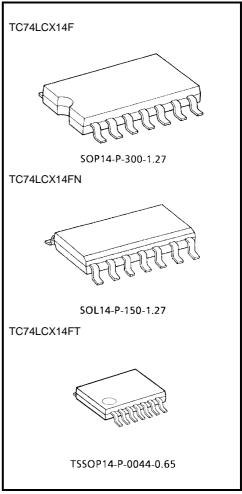
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX14F,TC74LCX14FN,TC74LCX14FT

Low-Voltage Hex Schmitt Inverter with 5-V Tolerant Inputs and Outputs

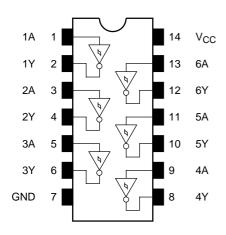
The TC74LCX14F/FN/FT is a high-performance CMOS schmitt inverter. Designed for use in 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

The device is designed for low-voltage (3.3 V) VCC applications, but it could be used to interface to 5-V supply environment for inputs.


Pin configuration and function are the same as the TC74LCX04 but the inputs have hysteresis and with Schmitt trigger function, the TC74LCX14F/FN/FT can be used as a line receivers which will receive slow input signals.

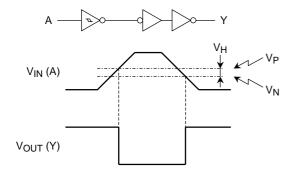
All inputs are equipped with protection circuits against static discharge.

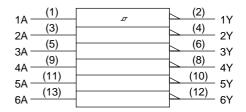
Features


- Low-voltage operation: VCC = 2.0 to 3.6 V
- High-speed operation: $t_{pd} = 6.5 \text{ ns (max) (VCC} = 3.0 \text{ to } 3.6 \text{ V)}$
- Ouput current: $|I_{OH}|/I_{OL} = 24 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$
- Latch-up performance: ±500 mA
- Available in JEDEC SOP, JEITA SOP and TSSOP
- · Power-down protection provided on all inputs and outputs
- Pin and function compatible with the 74 series (74AC/VHC/HC/F/ALS/LS etc.) 14 type

Note: xxxFN (JEDEC SOP) is not available in Japan.

Weight SOP14-P-300-1.27: 0.18 g (typ.) SOL14-P-150-1.27: 0.12 g (typ.) TSSOP14-P-0044-0.65: 0.06 g (typ.)


Pin Assignment (top view)


Truth Table

Inputs	Outputs
Α	Y
L	Н
Н	L

System Diagram and waveform

IEC Logic Symbol

Maximum Ratings

Characteristics	Symbol	Rating	Unit	
Power supply voltage	Vcc	-0.5 to 7.0	V	
DC input voltage	V _{IN}	-0.5 to 7.0	V	
		-0.5 to 7.0 (Note 1)		
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V	
		(Note 2)		
Input diode current	lık	-50	mA	
Output diode current	lok	±50 (Note 3)	mA	
DC output current	lout	±50	mA	
Power dissipation	P _D	180	mW	
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA	
Storage temperature	T _{stg}	-65 to 150	°C	

Note 1: $V_{CC} = 0 V$

Note 2: High or low state. $I_{\mbox{OUT}}$ absolute maximum rating must be observed.

Note 3: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	2.0 to 3.6		
Fower supply voltage	, CC	1.5 to 3.6 (Note 4)	V	
Input voltage	V _{IN}	0 to 5.5	V	
Output voltage	V _{OUT}	0 to 5.5 (Note 5)	V	
		0 to V _{CC} (Note 6)	V	
Output current	la/la.	±24 (Note 7)	mA	
	I _{OH} /I _{OL}	±12 (Note 8)	IIIA	
Operating temperature	T _{opr}	-40 to 85	°C	

Note 4: Data retention only

Note 5: $V_{CC} = 0 V$

Note 6: High or low state

Note 7: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 8: $V_{CC} = 2.7 \text{ to } 3.0 \text{ V}$

Electrical Characteristics

DC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteris	stics	Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit
Throobold voltage	H-level	V _P		_	3.0	1.2	2.2	V
Threshold voltage	L-level	V _N		_	3.0	0.6	1.5	
Hysteresis voltage		V _H			3.0	0.4	1.2	V
			I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2	_		
	H-level	Voн	$V_{IN} = V_{IL}$	I _{OH} = -12 mA	2.7	2.2	_	V
Output voltage L-level				$I_{OH} = -18 \text{ mA}$	3.0	2.4	_	
				$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	
		V _{OL}	V _{IN} = V _{IH}	I _{OL} = 100 μA	2.7 to 3.6	_	0.2	
	Llovol			I _{OL} = 12 mA	2.7	_	0.4	
	L-level			I _{OL} = 16 mA	3.0	_	0.4	
				$I_{OL} = 24 \text{ mA}$	3.0	_	0.55	
Input leakage currer	nt	I _{IN}	V _{IN} = 0 to 5.5 V		2.7 to 3.6	_	±5.0	μΑ
Power-off leakage c	urrent	I _{OFF}	V _{IN} /V _{OUT} = 5.5 V		0	_	10.0	μА
Quiescent supply current	loo	V _{IN} = V _{CC} or GND		2.7 to 3.6	_	10.0		
	Icc	V _{IN} = 3.6 to 5.5 V		2.7 to 3.6	_	±10.0	μΑ	
Increase in Icc per in	nput	Δl _{CC}	$V_{IH} = V_{CC} - 0.6 \text{ V}$		2.7 to 3.6	_	500	

