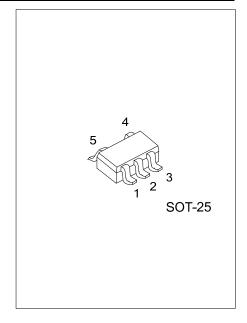
UNISONIC TECHNOLOGIES CO., LTD

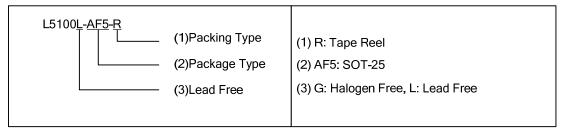

L5100

LINEAR INTEGRATED CIRCUIT

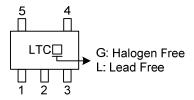
WHITE LED STEP-UP CONVERTER

DESCRIPTION

The UTC L5100 is a STEP-UP DC/DC Converter and for driving white LEDs with a constant current. It can drive several LEDs in series by a Li-lon cell. UTC L5100 switches at a high frequency 1.2MHz, so it can allow the use of tiny external components. The output capacitor can be as small as 0.22µF; saving space and cost compare with alternative other solutions. The low 95mV feedback voltage minimizes power loss in the current setting resistor can have better efficiency.

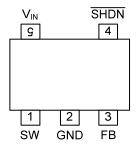


FEATURES


- * Inherently Matched LED Current
- * High Efficiency: 83% Typical
- * Drives Up to Four LEDs from a 3.2V Supply
- * Drives Up to Six LEDs from a 5V Supply
- * 36V Rugged Bipolar Switch
- * 1.2MHz Switching Frequency
- * Uses Tiny 1mm Tall Inductors
- * Output Capacitor can be Small to only 0.22µF

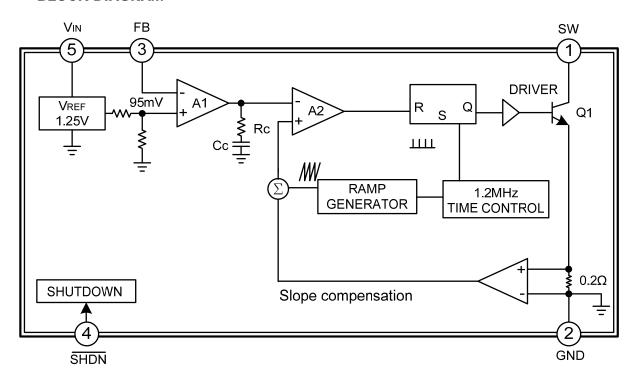
■ ORDERING INFORMATION

Ordering Number		Dookogo	Packing	
Lead Free Halogen Free		Package		
L5100L-AF5-R	L5100G-AF5-R	SOT-25	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 7


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	SW	Switch. Connect inductor/diode here. Minimize trace area at this pin to reduce EMI.
2	GND	Ground. Connect directly to local ground plane.
3	FB	Feedback. Reference voltage is 95mV. Connect cathode of lowest LED and resistor here. Calculate resistor value according to the formula: $R_{FB} = 95mV/I_{LED}$
4	SHDN	Shutdown. Connect to 1.5V or higher to enable device; 0.4V or less to disable device.
5	V_{IN}	Input Supply Pin. Must be locally bypassed.

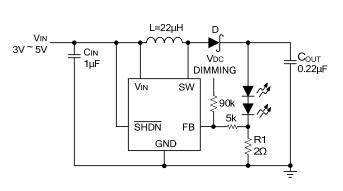
■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

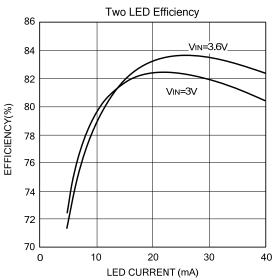
PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V _{IN}	12	V
Switch Voltage	V _{SW}	36	V
Feedback Voltage	V_{FB}	12	V
Shutdown Voltage	VSHDN	12	V
Junction Temperature	TJ	+125	°C
Operating Junction Temperature	TJ	-40~+85	°C
Storage Temperature Range	T _{STG}	-65~+150	°C

