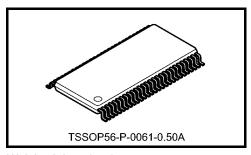
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic


TC74VCX162823FT

Low-Voltage 18-Bit D-Type Flip-Flop with 3.6-V Tolerant Inputs and Outputs

The TC74VCX162823FT is a high-performance CMOS 18-bit D-type flip-flop. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is also designed with overvoltage tolerant inputs and outputs up to $3.6\ V.$

The TC74VCX162823FT can be used as two 9-bit flip-flops or one 18-bit flip-flop. With the clock-enable (\overline{CKEN}) input low, the D-type flip-flops enter data on the low-to-high transitions of the clock. Taking \overline{CKEN} high disables the clock buffer, thus latching the outputs. Taking the clear (\overline{CLR}) input low causes the Q outputs to go low independently of the clock. When the \overline{OE} input

Weight: 0.25 g (typ.)

is high, the outputs are in a high-impedance state. This device is designed to be used with 3-state memory address drivers, etc.

The $26-\Omega$ series resistor helps reducing output overshoot and undershoot without external resistor. All inputs are equipped with protection circuits against static discharge.

Features

- $26-\Omega$ series resistors on outputs
- Low-voltage operation: V_{CC} = 1.8 to 3.6 V
- High-speed operation: $t_{pd} = 4.4 \text{ ns (max) (V}_{CC} = 3.0 \text{ to } 3.6 \text{ V)}$

 $t_{pd} = 5.8 \text{ ns (max) (VCC} = 2.3 \text{ to } 2.7 \text{ V)}$

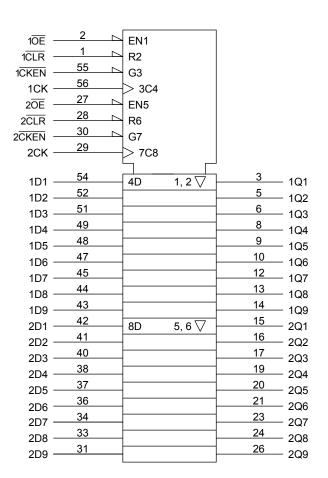
 $: t_{pd} = 9.8 \text{ ns (max) (V}_{CC} = 1.8 \text{ V})$

• Output current: $I_{OH}/I_{OL} = \pm 12 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$

 $: I_{OH}/I_{OL} = \pm 8 \text{ mA (min) (V}_{CC} = 2.3 \text{ V)}$

 $: I_{OH}/I_{OL} = \pm 4 \text{ mA (min) (V}_{CC} = 1.8 \text{ V)}$

- Latch-up performance: -300 mA
- ESD performance: Machine model $\geq \pm 200 \text{ V}$


Human body model ≥ ±2000 V

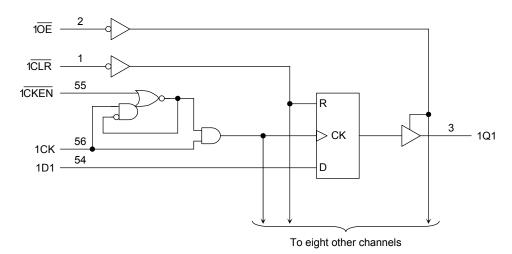
- Package: TSSOP
- 3.6-V tolerant function and power-down protection provided on all inputs and outputs

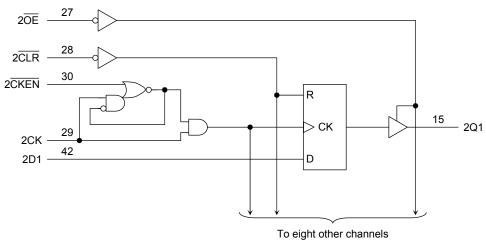
Pin Assignment (top view)

1CLR 1 56 1CK 10E 1CKEN 2 55 1Q1 3 1D1 54 GND 4 53 **GND** 5 1Q2 52 1D2 1Q3 6 51 1D3 V_{CC} 7 50 V_{CC} 1Q4 8 1D4 49 1Q5 9 48 1D5 1Q6 10 1D6 47 GND 11 46 **GND** 1Q7 12 45 1D7 1Q8 13 1D8 1Q9 14 43 1D9 2Q1 15 2D1 42 2Q2 16 41 2D2 2Q3 17 40 2D3 GND 18 **GND** 39 2D4 2Q4 19 38 2Q5 20 37 2D5 2Q6 21 36 2D6 22 35 Vcc V_{CC} 2Q7 23 34 2D7 2D8 2Q8 24 33 GND 25 **GND** 32 2Q9 26 2D9 31 2OE 2CKEN 27 30 2CLR 28 2CK 29

