30 V, Micropower, Overvoltage Protection, Rail-to-Rail Input/Output Amplifier

## FEATURES

Input overvoltage protection, 32 V above and below the supply rails
Rail-to-rail input and output swing
Low power: $60 \mu \mathrm{~A}$ per amplifier typical
Unity-gain bandwidth
800 kHz typical @ Vsy $= \pm 15 \mathrm{~V}$
550 kHz typical @ V
465 kHz typical @ V $\mathrm{sy}= \pm 1.5 \mathrm{~V}$
Single-supply operation: 3 V to 30 V
Low offset voltage: $\mathbf{3 0 0} \mu \mathrm{V}$ maximum
High open-loop gain: 120 dB typical
Unity-gain stable
No phase reversal
Qualified for automotive applications

## APPLICATIONS

## Battery monitoring

Sensor conditioners
Portable power supply control

## Portable instrumentation

## GENERAL DESCRIPTION

The ADA4096 operational amplifier features micropower operation and rail-to-rail input and output ranges. The extremely low power requirements and guaranteed operation from 3 V to 30 V make these amplifiers perfectly suited to monitor battery usage and to control battery charging. Their dynamic performance, including $27 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ voltage noise density, recommends them for battery-powered audio applications. Capacitive loads to 200 pF are handled without oscillation.

The ADA4096-2 has overvoltage protection inputs and diodes that allow the voltage input to extend 32 V above and below the supply rails, making this device ideal for robust industrial applications.

## PIN CONFIGURATIONS



Figure 1. 8-Lead, MSOP (RM-8)


NOTES

1. CONNECT THE EXPOSED PAD TO GROUND.
Figure 2. 8-Lead LFCSP (CP-8-10)

The ADA4096-2 features a unique input stage that allows the input voltage to exceed either supply safely without any phase reversal or latch-up; this is called overvoltage protection, or OVP.

The dual ADA4096-2 is available in 8-lead LFCSP ( $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ ) and 8-lead MSOP packages. The ADA409x family is specified over the extended industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ and is part of the growing selection of 30 V , low power op amps from Analog Devices, Inc. (see Table 1).

Table 1. Low Power, 30 V Operational Amplifiers

| Op Amp | Rail-to-Rail I/O | PJFET | Low Noise |
| :--- | :--- | :--- | :--- |
| Dual | ADA4091-2 | AD8682 | AD8622 |
| Quad | ADA4091-4 | AD8684 | AD8624 |

## ADA4096-2

## TABLE OF CONTENTS

Features ..... 1
Applications .....  1
Pin Configurations .....  1
General Description .....  1
Revision History ..... 2
Specifications ..... 3
Electrical Specifications .....  3
Absolute Maximum Ratings ..... 7
Thermal Resistance ..... 7
ESD Caution ..... 7
Typical Performance Characteristics ..... 8
$\pm 1.5$ V Characteristics ..... 8
$\pm 5$ V Characteristics. ..... 10
$\pm 15$ V Characteristics ..... 12
Comparative Voltage and Variable Voltage Graphs ..... 14
Theory of Operation ..... 15
Input Stage ..... 15
Phase Inversion ..... 15
Input Overvoltage Protection ..... 16
Comparator Operation ..... 17
Outline Dimensions ..... 18
Ordering Guide ..... 19
Automotive Products ..... 19

## REVISION HISTORY

7/11-Revision 0: Initial Version

## SPECIFICATIONS

## ELECTRICAL SPECIFICATIONS, $\mathrm{V}_{\mathrm{sy}}= \pm 1.5 \mathrm{~V}$

$\mathrm{V}_{\mathrm{SY}}= \pm 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{SY}} / 2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.


## ADA4096-2

## ELECTRICAL SPECIFICATIONS, $\mathbf{V}_{\mathrm{SY}}= \pm 5 \mathrm{~V}$

$\mathrm{V}_{\mathrm{SY}}= \pm 5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{SY}} / 2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

