| | | | | | | | | RE | VISI | ons | | | | | | | | | | | |---|------------------------|---------------------------------|-------------|-----------------------------------|---------|-------------------|-------|----------|------|--------|------------|----------------|---------------------|--------------|---------------------------|--------------------|-----------|------|-----|------| | LTR | | DESCRIPTION | | | | | | | | DA | TE (| YR-MO- | ·DA) | | APPR | OVED | | | | | | A | Cha | nges | in a | ccor | danc | e wi | th NO | OR 59 | 62-R | 231- | 93. | | 9 | 3-09 | -21 | | M. / | A. F | rye | | | В | Rem | ated
oved
LE I. | prog | ramm | ing | requi | ireme | ents | from | ı dra | wing | . | | 94-08 | 3-19 | | м. / | A. F | rye | REV | SHEET | SHEET
REV | SHEET
REV
SHEET
REV STA | | | | RE | v | | В | 8 | В | В | В | В | В | В | В | В | В | | | | | SHEET REV SHEET REV STA | | | | | .v | | B 1 | B 2 | B 3 | B 4 | B 5 | B 6 | B 7 | B 8 | B 9 | B 10 | B 11 | | | | | SHEET REV SHEET REV STA' OF SHEE' | TS | | | SH | EET | BY
Jamison | 1 | <u> </u> | | 4 | 5 | 6
SE EI | - | 8 RONIC | 9
S SU | 10 | 11 CEN | TER | | | | SHEET REV SHEET REV STA' OF SHEE' PMIC N/ | A
A
ANDA
OCIR | CUIT | | SH
PREP
Jame | EET | Jamison
Y | 1 | <u> </u> | | 4
D | 5
EFEN: | 6
SE EI | 7
LECTE
DAYTO | 8 RONIC | 9
SS SU | 10
IPPLY
454 | 11
CEN | | | · MC | | SHEET REV SHEET REV STA' OF SHEE' PMIC N/ ST MICR DI THIS DRAW FOR USE BY | A ANDA OCIRRAWING IS | CUIT
NG
AVAILA
EPARTMI | BLE
ENTS | SH
PREP
Jame
CHEC
Ray | PARED F | Jamison
Y
n | 1 | <u> </u> | | 4 Di | 5
EFENS | 6 SE EI I CIRC | 7
LECTE | 8 RONICON, C | 9
S SU
PHIO
EMOI | 10
PPPLY
454 | 11 CEN | ITA | | | SHEET DESC FORM 193 JUL 94 5962-E349-94 OF 11 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 9004708 0003623 276 ## 1. SCOPE 1.1 <u>Scope</u>. This drawing describes device requirements for class o microsite than MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of 1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example: 1.2.1 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows: | Device type | Generic number 1/ | <u>Circuit function</u> | Access time | |-------------|-------------------|----------------------------|-------------| | 01 | 7c235 | 1K X 8-bit registered PROM | 40 | | 02 | 7c235 | 1K X 8-bit registered PROM | 30 | | 03 | 7c235A | 1K X 8-bit registered PROM | 40 | | 04 | 7c235A | 1K X 8-bit registered PROM | 30 | | 05 | 7c235A | 1K X 8-bit registered PROM | 25 | 1.2.2 Case outline(s). The case outline(s) shall be as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|---------------------| | K | CDFP3-F24 or GDFP2-F24 | 24 | flat package | | L | CDIP4-T24 or GDIP3-T24 | 24 | Dual-in-line | | 3 | CQCC1-N28 | 28 | Square chip carrier | 1.2.3 <u>Lead finish</u>. The lead finish shall be as specified in MIL-STD-883 (see 3.1 herein). Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference. 1.3 Absolute maximum ratings. 2/ Supply voltage range to ground potential (V_{CC}) - - - - - - - - - - - 0.5 V dc to +7.0 V dc -0.5 V dc to +7.0 V dc -3.0 V dc to +7.0 V dc Maximum power dissipation ----- 1.0 W 3/ Lead temperature (soldering, 10 seconds) ---- +260°C Data retention ----- 10 years, minimum 1.4 Recommended operating conditions. +4.5 V dc minimum to +5.5 V dc maximum 0 V dc Ground voltage (GND) -+2.0 V dc to V_{CC} -0.5 V dc to +0.8 V dc - Generic numbers are also listed on the Standardized Military Drawing Source Approval Bulletin and in MIL-BUL-103. - Unless otherwise specified, all voltages are referenced to ground. - 3/ Must withstand the added P_D due to short circuit test; e.g., I_{OS}. 4/ Maximum junction temperature may be inceased to +175°C during burn-in and steady state life tests. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-88636 | |--|---|---------------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | - · · · · · · · · · · · · · · · · · · · | REVISION LEVEL