IEC Logic Symbol

Truth Table (each 9-bit flip-flop)


	Outputs				
ŌĒ	CLR	CKEN	CK	D	Q
L	L	Х	Х	Х	L
L	Н	L		Н	Н
L	Н	_		L	L
L	Н	_	L	X	Qn
L	Н	Н	Х	Х	Qn
Н	Х	Х	Х	Х	Z


X: Don't care

Z: High impedance

Qn: No change

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 4.6	V
DC input voltage	V _{IN}	-0.5 to 4.6	V
		-0.5 to 4.6 (Note 2)	
DC output voltage	V _{OUT}	-0.5 to $V_{CC} + 0.5$	V
		(Note 3)	
Input diode current	l _{IK}	-50	mA
Output diode current	lok	±50 (Note 4)	mA
DC output current	I _{OUT} ±50		mA
Power dissipation	P_{D}	400	mW
DC V _{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: OFF state

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	1.8 to 3.6	V	
l ower supply voltage	VCC	1.2 to 3.6 (Note 2)	v	
Input voltage	V _{IN}	-0.3 to 3.6	V	
Output voltage	Vour	0 to 3.6 (Note 3)	V	
Output voltage	Vout	0 to V _{CC} (Note 4)	V	
		±12 (Note 5)		
Output current	I _{OH} /I _{OL}	±8 (Note 6)	mA	
		±4 (Note 7)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Note 2: Data retention only

Note 3: OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$

Note 7: $V_{CC} = 1.8 \text{ V}$

Note 8: $V_{IN} = 0.8 \text{ to } 2.0 \text{ V}, V_{CC} = 3.0 \text{ V}$

Electrical Characteristics

DC Characteristics (Ta = -40 to 85° C, 2.7 V < $V_{CC} \le 3.6$ V)

Characteri	Characteristics		Test Condition		V _{CC} (V)	Min	Max	Unit
la acceptance library a	H-level	V _{IH}		_	2.7 to 3.6	2.0	_	.,
Input voltage	L-level	V _{IL}		_	2.7 to 3.6	_	0.8	V
				I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2	_	
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -6 mA	2.7	2.2	_	
				$I_{OH} = -8 \text{ mA}$	3.0	2.4	_	
Output voltage				$I_{OH} = -12 \text{ mA}$	3.0	2.2	_	V
	, ,	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \mu A$	2.7 to 3.6	_	0.2	
l	L-level			I _{OL} = 6 mA	2.7	_	0.4	
	L-ievei			I _{OL} = 8 mA	3.0	_	0.55	
				I _{OL} = 12 mA	3.0	_	0.8	
Input leakage curre	nt	I _{IN}	V _{IN} = 0 to 3.6 V		2.7 to 3.6	_	±5.0	μА
2 state output OFF	atata aurrant	1	$V_{IN} = V_{IH}$ or V_{IL}		2.7 to 2.6		±10.0	^
3-state output OFF state current		loz	V _{OUT} = 0 to 3.6 V		2.7 to 3.6		±10.0	μА
Power-off leakage current I _C		l _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μА
Out and a second assessment		1	V _{IN} = V _{CC} or GND		2.7 to 3.6	_	20.0	
Quiescent supply c	urrent	Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$		2.7 to 3.6	_	±20.0	μА
Increase in I _{CC} per input Δ I _{CC} $V_{IH} = V_{CC}$		V _{IH} = V _{CC} - 0.6 V		2.7 to 3.6	_	750		

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characteristics		Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit
	H-level	V _{IH}		_	2.3 to 2.7	1.6	_	
Input voltage	L-level	V _{IL}		_	2.3 to 2.7	_	0.7	V
			I _{OH} = -100 μA	2.3 to 2.7	V _{CC} - 0.2	_		
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -4 mA	2.3	2.0	_	
Output voltage		011		I _{OH} = -6 mA	2.3	1.8	_	V
				I _{OH} = -8 mA	2.3	1.7	_	
		V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 100 μA	2.3 to 2.7	_	0.2	
	L-level			I _{OL} = 6 mA	2.3	_	0.4	
				I _{OL} = 8 mA	2.3	_	0.6	
Input leakage curre	ent	I _{IN}	V _{IN} = 0 to 3.6 V		2.3 to 2.7	_	±5.0	μА
3-state output OFF state current		loz	V _{IN} = V _{IH} or V _{IL}		2.3 to 2.7		±10.0	μА
		loz	V _{OUT} = 0 to 3.6 V		2.3 10 2.7		±10.0	μΑ
Power-off leakage	current	loff	V _{IN} , V _{OUT} = 0 to 3.6 V		0		10.0	μΑ
Quiescent supply	current		V _{IN} = V _{CC} or GND		2.3 to 2.7		20.0	μА
Quiescent supply current		Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le$	3.6 V	2.3 to 2.7	_	±20.0	μΑ