| Parameter | Symbol | Test Conditions/Comments | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT CHARACTERISTICS |  |  |  |  |  |  |
| Offset Voltage | Vos | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  | 35 | 300 | $\mu \mathrm{V}$ |
|  |  |  |  |  | 500 | $\mu \mathrm{V}$ |
| Offset Voltage Drift | $\Delta \mathrm{V} \text { os } / \Delta \mathrm{T}$$I_{B}$ |  |  | 1 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Bias Current |  |  |  | $\pm 10$ | $\pm 15$$\pm 19$ | nA |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  |  |  | nA |
| Input Offset Current | los |  |  | $\pm 1.5$ | $\pm 2$ | nA |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | -5 |  | $\pm 3$ | nA |
| Input Voltage Range | CMRR |  |  |  | +5 |  |
| Common-Mode Rejection Ratio |  | $\mathrm{V}_{\text {см }}=-5 \mathrm{~V} \text { to }+5 \mathrm{~V}$ | $73$ | 86 |  | dB |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | 68 |  |  | dB |
|  |  | $\mathrm{V}_{\text {CM }}=-3 \mathrm{~V}$ to +3 V | 91 | 103 |  | dB |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | 85 |  |  | dB |
| Large Signal Voltage Gain | Avo | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 4.8 \mathrm{~V}$ | 102 | 111 |  | dB |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | 99 |  |  | dB |
|  |  | $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{o}}= \pm 4.7 \mathrm{~V}$ | 94 | 103 |  | dB |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | 88 |  |  | dB |
| MATCHING CHARACTERISTICS |  |  |  |  |  |  |
| Offset Voltage |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 100 | 300 | $\mu \mathrm{V}$ |
| OUTPUT CHARACTERISTICS |  |  |  |  |  |  |
| Output Voltage High | Vor | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to GND | 4.96 |  |  | V |
|  |  |  | 4.95 | 4.97 |  | V |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ $\mathrm{RL}=2 \mathrm{k} \Omega$ to GND | 4.80 | 4.90 |  | V |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | 4.70 |  |  | V |
| Output Voltage Low | VoL | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to GND |  | -4.98 | $\begin{aligned} & -4.97 \\ & -4.95 \end{aligned}$ | V |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  |  |  | V |
|  |  | $\mathrm{RL}=2 \mathrm{k} \Omega$ to GND |  | -4.90 | -4.80 | V |
|  |  | $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ |  |  | -4.75 | V |
| Short-Circuit Limit | Isc | Source/sink | $\pm 10$ |  |  | mA |
| Closed-Loop Impedance | Zout | $\mathrm{f}=100 \mathrm{kHz}, \mathrm{Av}=1$ |  | 71 |  | $\Omega$ |
| POWER SUPPLY |  |  |  |  |  |  |
| Power Supply Rejection Ratio | PSRR | $V_{S Y}=3 \mathrm{~V}$ to 36 V$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ | 100 | 47 |  | dB |
|  |  |  | 90 |  |  | dB |
| Supply Current per Amplifier | Isy | $\begin{aligned} & V_{\mathrm{o}}=\mathrm{V}_{\mathrm{sV}} / 2 \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$ |  |  | 55 | $\mu \mathrm{A}$ |
|  |  |  |  |  | 75 | $\mu \mathrm{A}$ |
| DYNAMIC PERFORMANCE | SR | $\mathrm{R}_{2}=100 \mathrm{k} \mathrm{C}_{1}=30 \mathrm{pF}$ |  |  |  |  |
| Slew Rate |  |  |  | 0.3 |  | V/us |
| Gain Bandwidth Product | GBP | $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{mV}$ p-p, $\mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{Av}^{2}=100$ |  | 595 |  | kHz |
| Unity-Gain Crossover | UGC | $\mathrm{V}_{\mathbb{I N}}=5 \mathrm{mV} p-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{A}_{v}=1$ |  | 550 |  | kHz |
| Phase Margin | $\Phi_{\text {M }}$ | $\mathrm{A}_{\mathrm{V}}=1, \mathrm{~V}_{\mathbb{N}}=5 \mathrm{mV} \mathrm{p}-\mathrm{p}$ |  | 52 |  | Degrees |
| -3 dB Closed-Loop Bandwidth | $-3 \mathrm{~dB}$ |  |  |  |  | kHz |
| NOISE PERFORMANCE |  |  |  |  |  |  |
| Voltage Noise | $e_{n} p$ pp | 0.1 Hz to 10 Hz |  | 0.7 |  | $\mu \mathrm{V}$ p-p |
| Voltage Noise Density | $\mathrm{e}_{\mathrm{n}}$ | $\mathrm{f}=1 \mathrm{kHz}$ |  | 27 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| Current Noise Density |  | $\mathrm{f}=1 \mathrm{kHz}$ |  | 0.2 |  | $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ |

## ELECTRICAL SPECIFICATIONS, $\mathbf{V}_{\mathrm{sY}}= \pm \mathbf{1 5} \mathbf{V}$

$\mathrm{V}_{\mathrm{SY}}= \pm 15.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{SY}} / 2, \mathrm{~V}_{\mathrm{O}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.