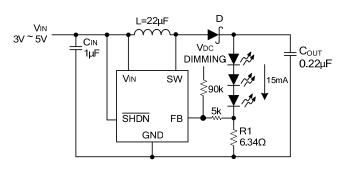
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

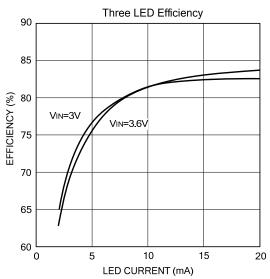

■ THERMAL DATA

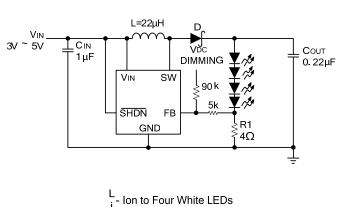
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (in free air)	θ_{JA}	256	°C/W


■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, V_{IN}=3V, VSHDN =3V, unless otherwise specified.)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage	V_{IN}		2.5		12	V
Feedback Voltage	V_{FB}	I _{SW} =100mA, Duty Cycle=66%	87	95	104	mV
Shutdown Voltage ON	V_{ON}		1.5			V
Shutdown Voltage OFF	V_{OFF}				0.3	V
Switch V _{CESAT}	$V_{CESAT(SW)}$	I _{SW} =250mA		360		mV
Switch Current Limit	I _{SW}			320		mA
Supply current	I _{cc}	SHDN =0V		1.8	2.5	mA
				0.1	1.0	μΑ
Switch Leakage Current	I _{SW(OFF)}	V _{SW} =5V		0.01	5	μΑ
Shutdown Pin Bias Current	ISHDN			60		μΑ
Feedback Pin Bias Current	I_FB		10	45	100	nA
Switching Frequency	f _{OSC}		8.0	1.2	1.6	MHz
Maximum Duty Cycle	DC		85	90		%

■ TYPICAL APPLICATION CIRCUITS




Li-Ion to Two White LEDs

Li-lon to Three White LEDs

Four LED Efficiency

85

80

V_{IN}=3V

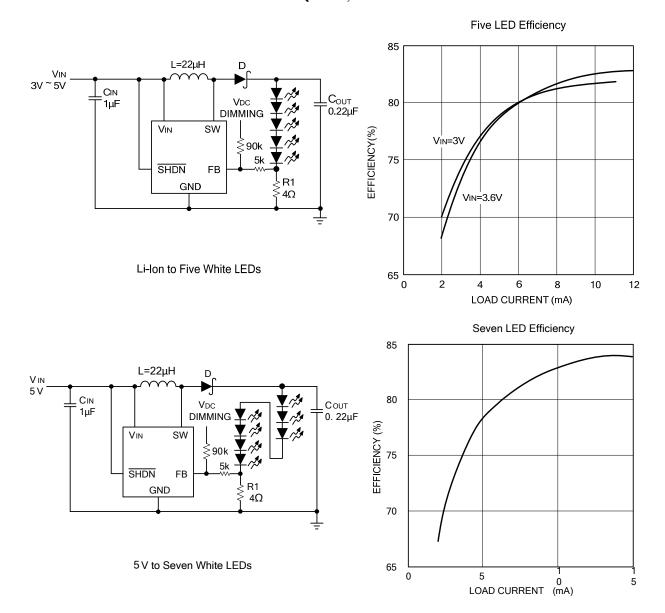
V_{IN}=3.6V

70

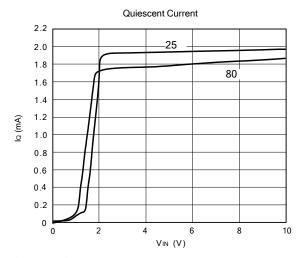
65

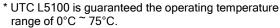
0

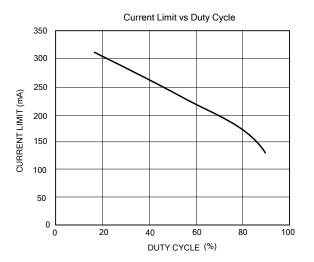
5


10

15


20


LOAD CURRENT (mA)


■ TYPICAL APPLICATION CIRCUITS (Cont.)

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.