B | SHEET 2 | DESC FORM 193A JUL 94 9004708 0003624 102 📟 ## 2. APPLICABLE DOCUMENTS 2.1 <u>Government specification, standards, bulletin, and handbook</u>. Unless otherwise specified, the following specification, standards, bulletin, and handbook of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein. **SPECIFICATION** MICROCIRCUIT MIL-I-38535 Integrated Circuits, Manufacturing, General Specification for. **STANDARDS** MICROCIRCUIT MIL-STD-883 Test Methods and Procedures for Microelectronics. MIL-STD-1835 Microcircuit Case Outlines. BULLETIN MICROCIRCUIT MIL-BUL-103 - List of Standardized Military Drawings (SMD's). (Copies of the specification, standards, bulletin, and handbook required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.) 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence. ## 3. REQUIPEMENTS - 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-I-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-I-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-I-38535 is required to identify when the QML flow option is used. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-STD-883 (see 3.1 herein) and herein. - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.2.2 <u>Truth table</u>. The truth table shall be as specified on figure 2. - 3.2.2.1 <u>Unprogrammed devices</u>. The truth table for unprogrammed devices for contracts involving no altered item drawing shall be as specified on figure 2. When required in groups A, B, C, or D (see 4.4), the devices shall be programmed by the manufacturer prior to test with a checkerboard pattern or equivalent (a minimum of 50 percent of the total number of bits programmed) or to any altered item drawing pattern which includes at least 25 percent of the total number of bits programmed. - 3.2.2.2 Programmed devices. The requirements for supplying programmed devices are not part of this drawing. - 3.2.3 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.2 herein. - 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range. | STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE
A | | 5962-88636 | |---|-----------|---------------------|------------| | DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET
3 | DESC FORM 193A JUL 94 **9**004708 0003625 049 **=** - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I. - 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103 (see 6.6 herein). - 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 Notification of change. Notification of change to DESC-EC shall be required in accordance with MIL-STD-883 (see 3.1 herein). - 3.9 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. - 3.10 <u>Processing options</u>. Since the device is capable of being programmed by either the manufacturer or the user to result in a wide variety of configurations, two processing options are provided for selection in the contract using an altered item drawing. - 3.10.1 <u>Unprogrammed device delivered to the user</u>. All testing shall be verified through group A testing as defined in 4.3.1d and Table II. It is recommended that users perform subgroups 7 and 9 after programming to verify the specific program configuration. - 3.10.2 <u>Manufacturer-programmed device delivered to the user</u>. All testing requirements and quality assurance provisions herein, including the requirements of the altered item drawing, shall be satisfied by the manufacturer prior to delivery. - 3.11 <u>Data retention</u>. A data retention stress test shall be completed as part of the vendor's reliability monitors. This test shall be done initially and after any design or process change which may affect data retention. The methods and procedures may be vendor specific, but will guarantee the number of years listed in section 1.3 herein over the full military temperature range. The vendor's procedure shall be kept under document control and shall be made available upon request. - 4. QUALITY ASSURANCE PROVISIONS - 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-STD-883 (see 3.1 herein). - 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply: - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883. - (2) $T_A = +125$ °C, minimum. - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer. - 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-88636 | |--|-----------|---------------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET
