Product Features

- $50-2000 \mathrm{MHz}$
- +23 dBm P1dB
- +39 dBm Output IP3
- 20.5 dB Gain @ 900 MHz
- 17.6 dB Gain @ 1900 MHz
- Single Positive Supply (+8V)
- Lead-free/Green/RoHScompliant SOT-89 Package

Applications

- Mobile Infrastructure
- Defense/Homeland Security

Specifications ${ }^{(1)}$

Parameters	Units	Min	Typ	Max
Operational Bandwidth	MHz	50		2000
Test Frequency Gain Output P1dB Output OIP3	MHz dB dBm dBm		$\begin{gathered} \hline 900 \\ 20.5 \\ +23 \\ +39 \\ \hline \end{gathered}$	
Test Frequency Gain Output P1dB Output IP3 ${ }^{(2)}$ IS-95A Channel Power @ - 45 dBc ACPR, 1900 MHz Noise Figure	MHz dB dBm dBm dBm dB	17 +38	$\begin{gathered} \hline 1900 \\ 17.6 \\ +23 \\ +40 \\ +16 \\ 5.2 \\ \hline \end{gathered}$	
Operating Current Range ${ }^{(3)}$ Device Voltage ${ }^{(4)}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \end{gathered}$	85	$\begin{gathered} 100 \\ 5 \end{gathered}$	135

1. Test conditions unless otherwise noted: $25^{\circ} \mathrm{C}$, Vsupply $=+8 \mathrm{~V}$, in tuned application circuit with Rbias $=30 \Omega$.
2. 3OIP measured with two tones at an output power of $+9 \mathrm{dBm} /$ tone separated by 1 MHz . The suppression on the largest IM3 product is used to calculate the 3OIP using a $2: 1$ rule. OIP3 is tested using a tuned fixture for optimal OIP3. Specifically, the 1.5 pF output shunt capacitor is placed at 44° away from pin 3. The application circuit is tuned for optimum ACPR performance OIP3 performance shown elsewhere in this datasheet corresponds to the 1.5 pF capacitor placed at 39° away from pin 3. The recommended configuration will yield 2 dB lower OIP3, but will have improved S22 and gain flatness performance.
3. This corresponds to the quiescent current or operating current under small-signal conditions.
4. This device requires a minimum 7 V power supply through a dropping resistor. 8 V and 30 ohms are recommended for proper operation. Operation of the device directly to a 5 V supply could lead to thermal damage to the device.

Typical Performance ${ }^{(5)}$

Parameters	Units	Typical	
Frequency	MHz	900	1900
S21 - Gain	dB	20.5	17.6
S11 - Input R.L.	dB	-20	-17
S22 - Output R.L.	dB	-9.5	-7.4
Output PIdB	dBm	+22.8	+23
Output IP3 ${ }^{(6)}$	dBm	+39	+38
IS-95A Channel Power ${ }^{(7)}$	dBm	+17	+16
Noise Figure	dB	5	5.2
Supply Bias		$+8 \mathrm{~V} @ 100 \mathrm{~mA}$	

5. Typical parameters reflect performance in a tuned application circuit: Supply Voltage $=+8 \mathrm{~V}, \mathrm{I}_{\mathrm{cc}}=$ $100 \mathrm{~mA},+25^{\circ} \mathrm{C}$, Rbias $=30 \Omega$
6. The recommended configuration with the 1.5 pF output shunt capacitor placed at 39° away from pin 3 will yield 2 dB lower OIP3 than the maximum achievable OIP3, but will have improved S22 and gain flatness performance. Refer to note 2 for more information.
7. This is measured with an IS-95 signal at (9 ch . Fwd) at -45 dBc ACPR.

