       | RIN      |
| 7       | VG       |
| 8       | GND      |
| 9       | CST      |
| 10      | CT1      |
| 11      | CT2      |
| 12      | PCI      |
| 13      | CNF      |
| 14      | EC       |
| 15      | PG+      |
| 16      | PG-      |
| 17      | PGOUT    |
| 18      | PFGOUT   |
| 19      | VCC      |
| 20      | COM      |
| 21      | VM1      |
| 22      | U        |
| 23      | V        |
| 24      | RNF      |
| 25      | W        |



#### OOperation Notes

(1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range (Topr) may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. The implementation of a physical safety measure such as a fuse should be considered when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.

(2) Power supply lines

Regenerated current may flow as a result of the motor's back electromotive force. Insert capacitors between the power supply and ground pins to serve as a route for regenerated current. Determine the capacitance in full consideration of all the characteristics of the electrolytic capacitor, because the electrolytic capacitor may loose some capacitance at low temperatures. If the connected power supply does not have sufficient current absorption capacity, regenerative current will cause the voltage on the power supply line to rise, which combined with the product and its peripheral circuitry may exceed the absolute maximum ratings. It is recommended to implement a physical safety measure such as the insertion of a voltage clamp diode between the power supply and GND pins.

(3) Ground potential

Ensure a minimum GND pin potential in all operating conditions.

(4) Setting of heat

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

(5) Actions in strong magnetic field

Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.

(6) ASO

When using the IC, set the output transistor for the motor so that it does not exceed absolute maximum ratings or ASO.

(7) Thermal shutdown circuit

This IC incorporates a TSD (thermal shutdown) circuit (TSD circuit). If the temperature of the chip reaches the following temperature, the motor coil output will be opened. The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.

| TSD on temperature [°C] (typ.) | Hysteresis temperature [°C] (typ.) |
|--------------------------------|------------------------------------|
| 170                            | 20                                 |

(8) Ground Wiring Pattern

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either.

|                                                                   | g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The conter                                                        | nt specified herein is subject to change for improvement without notice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| "Products                                                         | nt specified herein is for the purpose of introducing ROHM's products (hereinafte<br>'). If you wish to use any such Product, please be sure to refer to the specifications<br>be obtained from ROHM upon request.                                                                                                                                                                                                                                                                                                                                                                                                |
| illustrate th                                                     | of application circuits, circuit constants and any other information contained herein<br>the standard usage and operations of the Products. The peripheral conditions mus<br>to account when designing circuits for mass production.                                                                                                                                                                                                                                                                                                                                                                              |
| However,                                                          | was taken in ensuring the accuracy of the information specified in this document<br>should you incur any damage arising from any inaccuracy or misprint of such<br>n, ROHM shall bear no responsibility for such damage.                                                                                                                                                                                                                                                                                                                                                                                          |
| examples<br>implicitly, a<br>other parti                          | cal information specified herein is intended only to show the typical functions of and<br>of application circuits for the Products. ROHM does not grant you, explicitly o<br>any license to use or exercise intellectual property or other rights held by ROHM and<br>es. ROHM shall bear no responsibility whatsoever for any dispute arising from the<br>h technical information.                                                                                                                                                                                                                               |
| equipment                                                         | cts specified in this document are intended to be used with general-use electroni-<br>c or devices (such as audio visual equipment, office-automation equipment, commu<br>evices, electronic appliances and amusement devices).                                                                                                                                                                                                                                                                                                                                                                                   |
| The Produ                                                         | cts specified in this document are not designed to be radiation tolerant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                   | HM always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| against the<br>failure of a<br>shall bear                         | sure to implement in your equipment using the Products safety measures to guard<br>e possibility of physical injury, fire or any other damage caused in the event of the<br>ny Product, such as derating, redundancy, fire control and fail-safe designs. ROHM<br>no responsibility whatsoever for your use of any Product outside of the prescribed<br>ot in accordance with the instruction manual.                                                                                                                                                                                                             |
| system wh<br>may result<br>instrument<br>controller<br>of the Pro | icts are not designed or manufactured to be used with any equipment, device of<br>hich requires an extremely high level of reliability the failure or malfunction of which<br>in a direct threat to human life or create a risk of human injury (such as a medica<br>c, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-<br>or other safety device). ROHM shall bear no responsibility in any way for use of an<br>ducts for the above special purposes. If a Product is intended to be used for an<br>ial purpose, please contact a ROHM sales representative before purchasing. |
| be control                                                        | nd to export or ship overseas any Product or technology specified herein that ma<br>led under the Foreign Exchange and the Foreign Trade Law, you will be required to<br>cense or permit under the Law.                                                                                                                                                                                                                                                                                                                                                                                                           |



Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

# ROHM Customer Support System

http://www.rohm.com/contact/