


0.5W High Linearity and High Efficiency GaAs Power FETs

FEATURES

- 0.5W Typical Power at 12 GHz
- Linear Power Gain: $G_L = 11 \text{ dB}$ Typical at 12 GHz
- High Linearity: IP3 = 37 dBm Typical at 12 GHz
- High Power Added Efficiency: Nominal PAE of 40 % at 12 GHz
- Non-Via Hole Source for Single-Bias Application
- Suitable for High Reliability Application
- Breakdown Voltage: $BV_{DGO} \ge 13.5 \text{ V}$
- $Lg = 0.25 \,\mu m$, $Wg = 1.2 \,mm$
- Tight Vp ranges control
- High RF input power handling capability
- 100 % DC Tested

DESCRIPTION

PHOTO ENLARGEMENT

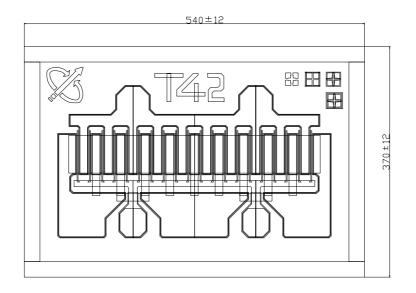
The TC1404N is a GaAs Pseudomorphic High Electron Mobility Transistor (PHEMT) which has high linearity and high Power Added Efficiency. The device is processed without via-holes for single-bias applications. The short gate length enables the device to be used in circuits up to 20GHz. All devices are 100% DC tested to assure consistent quality. Bond pads are gold plated for either thermo-compression or thermo-sonic wire bonding. Backside gold plating is compatible with standard AuSn die-attach. Typical applications include commercial and military high performance power amplifiers

ELECTRICAL SPECIFICATIONS (T_A=25 °C)

Symbol	Conditions	MIN	ТҮР	MAX	UNIT
P _{1dB}	Output Power at 1dB Gain Compression Point, $f = 12$ GHz V _{DS} = 8 V, I _{DS} = 120 mA	26.5	27		dBm
GL	Linear Power Gain, $f = 12$ GHz V _{DS} = 8 V, I _{DS} = 120 mA		11		dB
IP3	Intercept Point of the 3 rd -order Intermodulation, $f = 12$ GHz V _{DS} = 8V, I _{DS} = 120 mA, *P _{SCL} = 14 dBm		37		dBm
PAE	Power Added Efficiency at 1dB Compression Power, $f = 12$ GHz		40		%
I _{DSS}	Saturated Drain-Source Current at $V_{DS} = 2 V$, $V_{GS} = 0 V$		360		mA
g _m	Transconductance at $V_{DS} = 2 V$, $V_{GS} = 0 V$		260		mS
V _P	Pinch-off Voltage at $V_{DS} = 2$ V, $I_D = 2.4$ mA		-1.7		Volts
BV _{DGO}	Drain-Gate Breakdown Voltage at I _{DGO} =0.6 mA	13.5	15		Volts
R _{th}	Thermal Resistance		30		°C/W

Note:

* P_{SCL}: Output Power of Single Carrier Level.

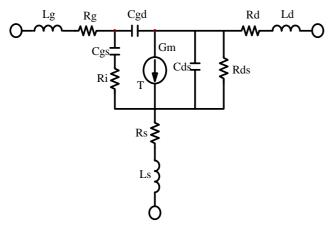

TRANSCOM, INC., 90 Dasoong 7th Road, Tainan Science-Based Industrial Park, Hsin-She Shiang, Tainan County, Taiwan, R.O.C.Web-Site: www.transcominc.com.twPhone: 886-6-5050086Fax: 886-6-5051602

ABSOLUTE MAXIMUM RATINGS (TA=25 °C)

Symbol	Parameter	Rating	
V _{DS}	Drain-Source Voltage	12 V	
V _{GS}	Gate-Source Voltage	-5 V	
I _{DS}	Drain Current	I _{DSS}	
P _{in}	RF Input Power, CW	26 dBm	
P _T	Continuous Dissipation	1.9 W	
T _{CH}	Channel Temperature	175 °C	
T _{STG}	Storage Temperature	- 65 °C to +175 °C	

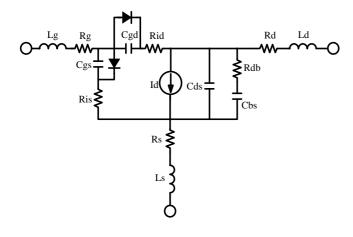
CHIP DIMENSIONS

Units : Micrometer	Gate Pad : 45*45
Chip Thickness : 76.2	Drain Pad : 55*55


TRANSCOM, INC., 90 Dasoong 7th Road, Tainan Science-Based Industrial Park, Hsin-She Shiang, Tainan County, Taiwan, R.O.C.Web-Site: www.transcominc.com.twPhone: 886-6-5050086Fax: 886-6-5051602

TC1404N REV2_20070502

SMALL SIGNAL MODEL, V_{DS} = 8 V, I_{DS} = 120 mA


SCHEMATI

PARAMETERS

T	0.02 -11	D	0.9.01
Lg	0.02 nH	Rs	0.8 Ohm
Rg	0.97 Ohm	Ls	0.005 nH
Cgs	2.652 pF	Cds	0.274 pF
Ri	1.246 Ohm	Rds	55.8 Ohm
Cgd	0.144 pF	Rd	0.65 Ohm
Gm	574.6 mS	Ld	0.02 nH
Т	3.9 psec		

LARGE SIGNAL MODEL, $V_{DS} = 8$ V, $I_{DS} = 120$ mA SCHEMATI TOM2 MODEL PARAMETERS

VTO	-1.62 V	VMAX	0.5 V
ALPHA	14.13	CGD	0.144 pF
BETA	0.354	CGS	2.652 pF
GAMMA	0.0228	CDS	0.274 pF
DELTA	0.1565	RIS	2.005 Ohm
Q	0.88	RID	0.0001 Ohm
NG	0.1	VBR	13.5 V
ND	0.01	RDB	119.667 Ohm
TAU	3.9 ps	CBS	2.5 pF
RG	0.97 Ohm	TNOM	25 °C
RD	0.65 Ohm	LS	0.005 nH
RS	0.8 Ohm	LG	0.02 nH
IS	1E-11 mA	LD	0.02 nH
N	1	AFAC	1
VBI	1 V	NFING	1
VDELTA	0.2 V		

CHIP HANDLING

DIE ATTACHMENT: Conductive epoxy or eutectic die attach is recommended. Eutectic die attach can be accomplished with Au-Sn (80%Au-20%Sn) perform at stage temperature: 290° C ± 5° C; Handling Tool: Tweezers; Time: less than 1min.

WIRE BONDING: The recommended wire bond method is thermocompression bonding with 0.7 to 1.0 mil (0.018 to 0.025 mm) gold wire. Stage temperature: 220°C to 250°C; Bond Tip Temperature: 150°C; Bond Force: 20 to 30 gms depending on size of wire and Bond Tip Temperature.

HANDLING PRECAUTIONS: The user must operate in a clean, dry environment. Care should be exercised during handling avoid damage to the devices. Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. The static discharge must be less than 300V.