1 Megabyte Sync/Sync Burst, Small Outline DIMM

FEATURES

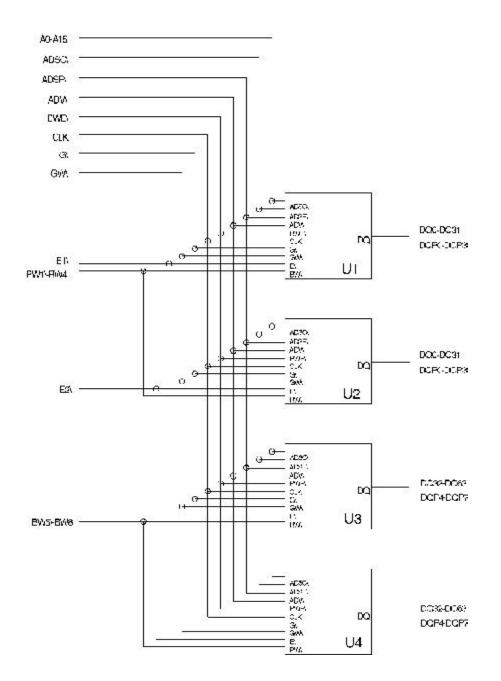
- 2x64kx72 Synchronous, Synchronous Burst
- Flow-Through Architecture
- Sequential Burst MODE
- Clock Controlled Registered Bank Enables (E1\, E2)
- Clock Controlled Byte Write Mode Enable (BWE\)
- Clock Controlled Byte Write Enables (BW1\ BW8\)
- Clock Controlled Registered Address
- Clock Controlled Registered Global Write (GW)
- Aysnchronous Output Enable (G\)
- Internally self-timed Write
- Gold Lead Finish
- 3.3V +10% Operation
- Access Speed(s): TKHQV=8.5, 9, 10, 12ns
- Common Data I/O
- High Capacitance (30pf) drive, at rated Access
 Speed
- Single total array Clock
- Multiple Vcc and Gnd

The EDI2AG27265VxxD1 is a Synchronous/Synchronous Burst SRAM, 72 position 30 DIMM(144 contacts) Module, organized as 2x64Kx72. The Module contains four (4) Synchronous Burst Ram Devices, packaged in the industry standard JEDEC 14mmx20mm TQFP placed on a Multilayer FR4 Substrate. The module architecture is defined as a Sync/Sync Burst, Flow-Through, with support for either linear or sequential burst. This module provides High Performance, 2-1-1-1 accesses when used in Burst Mode, and used as a Synchronous Only Mode, provides a high performance cost advantage over BiCMOS aysnchronous device architectures.

Synchronous Only operations are performed via strapping ADSC\ Low, and ADSP\ / ADV\ High, which provides for Ultra Fast Accesses in Read Mode while providing for internally self-timed Early Writes.

Synchronous/Synchronous Burst operations are in relation to an externally supplied clock, Registered Address, Registered Global Write, Registered Enables as well as an Asynchronous Output enable. This Module has been defined with full flexibility, which allows individual control of each of the eight bytes, as well as Quad Words in both Read and Write Operations.

PIN NAMES		
	DQ0-DQ63	Input/Output Bus
	DQP0-DQP7	Parity Bits
	A0-A15	Address Bus
	E1 E2	Synchronous Bank Enables
	BWE\	Byte Write Mode Enable
	BW1\-BW8\	Byte Write Enables
	Clk	Array Clock
	GW	Synchronous Global write Enable
	G\	Asynchronous Output Enable
	Vcc	3.3V Power Supply
	Vss	Gnd