AC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.7	_	7.5	ns
	t_{pHL}		3.3 ± 0.3	1.5	6.5	
Output to output skew	t _{osLH}	(Note 9)	2.7		_	20
	t _{osHL}	(Note 9)	3.3 ± 0.3	_	1.0	ns

Note 9: Parameter guaranteed by design. $(t_{OSLH} = |t_{DLHm} - t_{DLHn}|, \, t_{OSHL} = |t_{DHLm} - t_{DHLn}|)$

Dynamic Switching Characteristics

(Ta = 25°C, input: $t_r = t_f = 2.5$ ns, $C_L = 50$ pF, $R_L = 500$ Ω)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	8.0	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	3.3	0.8	V

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition		V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_		3.3	7	pF
Output capacitance	C _{OUT}	_		0	8	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (N	lote 10)	3.3	25	pF

Note 10: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/6 \text{ (per gate)}$

AC Test Circuit

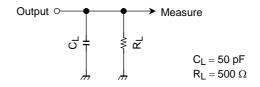


Figure 1

AC Waveform

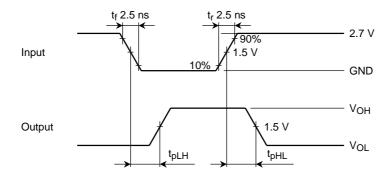
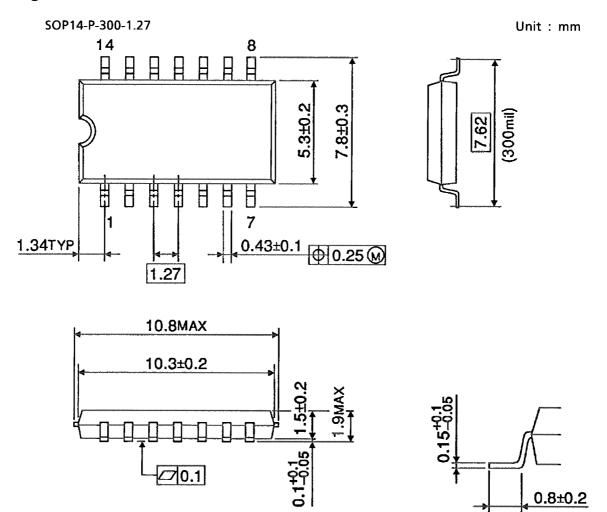
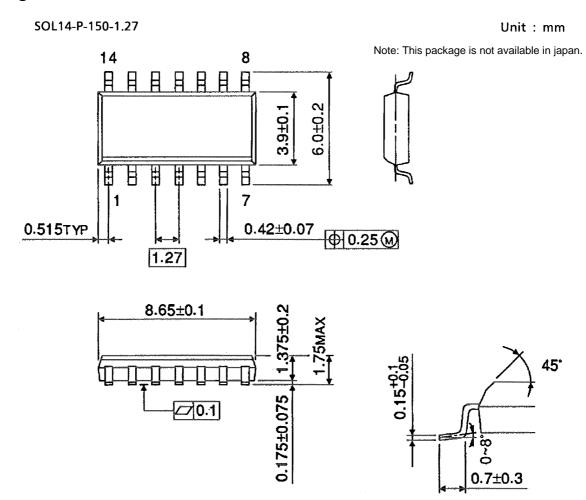



Figure 2 t_{pLH}, t_{pHL}

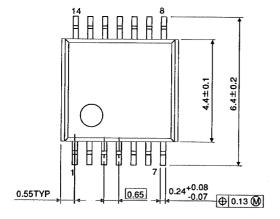
5


Package Dimensions

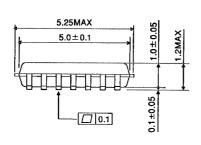
6

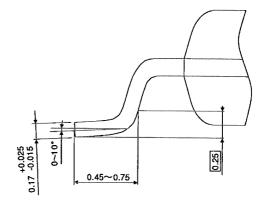
Weight: 0.18 g (typ.)

Package Dimensions



Weight: 0.12 g (typ.)


Unit: mm


Package Dimensions

TSSOP14-P-0044-0.65

Weight: 0.06 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.