4 | DESC FORM 193A JUL 94 🖿 9004708 0003626 T85 🖿 | | | TABLE I. <u>Electrical perform</u> | ance charact | teristics. | | | | |---------------------------------|---------------------------|--|-----------------------|----------------------|--------------------|----------------|-------------| | - | 1 | Conditions | | | Li | nits | Unit | | Test | Symbol | -55°C ≤ T _C ≤ +125°C
4.5 V ≤ V _{CC} ≤ 5.5 V
unless otherwise specified | Group A
 subgroups | Device
types | Min | Max | Tonic | | Output voltage high |
 v _{OH}
 | V _{CC} = Min, I _{OH} = -4 mA
 V _{IN} = V _{IH} or V _{IL} | 1, 2, 3 |
 ALL
 | 2.4 |

 | v | | Output voltage low |
 v _{ol}
 | V _{CC} = Min, I _{OL} = 16 mA | 1, 2, 3 |
 ALL
 | | 0.4 | v | | Input voltage high | IV _{IH} |
 <u>1</u> /
 | 1, 2, 3 | ALL | 2.0 | | v | | Input voltage low | v _{IL} | 1/ | 1, 2, 3 | ALL | | 0.8 | v | | Input leakage current | IIX | V _{CC} = Max
V _{IN} = 5.5 V and GND. | 1, 2, 3 | All | -10 | 10 | μΑ | | Output leakage current | I I _{OZ} | V _{CC} = Max
 V _{OUT} = 5.5 V and GND <u>2</u> /
 Outputs disabled | 1, 2, 3 |
 ALL
 | -10 | 10 | μΑ | | Output short circuit current | Ios | V _{CC} = Max, V _{OUT} = GND 3/4/ | 1, 2, 3 |
 All | -20 | -90 | mA | | Power supply current | Icc | V _{CC} = M·x,
I _{OUT} = O mA | 1, 2, 3 | ALL | 1 | 120 | mA | | Input capacitance | CIN | T _C = +25° C, V _{IN} = 0 V
 f = 1 MHz, V _{CC} = 5.0 V
 See 4.3.1c | 4 | ALL | | 10 |
 pF | | Output capacitance | C _{OUT} | See 4.3.1c | 4 | ALL | | 10 |
 pF | | Functional tests | |
 See 4.3.1e
 | 7, 8A,8B | ALL | | <u> </u>
 | | | Address setup to clock
high | t _{SA} |
 <u>5</u> /
 | 9, 10, 11 | 01,03
02,04
05 | 40
 30
 25 | | ns | | Address hold from clock
high | t _{HA} | | 9, 10, 11 | <u>i</u> | 0 | | ns | | Clock high to output
valid | t _{co} |
 | 9, 10, 11 | 01,03
02,04
05 | | 15
12 | _
_ ns | | Clock pulse width |
 t _{PWC} | | 9, 10, 11 | 01,03 | 20 | ļ
— | _ ns | See footnotes at end of table. | STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE
A | | 5962-88636 | |---|-----------|---------------------|------------| | DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET 5 | DESC FORM 193A JUL 94 **■** 9004708 0003627 911 **■** TABLE I. <u>Electrical performance characteristics</u> - continued. | Test | Symbol | Conditions
-55°C ≤ T _C ≤ +125°C | Gra | up . | A |
 Device | Li | mits | Unit | |--|------------------|---|-----|------|----|----------------------------|--------------------|----------------|------| | | | $4.5 \text{ V} \leq \text{V}_{CC} \leq 5.5 \text{ V}$
unless otherwise specified | • | • | | types | Min | Max | | | Es setup to clock high | t _{SEs} |
 <u>5</u> /
 | 9, | 10, | 11 | 02,04, | 15 | <u> </u>
 | l ns | | Es hold from clock HIGH | tHEs |
 | 9, | 10, | 11 | O5 | 10

 5
 |

 | ns | | Inactive to valid output from clock high 6/ | t _{cos} | | 9, | 10, | 11 | 02,04 | | 25 | ns | | Inactive output from clock high <u>3</u> / <u>6</u> / <u>7</u> / | tHZC | | 9, | 10, | 11 | 05
01,03
02,04
05 |

 | 20
25
20 | ns | | Valid output from E
low <u>8</u> / | t _{DOE} | | 9, | 10, | 11 | | | 25 | ns | | Inactive output from E high 3/7/8/ | t _{HZE} | | 9, | 10, | 11 | | | 25 | ns | | Delay from INIT to valid output 3/ | t _{DI} | | 9, | 10, | 11 | | | 35 | ns | | INIT recovery to clock high <u>3</u> / | t _{RI} | | 9, | 10, | 11 | | 20 | <u> </u> | ns | | INIT pulse width 3/ | t _{PWI} | | 9, | 10, | 11 | 01,03
02,04
05 | 25