PIN CONFIGURATION

MN	FUNCION	FIN	FUNCTION	FIN RUNCTION		FN	FUNCTION
1	VSS	37	DCC	73	VSS	103	DQ41
2	1/93	30	DC7	74	195	110	DQ46
3	20	30	DC1	75	E%4	111	DG42
2	RFU	40	.:20	76	DCFS	112	DQ45
5	RŲ	4-	DC2	77	VCC	113	DC43
6	A1	42	0 6 8	78	%œ	4	DQ44
7	20	42	DC3	78	DC24	···s	VSS
8	<i>∳</i> -5	41	DC4	80	DQ31	115	VSS
5	A14	45	V\$6	81	DQ25	117	EW/7
10	43	45	VSS	62	CC.30	118	DOPE
11	<u>14</u>	47	BV/2	83	3028	119	100
12	A10	48	DCF1	ধ্য	CC2D	-20	VCC
13	A*2	49	VCC	Æ	X.227	191	3048
14	A5	30	VCC	35	55CC	122	0056
' 5	K	5	DCS	87	V92	123	DX248
16	A11	52	2015	86	VSS	124	DQ54
•7	A10	53	DCG	89	BNS.	-25	D050
°U	<i>4</i> 7	54	DC 1 4	9)	DC-4	196	DQ53
-D	A8	55	DQ10	31	VCC	-27	DQ:1
20	.49	56	DOTIB	92	VCC	128	DO2
21	ACC .	57	3C**	\$3	DC22	*29	Ves
22	VOC	58	DG12	\$4	GGSƏ	130	VSS
23	G.	53	Veg	95	DC38	131	EMS/
24	₽RU	æ	VSS	96	LC38	132	DCP7
25	GW.	F.	EA3	97	DC34	103	VCC
26	AD?A	٤2	DCF2	38	DG3/	134	VOC
27	ADSEN	83	V00	66	DC35	135	DQ35
2B	ADGC)	F4	VCO.	100	DC35	196	DC)33
29	E1:	65	DC16	101	VSS	137	DO57
<u>;</u> 9	CK	66	CC29	102	VES	132	DQ52
ŝ.	E2.	67	DC17	103	EW\$	139	DC58
32	BWB	63	DQ22	124	DCF5	140	DOEI
23	BMA :	C9	DC-8	105	vce	141	DG29
84	DCP0	70	D021	106	VCC	1/12	DQ60
35	702	7-	DC-9	107	CC40	-43	V93
æ	200	72	DC20	108	DC47	144	VSS

FUNCTIONAL BLOCK DIAGRAM

WHITE ELECTRONIC DESIGNS

PIN DESCRIPTIONS

DIMM Pins 3, 6, 7, 10, 11	Symbol A0-A17	Type	Description Addresses: These inputs are registered and must meet the setup and hold
		Input	
14, 15, 18, 19,		Synchronous	times around the rising edge of CLK. The burst counter generates internal
17, 16, 13, 12, 9		lan, et	addresses associated with A0 and A1, during burst and wait cycle.
33, 47, 61	BW1 BW2	Input	Byte Write: A byte write is LOW for a WRITE cycle and HIGH for a READ
75, 89, 103	BW3 BW4	Synchronous	cycle. BW0/ controls DQ0-7 and DQP0, BW1\ controls DQ8-15 and DQP1.
117,13	BW5 BW6		BW2\controls DQ16-23 and DQP2. BW3\controls DQ24-31 and DQP3.
	BW7 BW8\		BW4\controls DQ32-39 and DQP4. BW5\controls DQ40-47 and DQP5.
		have at	BW6\controls DQ48-55 and DQP6. BW7\controls DQ56-64 and DQP7.
32	BWE\	Input	Write Enable: This active LOW input gates byte write operations and must
05	0111	Synchronous	meet the setup and hold times around the rising edge of CLK.
25	GW	Input	Global Write: This active LOW input allows a full 72-bit WRITE to occur
		Synchronous	independent of the BWE\ and BWx\ lines and must meet the setup and hold
			times around the rising edge of CLK.
30	CLK	Input	Clock: This signal registers the addresses, data, chip enables, write control
		Synchronous	and burst control inputs on its rising edge. All synchronous inputs must
			meet setup and hold times around the clock's rising edge.
29, 31,	E1 E2\	Input	Bank Enables: These active LOW inputs are used to enable each
	E3 E4\	Synchronous	individual bank and to gate ADSP\.
23	G/	Input	Output Enable: This active LOW asynchronous input enables the data output
			drivers.
26	ADV	Input	Address Status Processor: This active LOW input is used to control the
		Synchronous	internal burst counter. A HIGH on this pin generates wait cycle (no address
			advance).
27	ADSP\	Input	Address Status Processor: This active LOW input, along with EL\ and EH\
	Synchronous		being LOW, causes a new external address to be registered and a READ
			cycle is initiated using the new address.
28	ADSC\	Input	Address Status Controller: This active LOW input causes device to be de-
	Synchronous		selected or selected along with new external address to be registered. A
			READ or WRITE cycle is initiated depending upon write control inputs.
Various	DQ0-63	Input/Output	Data Inputs/Outputs: First byte is DQ0-7, second byte is DQ8-15, third byte is
			DQ16-23, fourth byte is DQ24-31, fifth byte is DQ32-39, sixth byte is
			DQ40-47, seventh byte is DQ48-55 and the eight byte is DQ56-64.
38, 48, 62	DQP0-7	Input/Output	Parity Inputs/Outputs: DQP0 is parity bit for DQ0-7. DQP1 is parity bit for DQ8-15
76, 90, 104			DQP2 is parity bit for DQ16-23. DQP3 is parity bit for DQ24-31. DQP4\ is parity
118,132			bit for DQ32-39. DQP5 is parity bit for DQ40-47. DQP6\ is parity bit for DQ48-55
			DQP7 is parity bit for DQ56-64 and DQP7. In order to use the device Configured
			as a128K x 64, the parity bits need to be tied to Vss through a 10K ohm resistor
Various	Vcc	Supply	Core power supply: +3.3V -5%/+10%
Various	Vss	Ground	Ground