## ADA4096-2

| Parameter | Symbol | Test Conditions/Comments | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NOISE PERFORMANCE |  |  |  |  |  |
| Voltage Noise | $\mathrm{e}_{\mathrm{n}} \mathrm{p}-\mathrm{p}$ | 0.1 Hz to 10 Hz | 0.7 | $\mu \mathrm{p}-\mathrm{p}$ |  |
| Voltage Noise Density | $\mathrm{e}_{\mathrm{n}}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 27 | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |  |
| Current Noise Density | $\mathrm{i}_{\mathrm{n}}$ | $\mathrm{f}=1 \mathrm{kHz}$ | 0.2 | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |  |

## ABSOLUTE MAXIMUM RATINGS

Table 5.

| Parameter | Rating |
| :--- | :--- |
| Supply Voltage | 36 V |
| Input Voltage |  |
| $\quad$ Operating Condition | $-\mathrm{V} \leq \mathrm{V}_{\mathbb{N}} \leq+\mathrm{V}$ |
| $\quad$ Overvoltage Condition ${ }^{1}$ | $(-\mathrm{V})-32 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I}} \leq(+\mathrm{V})+32 \mathrm{~V}$ |
| Differential Input Voltage ${ }^{2}$ | $\pm \mathrm{V}_{S Y}$ |
| Input Current | $\pm 5 \mathrm{~mA}$ |
| Output Short-Circuit Duration to | Indefinite |
| $\quad$ GND |  |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Junction Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, | $300^{\circ} \mathrm{C}$ |
| $\quad 60$ sec) |  |

${ }^{1}$ Performance not guaranteed during overvoltage conditions.
${ }^{2}$ Limit the input current to $\pm 5 \mathrm{~mA}$.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## THERMAL RESISTANCE

$\theta_{\mathrm{JA}}$ is specified for the device soldered on a 4-layer JEDEC standard printed circuit board (PCB) with zero airflow. The exposed pad is soldered to the application board.

Table 6. Thermal Resistance

| Package Type | $\boldsymbol{\theta}_{\text {JA }}$ | $\boldsymbol{\theta}_{\mathbf{\prime}}$ | Unit |
| :--- | :--- | :--- | :--- |
| 8-Lead MSOP (RM-8) | 142 | 45 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| 8-Lead LFCSP (CP-8-10) | 76 | 43 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

## ADA4096-2

## TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

## $\pm 1.5$ V CHARACTERISTICS <br> 

Figure 3. Input Offset Voltage Distribution


Figure 4. Offset Voltage Drift Distribution


Figure 5. Input Bias Current vs. $V_{C M}$ and Temperature


Figure 6. Dropout Voltage vs. Load Current


Figure 7. Open-Loop Gain and Phase vs. Frequency


Figure 8. Closed-Loop Gain vs. Frequency


Figure 9. Output Impedance vs. Frequency


Figure 10. PSRR vs. Frequency


Figure 11. Large Signal Transient Response


Figure 12. Small Signal Transient Response


Figure 13. Positive Overload Recovery


Figure 14. Negative Overload Recovery
$\pm 5$ V CHARACTERISTICS


Figure 15. Input Offset Voltage Distribution


Figure 16. Offset Voltage Drift Distribution


Figure 17. Input Bias Current vs. Vсм and Temperature


Figure 18. Dropout Voltage vs. Load Current


Figure 19. Open-Loop Gain and Phase vs. Frequency


Figure 20. Closed-Loop Gain vs. Frequency


Figure 21. Output Impedance vs. Frequency


Figure 22. PSRR vs. Frequency


Figure 23. Large Signal Transient Response


Figure 24. Small Signal Transient Response


Figure 25. Positive Overload Recovery


Figure 26. Negative Overload Recovery

## ADA4096-2

## $\pm 15$ V CHARACTERISTICS



Figure 27. Input Offset Voltage Distribution


Figure 28. Offset Voltage Drift Distribution


Figure 29. Input Bias Current vs. VCM and Temperature


Figure 30. Dropout Voltage vs. Load Current


Figure 31. Open-Loop Gain and Phase vs. Frequency


Figure 32. Closed-Loop Gain vs. Frequency


Figure 33. Output Impedance vs. Frequency


Figure 34. PSRR vs. Frequency


Figure 35. Large Signal Transient Response


Figure 36. Small Signal Transient Response


Figure 37. Positive Overload Recovery


Figure 38. Negative Overload Recovery

## ADA4096-2

COMPARATIVE VOLTAGE AND VARIABLE VOLTAGE GRAPHS


Figure 39. Input Voltage Noise, 0.1 Hz to 10 Hz Bandwidth


Figure 40. Channel Separation vs. Frequency


Figure 41. CMRR vs. Frequency


Figure 42. Supply Current vs. Supply Voltage


Figure 43. Voltage Noise Density


Figure 44. Overshoot vs. Load Capacitance

## THEORY OF OPERATION

## INPUT STAGE



Figure 45 shows a simplified schematic of the ADA4096-2. The input stage comprises two differential pairs (Q1 to Q4 and Q5 to Q8) operating in parallel. When the input common-mode voltage approaches $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}, \mathrm{Q} 1$ to Q 4 shut down as I1 reaches its minimum voltage compliance. Conversely, when the input common-mode voltage approaches $\mathrm{V}_{\mathrm{EE}}+1.5 \mathrm{~V}, \mathrm{Q} 5$ to Q 8 shut down as I2 reaches its minimum voltage compliance. This topology allows for maximum input dynamic range because the amplifier can function with its inputs at 200 mV outside the rail (at room temperature).