20 | | ns | - 1/ These are absolute values with respect to device ground pin and include all overshoots due to system or tester noise. Do not attempt to test these values without suitable equipment. - 2/ For devices using synchronous enable, the device must be clocked after applying these voltages to perform this measurement. - $\underline{3}$ / These parameters may not be tested, but shall be guaranteed to the limits specified in table I. - 4/ For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds. - 5/ AC tests are performed with input rise and fall times of 5 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 V to 3.0 V, output loading of the specified I_{OL} or I_{OH} and 50 pF load capacitance. See figure - 6/ Applies only when the synchronous (Es) function is used. - 7/ Transition is measured at steady state high level -500 mV or steady state low level +500 mV on the output from the 1.5 V level on the input and 5 pF load capacitance. See figure 3. - 8/ Applies only when the asynchronous (\overline{E}) function is used. | STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE
A | | 5962-88636 | |---|-----------|---------------------|------------| | DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET
6 | DESC FORM 193A JUL 94 9004708 0003628 858 🖿 | Device
types | A | LL | |---------------------------------|--|--| | Case
outlines | K, L | 3 | | Terminal
number | | minal
mbol | | 1
2
3
4
5
6
7 | A ₇
A ₆
A ₅
A ₄
A ₃
A ₂
A ₁ | NC
A7
A6
A5
A4
A3 | | 8
9
10
11 | A ₀
0 ₀
0 ₁
0 ₂ | A ₁
A ₀
NC
O ₀ | | 12
13 | GND
^O 3 | °1
°2 | | 14
15 | 0 ₄
0 ₅ | GND
NC | | 16
17 | 0 ₆
0 ₇ | °3
°4 | | 18 | СР | 0 ₅ | | 19 | Ēs | 06 | | 20 | INIT | o ₇ | | 21 | Ē | NC | | 22 | A9 | СР | | 23 | A ₈ | _
Es | | 24 | v _{cc} | INIT | | 25 | | Ē | | 26
27
28 |

 | A ₉
A ₈
V _{CC} | NC = no connection FIGURE 1. <u>Terminal connections</u>. | STANDARD MICROCIRCUIT DRAWING DEFENSE ELECTRONICS SUPPLY CENTER | SIZE
A | | 5962-88636 | |---|-----------|---------------------|------------| | DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET
7 | DESC FORM 193A JUL 94 **3004708 0003629 794** | | Read or output disable | A ₂ | CP | Es | INIT | Ē | A1 | Outputs | |------|------------------------|----------------|----|-----------------|-----------------|-----------------|----|-------------| | Mode | Read 1/ 2/ 3/ | Х | Х | VIL | V _{IH} | VIL | Х | Data out | | | Output disable 1/4/ | × | х | ν _{IH} | ν _{IH} | X | X | High Z | | | Output disable 1/ | х | х | Х | V _{IH} | V _{IH} | х | High Z | | | <u>INIT 1/5/</u> | х | Х | Х | VIL | VIL | Х | 1025th word | - $\frac{1}{2}$ / X = don't care, but not to exceed V_{pp} = 13.0 V, maximum. $\frac{1}{2}$ / During read operation, the output latches are loaded on a "0" to "1" transition of CP. $\frac{1}{2}$ / Pin 19 must be LOW prior to the "0" to "1" transition on CP (18) that loads the register. $\frac{1}{2}$ / Pin 19 must be HIGH prior to the "0" to "1" transition on CP (18) that loads the register. $\frac{1}{2}$ / Low to high clock transition required to enable outputs. FIGURE 2. Truth table. - C_L includes probe and jig capacitance. C_L = 50 pF for all switching characteristics except t_{HZC} and t_{HZE}. C_L = 5 pF for t_{HZC} and t_{HZE}. Tests are performed with rise and fall times of 5 ns or less. All device test loads should be located within two inches of device outputs. FIGURE 3. Output load circuit and test conditions. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-88636 | |--|-----------|---------------------|------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET
8 | DESC FORM 193A JUL 94 9004708 0003630 406 📟 NOTE: Transition is measured at steady-state high level -500 mV or steady-state low level +500 mV on the output, from the 1.5 V level on the input and 5 pF load capacitance. See figure 3. FIGURE 4. Switching waveforms. | STANDARD
MICROCIRCUIT DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444 | SIZE
A | | 5962-88636 | | |---|-----------|---------------------|------------|--| | | | REVISION LEVEL