4

SYNCHRONOUS BURST - TRUTH TABLE

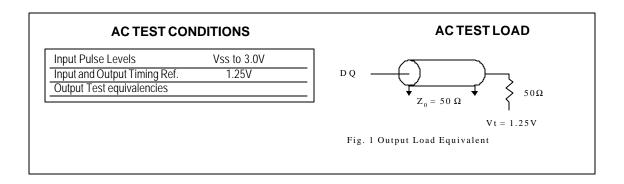
Operation	E1\	E2\	ADSP\	ADSC\	ADV\	GW\	G\	CLK	DQ	Addr. Used
Deselected Cycle, Power Down; Ban	k1H	Х	Х	L	Х	Х	Х	L-H	High-Z	None
Deselected Cycle, Power Down; Ban	k2X	Н	Х	L	Х	Х	Х	L-H	High-Z	None
Read Cycle, Begin Burst; Bank 1	L	Н	L	Х	Х	Х	L	L-H	Q	External
Read Cycle, Begin Burst; Bank 1	L	Н	L	Х	Х	Х	Н	L-H	High-Z	External
Read Cycle, Begin Burst; Bank 2	Н	L	L	Х	Х	Х	L	L-H	Q	External
Read Cycle, Begin Burst; Bank 2	Н	L	L	Х	Х	Х	Н	L-H	High-Z	External
Write Cycle, Begin Burst; Bank 1	L	Н	Н	L	Х	L	Х	L-H	D	External
Write Cycle, Begin Burst; Bank 2	Н	L	Н	L	Х	L	Х	L-H	D	External
Read Cycle, Begin Burst; Bank 1	L	Н	Η	L	Х	Н	L	L-H	Q	External
Read Cycle, Begin Burst; Bank 1	L	Н	Η	L	Х	Н	Н	L-H	High-Z	External
Read Cycle, Begin Burst; Bank 2	Н	L	Η	L	Х	Н	L	L-H	Q	External
Read Cycle, Begin Burst; Bank 2	Н	L	Η	L	Х	Н	Н	L-H	High-Z	External
Read Cycle, Continue Burst; Bank 1	Х	Н	Х	Н	L	Н	L	L-H	Q	Next
Read Cycle, Continue Burst; Bank 1	Х	Н	Х	Н	L	Н	Н	L-H	High-Z	Next
Read Cycle, Continue Burst; Bank 2	Н	Х	Х	Н	L	Н	L	L-H	Q	Next
Read Cycle, Continue Burst; Bank 2	Н	Х	Х	Н	L	Н	Н	L-H	High-Z	Next
Read Cycle, Continue Burst; Bank 1	Н	Н	Х	Н	L	Н	L	L-H	Q	Next
Read Cycle, Continue Burst; Bank 1	Н	Н	Х	Н	L	Н	Н	L-H	High-Z	Next
Read Cycle, Continue Burst; Bank 2	Н	Н	Х	Н	L	Н	L	L-H	Q	Next
Read Cycle, Continue Burst; Bank 2	Н	Н	Х	Н	L	Н	Н	L-H	High-Z	Next
Write Cycle, Continue Burst; Bank 1	Х	Н	Н	Н	L	L	Х	L-H	D	Next
Write Cycle, Continue Burst; Bank 1	Н	Н	Х	Н	L	L	Х	L-H	D	Next
Write Cycle, Continue Burst; Bank 2	Н	Х	Н	Н	L	L	Х	L-H	D	Next
Write Cycle, Continue Burst; Bank 2	Н	Н	Х	Н	L	L	Х	L-H	D	Next
Read Cycle, Suspend Burst; Bank 1	Х	Н	Η	Н	Н	Н	L	L-H	Q	Current
Read Cycle, Suspend Burst; Bank 1	Х	Н	Η	Н	Н	Н	Н	L-H	High-Z	Current
Read Cycle, Suspend Burst; Bank 2	Н	Х	Н	Н	H	Н	L	L-H	Q	Current
Read Cycle, Suspend Burst; Bank 2	Н	Х	Н	Н	Н	Н	Н	L-H	High-Z	Current
Read Cycle, Suspend Burst; Bank 1	Н	Н	Х	Н	Н	Н	L	L-H	Q	Current
Read Cycle, Suspend Burst; Bank 1	Н	Н	Х	Н	Н	Н	Н	L-H	High-Z	Current
Read Cycle, Suspend Burst; Bank 2	Н	Н	Х	Н	Н	Н	L	L-H	Q	Current
Read Cycle, Suspend Burst; Bank 2	Н	Н	Х	Н	Н	Н	Н	L-H	High-Z	Current
Write Cycle, Suspend Burst; Bank 1	Х	Н	Н	Н	Н	L	Х	L-H	D	Current
Write Cycle, Suspend Burst; Bank 1	Н	Н	Х	Н	Н	L	Х	L-H	D	Current
Write Cycle, Suspend Burst; Bank 2	Н	Х	Н	Н	Н	L	Х	L-H	D	Current
Write Cycle, Suspend Burst; Bank 2	Н	Н	Х	Н	Н	L	Х	L-H	D	Current