DC Characteristics (Ta = -40 to 85°C, 1.8 V \leq V_{CC} < 2.3 V)

Characteristics		Symbol	Test C	ondition		Min	Max	Unit
		.,			V _{CC} (V)			
Input voltage	H-level	V _{IH}	-	_	1.8 to 2.3	0.7 × V _{CC}		V
input voitage	L-level	V _{IL}	-	_	1.8 to 2.3		0.2 × V _{CC}	V
	H-level	VoH	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	
Output voltage	Output voltage			I _{OH} = -4 mA	1.8	1.4	_	٧
		Va	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \mu A$	1.8	_	0.2	
	L-level	V _{OL}		I _{OL} = 4 mA	1.8	_	0.3	
Input leakage currer	nt	I _{IN}	V _{IN} = 0 to 3.6 V		1.8	_	±5.0	μА
3-state output OFF state current		I _{OZ}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		1.8	_	±10.0	μА
Power-off leakage current		l _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μА
Quioscont supply of	Quiescent supply current		$V_{IN} = V_{CC}$ or GND		1.8	_	20.0	^
Quiescent supply co			$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$		1.8		±20.0	μА

AC Characteristics (Ta = –40 to 85°C, input: $t_r = t_f$ = 2.0 ns, C_L = 30 pF, R_L = 500 Ω) (Note 1)

Characteristics	Symbol	Test Condition	1	Min	Max	Unit
			V _{CC} (V)		····a/·	
			1.8	100	—	
Maximum clock frequency	f _{max}	Figure 1, Figure 2	2.5 ± 0.2	200	_	MHz
			3.3 ± 0.3	250	_	
Dropogation delay time	4		1.8	1.5	9.8	
Propagation delay time (CK-Q)	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	8.0	5.8	ns
(ON-Q)	t _{pHL}		3.3 ± 0.3	0.6	4.4	
Draw a gation dalay time			1.8	1.5	9.8	
Propagation delay time $(\overline{CLR}-Q)$	t _{pHL}	Figure 1, Figure 3	2.5 ± 0.2	0.8	6.0	ns
(CLR-Q)			3.3 ± 0.3	0.6	4.6	
			1.8	1.5	9.8	
3-state output enable time	t _{pZL}	Figure 1, Figure 4	2.5 ± 0.2	0.8	5.9	ns
	^t pZH		3.3 ± 0.3	0.6	4.3	
			1.8	1.5	8.8	ns
3-state output disable time	t _{pLZ}	Figure 1, Figure 4	2.5 ± 0.2	0.8	4.9	
	t _{pHZ}		3.3 ± 0.3	0.6	4.3	
National control of the state o			1.8	4.0	_	ns
Minimum pulse width (CK, CLR)	t _{W (H)}	Figure 1, Figure 2, Figure 3	2.5 ± 0.2	1.5	_	
(CR, CLR)	t _{W (L)}		3.3 ± 0.3	1.5	_	
Mr			1.8	2.5	_	
Minimum setup time (D, CKEN)	ts	Figure 1, Figure 2, Figure 5	2.5 ± 0.2	1.5	_	ns
(D, CKEN)			3.3 ± 0.3	1.5	_	
NA distribution in the Late of the control of the c			1.8	1.0	_	
Minimum hold time (D, CKEN)	t _h	Figure 1, Figure 2, Figure 5	2.5 ± 0.2	1.0	_	ns
(D, CKEN)			3.3 ± 0.3	1.0	_	
			1.8	4.0	_	
Minimum removal time	t _{rem}	Figure 1, Figure 6	2.5 ± 0.2	2.0	_	ns
			3.3 ± 0.3	2.0	_	
			1.8	_	0.5	
Output to output skew	t _{osLH}	(Note 2)	2.5 ± 0.2	_	0.5	ns
	tosHL		3.3 ± 0.3	_	0.5	

Note 1: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design. $(t_{OSLH} = |t_{DLHm} - t_{DLHn}|, t_{OSHL} = |t_{DHLm} - t_{DHLn}|)$