B | SHEET 9 | | DESC FORM 193A JUL 94 # **9004708 0003631 342** TABLE II. Electrical test requirements. 1/ 2/ 3/ 4/ | MIL-STD-883 test requirements | Subgroups (in accordance with method 5005, table I) | |--|---| | Interim electrical parameters (method 5004) | | | Final electrical test parameters (method 5004) | 1*, 2, 3, 7*,
8A, 8B, 9, 10, 11 | | Group A test requirements (method 5005) | 1, 2, 3, 4**, 7,8A,
8B, 9, 10, 11 | | Groups C and D end-point
electrical parameters
(method 5005) | 2, 3, 7, 8A, 8B | - 1/ * Indicates PDA applies to subgroups 1 and 7. - Any or all subgroups may be combined when using high-speed testers. - 3/ ** See 4.3.1c. - $\underline{\underline{4}}/$ As a minimum, subgroups 7 and 8 shall consist of verifying the data pattern. # 4.3.1 Group A inspection. - a. Tests shall be as specified in table II herein. - b. Subgroups 5 and 6 of table I of method 5005 of MIL-STD-883 shall be omitted. - c. Subgroup 4 ($C_{\rm IN}$ and $C_{\rm OUT}$ measurement) shall be measured only for the initial test and after process or design changes which may affect capacitance. Sample size is 15 devices with no failures, and all input and output terminals tested. - d. Unprogrammed devices shall be tested for programmability and ac performance compliance to the requirements of group A, subgroups 9, 10, and 11. Either of two techniques is acceptable: - (1) Testing the entire lot using additional built-in test circuitry which allows the manufacturer to verify programmability and ac performance without programming the user array. If this is done, the resulting test patterns shall be verified on all devices during subgroups 9, 10, and 11, group A testing in accordance with the sampling plan specified in MIL-STD-883, method 5005. - (2) If such compliance cannot be tested on an unprogrammed device, a sample shall be selected to satisfy programmability requirements prior to performing subgroups 9, 10, and 11. Twelve devices shall be submitted to programming (see 3.2.2.2). If more than two devices fail to program, the lot shall be rejected. At the manufacturer's option, the sample may be increased to 24 total devices with no more than 4 total device failures allowable. Ten devices from the programmability sample shall be submitted to the requirements of group A, subgroups 9, 10, and 11. If more than two devices fail, the lot shall be rejected. At the manufacturer's option, the sample may be increased to 20 total devices with no more than 4 total device failures allowable. - e. Subgroups 7 and 8 shall include verification of the truth table. | STANDARD
MICROCIRCUIT DRAWING | SIZE | | 5962-88636 | |--|------|---------------------|-------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET
10 | DESC FORM 193A JUL 94 **- 9004708 0003632 289** ## 4.3.2 Groups C and D inspections. - a. End-point electrical parameters shall be as specified in table II herein. - Steady-state life test conditions, method 1005 of MIL-STD-883. - (1) Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - (2) $T_A = +125$ °C, minimum. - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. - c. Group C, subgroup 1 simple shall include devices tested in accordance with 4.3.1d. - 4.4 <u>Programming procedure</u>. The programming procedures shall be as specified by the device manufacturer and shall be made available upon request. ### PACKAGING 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-STD-883 (see 3.1 herein). ### 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal. - 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047. - 6.5 <u>Comments</u>. Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444-5270, or telephone (513) 296-5377. - 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC. | STANDARD MICROCIRCUIT DRAWING | SIZE
A | | 5962-88636 | |--|-----------|---------------------|-------------| | DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 | | REVISION LEVEL
B | SHEET
11 | DESC FORM 193A JUL 94 **=** 9004708 0003633 115 **==**