As with any rail-to-rail input amplifier, Vos mismatch between the two input pairs determines the CMRR of the amplifier. If the input common-mode voltage range is kept within 1.5 V of each rail, transitions between the input pairs are avoided, thus improving the CMRR by approximately 10 dB (see Table 3 and Table 4).

## PHASE INVERSION

Some single-supply amplifiers exhibit phase inversion when the input signal extends beyond the common-mode voltage range of the amplifier. When the input devices become saturated, the inverting and noninverting inputs exchange functions, causing the output to move in the opposing direction.

Although phase inversion persists for only as long as the inputs are saturated, it can be detrimental to applications where the amplifier is part of a closed-loop system. The ADA4096-2 is free from phase inversion over the entire common-mode voltage range, as well as the overvoltage protected range stated in the Absolute Maximum Ratings section, Table 5. Figure 46 shows the ADA4096-2 in a unity-gain configuration with the input signal at $\pm 40 \mathrm{~V}$ and the amplifier supplies at $\pm 10 \mathrm{~V}$.


Figure 46. No Phase Reversal

## ADA4096-2

## INPUT OVERVOLTAGE PROTECTION

The ADA4096-2 inputs are protected from input voltage excursions up to 32 V outside each rail. This feature is of particular importance in applications with power supply sequencing issues that could cause the signal source to be active before the supplies to the amplifier.

Figure 47 shows the input current limiting capability of the ADA4096-2 (green curves) compared to using a $5 \mathrm{k} \Omega$ series resistor (red curves).


Figure 47. Input Current Limiting Capability

Figure 47 was generated with the ADA4096-2 in a buffer configuration with the supplies connected to GND ( $\mathrm{or} \pm 15 \mathrm{~V}$ ) and the positive input swept until it exceeds the supplies by 32 V . In general, input current is limited to 1 mA during positive overvoltage conditions and $200 \mu \mathrm{~A}$ during negative undervoltage conditions. For example, at an overvoltage of 20 V , the ADA4096-2 input current is limited to 1 mA , providing a current limit equivalent to a series $20 \mathrm{k} \Omega$ resistor. Figure 47 also shows that the current limiting circuitry is active whether the amplifier is powered or not.

Note that Figure 47 represents input protection under abnormal conditions only. The correct amplifier operation input voltage range (IVR) is specified in Table 2 to Table 4.

## COMPARATOR OPERATION

Although op amps are quite different from comparators, occasionally an unused section of a dual or a quad op amp may be pressed into service as a comparator; however, this is not recommended for any rail-to-rail output op amps. For rail-to-rail output op amps, the output stage is generally a ratioed current mirror with bipolar or MOSFET transistors. With the part operating open loop, the second stage increases the current drive to the ratioed mirror to close the loop, but it cannot, which results in an increase in supply current. With the op amp configured as a comparator, the supply current can be significantly higher (see Figure 48).


Figure 48. Comparator Supply Current

## ADA4096-2

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 49. 8-Lead Mini Small Outline Package [MSOP] (RM-8)

Dimensions shown in millimeters


Figure 50. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD]
$2 \mathrm{~mm} \times 2 \mathrm{~mm}$ Body, Ultra Thin, Dual Lead (CP-8-10)
Dimensions shown in millimeters

## ORDERING GUIDE

| Model $^{1,2}$ | Temperature <br> Range | Package Description | Package Option | Branding |
| :--- | :--- | :--- | :--- | :--- |
| ADA4096-2ARMZ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead Mini Small Outline Package [MSOP] | RM-8 | A2T |
| ADA4096-2ARMZ-R7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead Mini Small Outline Package [MSOP] | RM-8 | A2T |
| ADA4096-2ARMZ-RL | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead Mini Small Outline Package [MSOP] | RM-8 | A2T |
| ADA4096-2ACPZ-R7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead Frame Chip Scale Package [LFCSP_UD] | CP-8-10 | A4 |
| ADA4096-2ACPZ-RL | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead Frame Chip Scale Package [LFCSP_UD] | CP-8-10 | A4 |
| ADA4096-2WARMZ-R7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead Mini Small Outline Package [MSOP] | RM-8 | A2T |
| ADA4096-2WARMZ-RL | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 8-Lead Mini Small Outline Package [MSOP] | RM-8 | A2T |

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2} \mathrm{~W}=$ Qualified for Automotive Applications.

## AUTOMOTIVE PRODUCTS

The ADA4096-2W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

## ADA4096-2

## NOTES