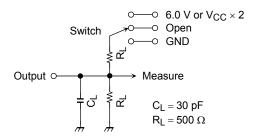
Dynamic Switching Characteristics

(Ta = 25°C, input: $t_r = t_f = 2.0 \text{ ns}, C_L = 30 \text{ pF}, R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition		Тур.	Unit	
			V _{CC} (V)			
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	1.8	0.15		
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	2.5	0.25	V	
, 32		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	3.3	0.35		
	V _{OLV}	$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	1.8	-0.15		
Quiet output minimum dynamic V _{OI}		$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	2.5	-0.25	V	
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	3.3	-0.35		
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	1.8	1.55		
Quiet output minimum dynamic V _{OH}	0	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	2.5	2.05	٧	
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Not	9) 3.3	2.65		

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition		Тур.	Unit	
Characteristics	Cyllibol	1 ook oonanan				V _{CC} (V)
Input capacitance	C _{IN}	_		1.8, 2.5, 3.3	6	pF
Output capacitance	CO	_		1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (N	lote)	1.8, 2.5, 3.3	20	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/18 \text{ (per bit)}$

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t _{pLZ} , t _{pZL}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
t _{pHZ} , t _{pZH}	GND		

Figure 1

AC Waveform

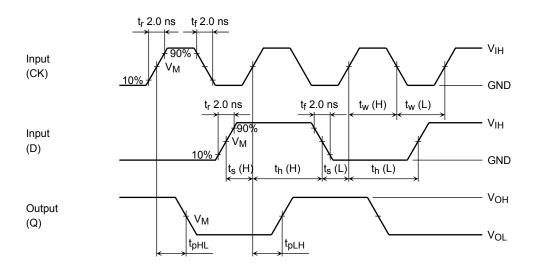


Figure 2 t_{pLH} , t_{pHL} , t_w , t_s , t_h

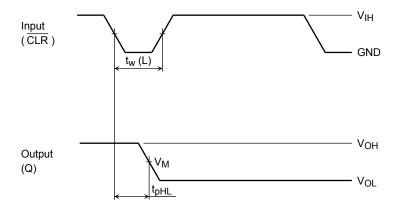


Figure 3 t_{pLH}, t_{pHL}

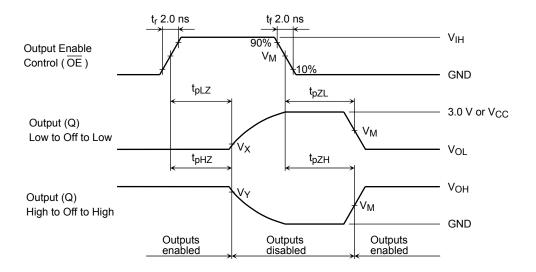


Figure 4 t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}

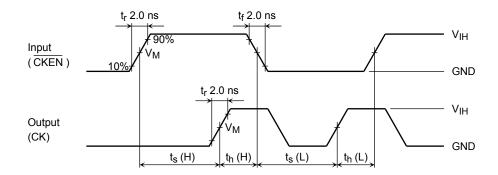
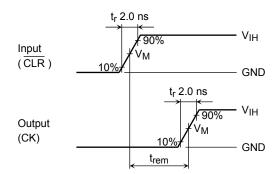
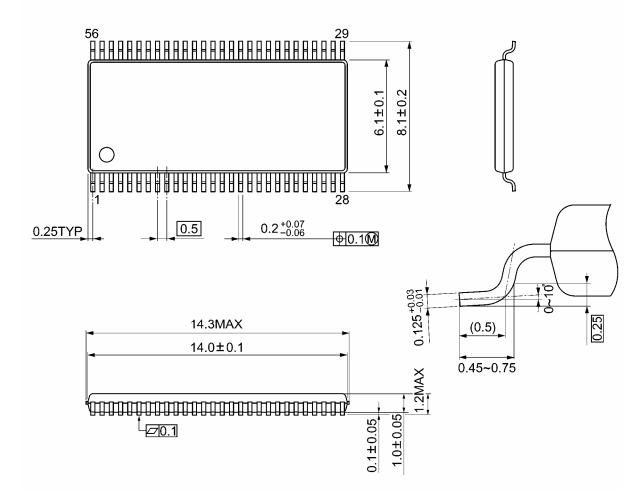


Figure 5 t_s, t_h




Figure 6 trem

Symbol	Vcc						
Syllibol	$3.3\pm0.3~\textrm{V}$	$2.5\pm0.2\textrm{V}$	1.8 V				
V _{IH}	2.7 V	V _{CC}	V _{CC}				
V _M	1.5 V	V _{CC} /2	V _{CC} /2				
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V				
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V				

10 2007-10-19

Package Dimensions

TSSOP56-P-0061-0.50A Unit: mm

Weight: 0.25 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.