SYNCHRONOUS ONLY - TRUTH TABLE

Operation	E1\	E2\	GW\	G\	ZZ	CLK	DQ
Synchronous Write-Bank 1	L	Η	L	Н	L	٨	High-Z
Synchronous Read-Bank 1	L	Η	Н	L	L	٨	
Synchronous Write-Bank 2	Н	L	L	Н	L	٨	High-Z
Synchronous Read-Bank 2	H	Ĺ	H	Ĺ	L	٨	

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Relative to Vss	-0.5V to +4.6V
Vin	-0.5V to Vcc +0.5V
Storage Temperature	-55°C to +125°C
Operating Temperature (Commercial)	0°C to +70°C
Operating Temperature (Industrial)	-40°C to +85°C
Short Circuit Output Current	10 mA


"Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions greater than those indicated in operational sections of this specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

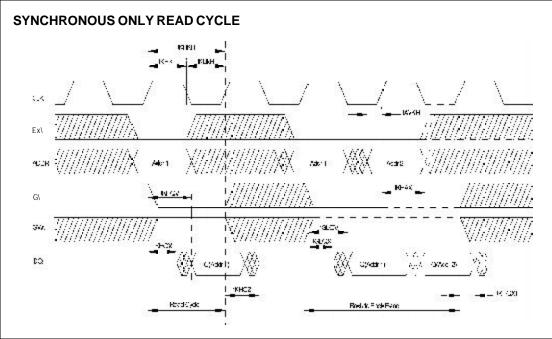
Parameter	Sym	Min	Тур	Мах	Units
Supply Voltage	VCC	3.14	3.3	3.6	V
Supply Voltage	VSS	0.0	0.0	0.0	V
Input High	VH	1.1	3.0	VCC+0.3	V
InputLow	VIL	-0.3	0.0	0.3	V
Input Leakage	ILi	-2	1	2	μA
Output Leakage	ILo	-2	1	2	μA