Absolute Maximum Rating

Parameter	Rating
Operating Case Temperature	-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature	-55 to $+150^{\circ} \mathrm{C}$
RF Input Power (continuous)	+15 dBm
Device Voltage	+6 V
Device Current	150 mA
Junction Temperature	$+250^{\circ} \mathrm{C}$

Ordering Information

Part No.	Description
AH110-89G	InGaP HBT Gain Block
AH110-89PCB900	(lead-free/green/RoHS-compliant Sot-89 package)
900 MHz Evaluation Board	
AH110-89PCB1900	1900 MHz Evaluation Board

[^0]AH110

Typical Device Data

S-parameters $\left(\mathrm{V}_{\text {device }}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{cc}}=100 \mathrm{~mA}, 25^{\circ} \mathrm{C}\right.$, unmatched 50 ohm system $)$

Notes:
The gain for the unmatched device in 50 ohm system is shown as the trace in blue color. For a tuned circuit for a particular frequency, it is expected that actual gain will be higher, up to the maximum stable gain. The maximum stable gain is shown in the dashed red line.
The impedance plots are shown from $50-2500 \mathrm{MHz}$, with markers placed at $0.25-2 \mathrm{GHz}$ in 0.25 GHz increments.
S-Parameters $\left(\mathrm{V}_{\text {device }}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{cc}}=100 \mathrm{~mA}, \mathrm{~T}=25^{\circ} \mathrm{C}\right.$, unmatched 50 ohm system, calibrated to device leads)

Freg (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	$\mathbf{S 2 1}$ (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-5.21	-158.20	27.34	141.96	-32.11	16.29	-6.58	-132.30
100	-4.92	-170.08	25.32	144.95	-31.61	9.45	-7.49	-157.02
200	-4.72	-177.73	24.15	138.50	-31.37	6.88	-7.96	-171.72
400	-4.31	173.22	22.43	118.30	-30.63	7.98	-8.46	178.73
600	-4.10	163.26	20.91	100.56	-30.32	5.52	-8.81	174.06
800	-4.19	152.57	19.68	85.04	-29.78	2.65	-9.07	171.40
1000	-4.63	140.41	18.82	69.98	-29.74	-2.18	-9.12	169.67
1200	-5.64	126.43	18.35	54.85	-29.31	-11.26	-8.95	170.98
1400	-7.84	109.08	18.13	38.12	-29.86	-26.72	-8.04	175.14
1600	-13.52	83.27	18.12	17.54	-31.16	-52.52	-6.16	179.09
1800	-19.89	-85.25	17.78	-7.75	-34.99	-105.12	-3.43	176.43
2000	-6.99	-131.98	16.44	-37.07	-34.48	161.53	-1.36	164.56
2200	-2.84	-160.75	14.09	-64.48	-29.33	106.22	-0.69	149.67
2400	-1.18	177.40	10.90	-86.11	-26.64	75.52	-0.93	136.25
2500	-0.78	167.87	9.28	-96.04	-25.96	66.16	-1.28	130.16

Device S-parameters are available for download off of the website at: http://www.wj.com

Application Circuit PC Board Layout

Circuit Board Material: . $014^{\prime \prime}$ Getek, 4-layer, 1 oz copper, Microstrip line details: width $=.026^{\prime \prime}$, spacing $=.026^{\prime \prime}$
The silk screen markers ' A ', ' B ', ' C ', etc. and ' 1 ', ' 2 ', ' 3 ', etc. are used as placemarkers for the input and output tuning shunt capacitors. The markers and vias are spaced in 050 ' increments.
C7/C8 are for 900 MHz matching circuits and C9/C12 are for 1900 MHz matching circuits.

