20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 Mechanical Qutline 2N1038, 2N1039*, 2N1040, 2N1041* A 2N2552, 2N2553*, 2N2554, 2N2555* B 2N2556, 2N2557*, 2N2558, 2N2559* C Available to Military Specifications ## PNP GERMANIUM ALLOY JUNCTION POWER TRANSISTORS These hermetically sealed and dynamically tested units are designed to switch reactive and resistive loads at maximum efficiency by using a unique internal heat-sink design. Each unit can dissipate up to .4 watt in free air at 25°C and up to 1 watt in forced air at 25°C and can also be pressed into suitable heat-sink wells to dissipate up to 8 watts at 71°C. Typical applications include relay drivers, pulse amplifiers, audio amplifiers and high current switching circuits. The collector lead is internally connected to the case. ## **MAXIMUM DESIGN LIMITS** | | 2N1038
2N2552
2N2556 | 2N1039
2N2553
2N2557 | 2N1040
2N2554
2N2558 | 2N1041
2N2555
2N2559 | Units | |---|----------------------------|----------------------------|----------------------------|----------------------------|----------------| | Collector-to-Base Voltage, V _{CB} | -40 | -60 | 80 | -100 | Volts | | Collector-to-Emitter Voltage, V _{CE}
Acting Region Emitter Forward Biased
Cutoff Region Emitter Reverse Biased | -30
-40 | 40
60 | -50
-80 | -60
-100 | Volts
Volts | | Emitter-to-Base Voltage, V _{EB} | | -20 | | | Volts | | Collector Current, Ic | | -3.0 | | | Amp | | Base Current, I _B | | -1.0 | | | Amp | | Operating and Junction Temp. T _J | | – 55 | to +100 | | °C | | Thermal Resistance, Junction to Free Air Θ JA | | 185 | | | °C/W | | Thermal Resistance, Junction to Case ⊕ JC | | 3.67 | | | °C/W | ## CHARACTERISTICS AT 25°C CASE TEMPERATURE | Parameter | Symbol | Condition | Min. | Max. | Units | |---------------------------------------|-----------------------|--|-------|-------------|-------| | Current Gain, Common Emitter | H _{FEI} | $V_{CE} = -0.5V, I_C = -1 A$ | 20 | 60 | | | Current Gain, Common Emitter | H _{FE2} | $V_{CE} = -0.5V$, $I_C = -50$ mA | 33 | 200 | | | Base-to-Emitter Voltage | VBEI | $V_{CE} = -0.5V, I_C = -1.0 A$ | | -1.0 | Volts | | | YFEI | | 1.0 | | mhos | | Base-to-Emitter Voltage | V _{BE2} | $V_{CE} = -0.5V$, $I_{C} = -50$ mA | | -0.35 | Volts | | | Y _{FE2} | | 0.143 | | mhos | | Collector-Emitter Saturation Voltage* | V _{CE} (sat) | $I_{\rm C} = -1$ A, $I_{\rm B} = -100$ and | | 0.25 | Volts | | Collector Junction Leakage Current | Iceo | | | | | | 2N1038, 2N2552, 2N2556 | | $V_{C8} = -20V$ | | | | | 2N1039, 2N2553, 2N2557 | | $V_{CB} = -30V$ | | -125 | μAmp | | 2N1040, 2N2554, 2N2558 | | $V_{CB} = -40V$ | | | | | 2N1041, 2N2555, 2N2559 | | $V_{CB} = -50V$ | | | | | Collector-Base Breakdown Voltage | BV _{CBO} | $I_{c} = -750$ | | | | | 2N1038, 2N2552, 2N2556 | | | 40 | | | | 2N1039, 2N2553, 2N2557 | | | -60 | | Volts | | 2N1040, 2N2554, 2N2558 | | | -80 | | VUILS | | 2N1041, 2N2555, 2N2559 | | | -100 | | | | Collector Cutoff Current | I _{CEX} | $V_{BE} = +0.2V$ | | | | | 2N1038, 2N2552, 2N2556 | | $V_{CE} = -40V$ | | | | | 2N1039, 2N2553, 2N2557 | | $V_{CE} = -60V$ | | 650 | μAmp | | 2N1040, 2N2554, 2N2558 | | $V_{CE} = -80V$ | | | | | 2N1041, 2N2555, 2N2559 | | $V_{CE} = -100V$ | | | | *Note: Measured adjacent to header to minimize lead effects. my semi-Conductors