DC ELECTRICAL CHARACTERISTICS - READ CYCLE

						Max				
Description	SYM	Тур	8.5	5	10	12	Units			
Power Supply Current	lcc1	1.35	1.2	1.1	1.1	1.0	А			
Power Supply Current	lcc	.700	.550	.800	.750	.700	А			
Device Selected, No Operation										
CMOS Standby	Icc3	200	300	300	300	300	mA			
Clock Running-Deselect	IccK	500	750	750	750	750	mA			

BURST ADDRESS TABLE (MODE=NC/VCC)

I				
	First	Second	Third	Fourth
	Address	Address	Address	Address
	(external)	(internal)	(internal)	(internal)
	AA00	AA01	AA10	A.A11
	AA01	AA00	AA11	AA10
	AA10	AA11	AA00	AA01
	AA11	AA10	AA01	AA00

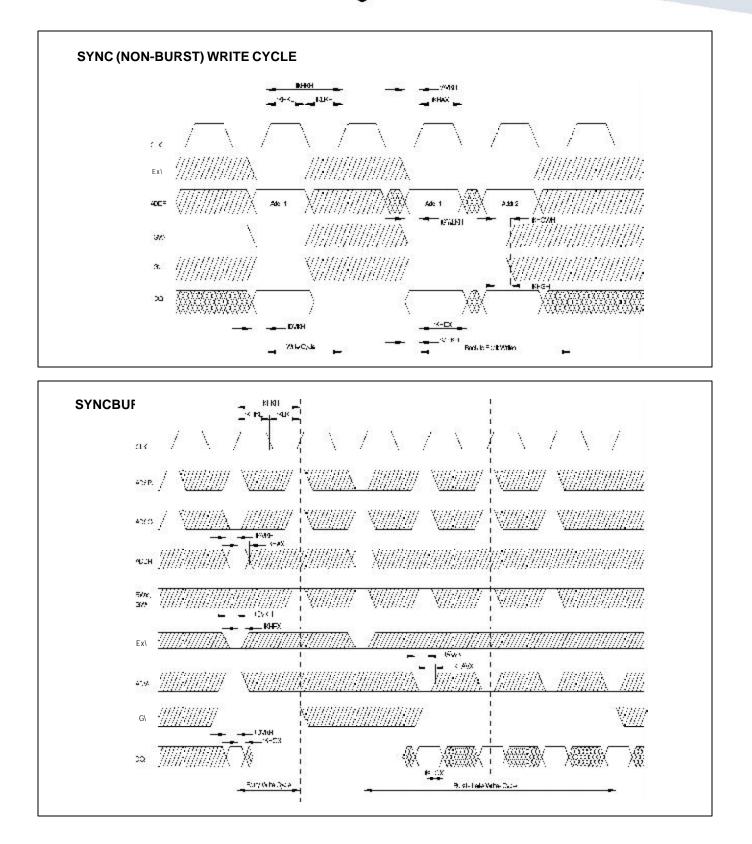

BURST ADDRESS TABLE (MODE=GND)

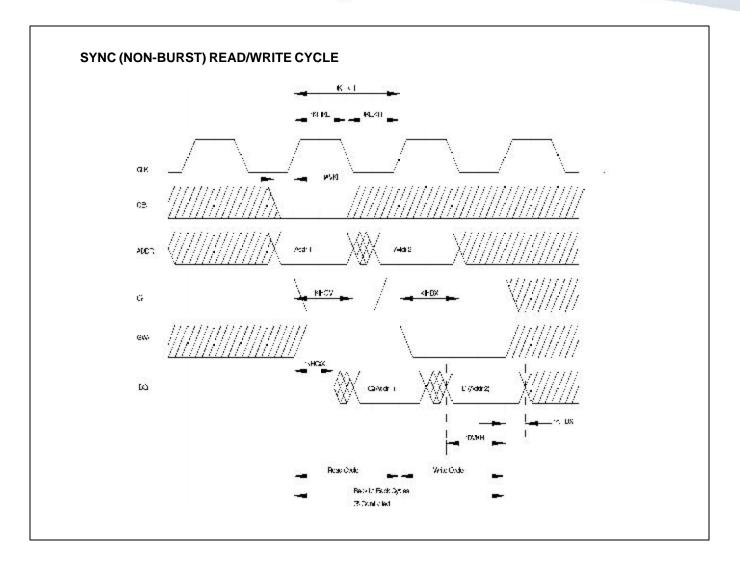
First Address external)	Second Address (internal)	Third Address (internal)	Fourth Address (internal)	
 AA00	AA01	AA10	AA11	_
AA01	AA10	AA11	AA00	
 AA10	AA11	AA00	AA01	
 AA11	AA00	AA01	AA10	_