AH110
0.2 Watt, High Linearity InGaP HBT Amplifier

900 MHz Application Circuit (AH110-89PCB900)
Typical RF Performance at $25^{\circ} \mathrm{C}$

Frequency	$\mathbf{9 0 0} \mathbf{~ M H z}$
S21 - Gain	20.5 dB
S11 - Input Return Loss	-20 dB
S22 - Output Return Loss	-9.5 dB
Output P1dB	+22.8 dBm
Output IP3 (+9 dBm /tone, 1 MHz spacing)	+39 dBm
Channel Power (@-45 dBc ACPR, IS-95 9 channels fwd)	+17 dBm
Noise Figure	5 dB
Device Voltage	+5 V
Quiescent Current	100 mA

C7 is placed at silkscreen marker ' C ' or center of component placed at $5.6 \mathrm{deg} @ 900 \mathrm{MHz}$ away from pin 1 . C 8 is placed at 22 deg. @ 900 MHz away from pin 3 .

1900 MHz Application Circuit (AH110-89PCB1900)

C12 is placed at silkscreen marker ' I ' or center of component placed at 43 deg . @ 1.9 GHz away from pin 1 C9 placed at silkscreen marker ' 8 '' or center of component placed at 39 deg. @ 1.9 GHz away from pin 3.

Typical RF Performance at $25^{\circ} \mathrm{C}$

Frequency	$\mathbf{1 9 0 0} \mathbf{~ M H z}$
S21 - Gain	17.6 dB
S11 - Input Return Loss	-17 dB
S22 - Output Return Loss	-7.4 dB
Output P1dB	+23 dBm
Output IP3 (+9 dBm / tone, 1 MHz spacing $)$	+38 dBm
Channel Power $(@-45 \mathrm{dBc}$ ACPR, IS-959 channels fwd $)$	+16 dBm
Noise Figure	5.2 dB
Device Voltage	+5 V
Quiescent Current	100 mA

S21 vs. Frequency

Noise Figure vs. Frequency

Frequency (MHz)

P1 dB vs. Frequency

OIP3 vs. Temperature

S22 vs. Frequency

IS-95, 9 Ch. Fwd. ± 885 KHz offset, 30 KHz Meas. BW, 1900 MHz

OIP3 vs. Output Power

AH110
0.2 Watt, High Linearity InGaP HBT Amplifier

AH110-89G Mechanical Information

This package is lead-free/Green/RoHS-compliant. The plating material on the leads is NiPdAu. It is compatible with both lead-free (maximum $260^{\circ} \mathrm{C}$ reflow temperature) and leaded (maximum $245^{\circ} \mathrm{C}$ reflow temperature) soldering processes.

Outline Drawing

0

Land Pattern

Product Marking

The component will be marked with an "AH110G" designator with an alphanumeric lot code on the top surface of the package. The obsolete tin-lead package is marked with "AH110" designator followed by an alphanumeric lot code.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

Caution! ESD sensitive device.

ESD Rating: Class 1A
Value: \quad Passes between 250 and 500 V
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

MSL Rating: Level 3 at $+260^{\circ} \mathrm{C}$ convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a $.35 \mathrm{~mm}\left(\# 80 / .0135^{\prime \prime}\right)$ diameter drill and have a final plated thru diameter of $.25 \mathrm{~mm}\left(.010^{\prime \prime}\right)$.
2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink
5. RF trace width depends upon the PC board material and construction.
6. Use 1 oz . Copper minimum.
7. All dimensions are in millimeters (inches). Angles are in degrees

Thermal Specifications

Parameter
Operating Case Temperature $\quad-40$ to $+85^{\circ} \mathrm{C}$
Thermal Resistance, Rth ${ }^{(1)} \quad 128^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature, $\mathrm{Tj}^{(2)} \quad 149^{\circ} \mathrm{C}$
Notes:
1. The thermal resistance is referenced from the junction-
to-case at a case temperature of $85^{\circ} \mathrm{C}$.
2. This corresponds to the typical biasing condition of
$+5 \mathrm{~V}, 100 \mathrm{~mA}$ at an $85{ }^{\circ} \mathrm{C}$ case temperature. A
minimum MTTF of 1 million hours is achieved for
junction temperatures below $247^{\circ} \mathrm{C}$.

[^0]: Operation of this device above any of these parameters may cause permanent damage.