READ CYCLE TIMING PARAMETERS

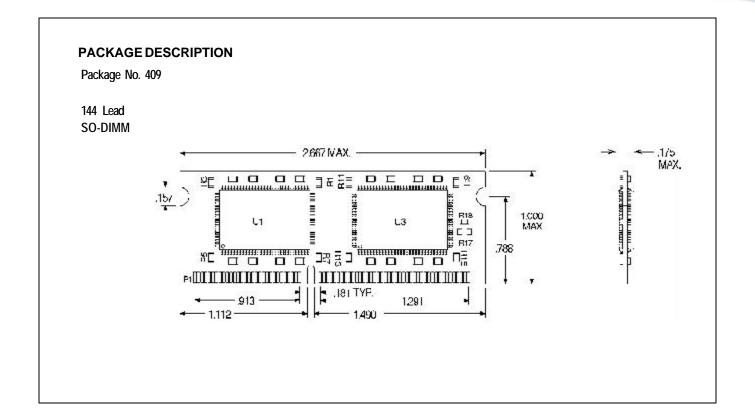
		8.5	ōns	9	ns	10	ns	12ns		
Description	Sym	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Units
Clock Cycle Time	tKhKh	*	*	10		10		15		ns
Clock High Time	tKHKL	*	*	4		5		5		ns
Clock Low Time	tKLKH	*	*	9		5		5		ns
Clock to Output Valid	tKHQV	*	*		9		10		12	ns
Clock to Output Invalid	tKHQX1	*	*	3		3		3		ns
Clock to Output Low-Z	tKHQX	*	*	2		2		2		ns
Output Enable to Output Valid	tGLQV	*	*		4		4		5	ns
Output Enable to Output Low-Z	tGLQX	*	*	0		0		0		ns
Output Enable to Output High-Z	tGHQZ	*	*		9		9		5	ns
Address Setup	tAVKH	*	*	2.5		2.5		2.5		ns
Bank Enable Setup	tEVKH	*	*	2.5		2.5		2.5		ns
Address Hold	tKHAX	*	*	1.0		1.0		1.0		ns
Bank Enable Hold	tKHEX	*	*	1.0		1.0		1.0		ns

*T*BBD


WHITE ELECTRONIC DESIGNS


WRITE CYCLE TIMING PARAMETERS

		8.5ns		91	ıs	10	ns	12ns		
Description	Sym	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Units
Clock Cycle Time	tKHKH			10		12		15		ns
Clock High Time	tKHKL			4		5		5		ns
Clock Low Time	tKLKH			4		5		5		ns
Address Setup	tAVKH			2.5		2.5		2.5		ns
Address Hold	tKHAX			1.0		1.0		1.0		ns
Bank Enable Setup	tEVKH			2.5		2.5		2.5		ns
Bank Enable Hold	tKHEX			1.0		1.0		1.0		ns
Global Write Enable Setup	tWVKH			2.5		2.5		2.5		ns
Global Write Enable Hold	tKHWX			1.0		1.0		1.0		ns
Data Setup	tDVKH			2.5		2.5		2.5		ns
Data Hold	tKHDX			1.0		1.0		1.0		ns


WHITE ELECTRONIC DESIGNS

WHITE ELECTRONIC DESIGNS

PartNumber	Organization	Voltage	Speed (ns)	Package
EDI2AG27265V85D1*	2x64Kx72	3.3	8.5	144 SO-DIMM
EDI2AG27265V9D1*	2x64Kx72	3.3	9	144 SO-DIMM
EDI2AG27265V10D1	2x64Kx72	3.3	10	144 SO-DIMM
DI2AG27265V12D1	2x64Kx72	3.3	12	144 SO-DIMM