

SANYO Semiconductors DATA SHEET

LA6505 — For CD-ROM, DVD-ROM and MD players Six-Channel Driver

Overview

The LA6505 is a six-channel driver for CD and MD players and recorders.

It adopts direct PWM drive output in the spindle motor drive to minimize heat generation at high spindle speeds. It also features a soft switching function that minimizes spindle motor drive noise by making the current changes at each phase switch more gradual.

The sled motor driver implements two-phase stepping drive and supports direct PWM inputs. The LA6505 uses a BTL amplifier design for the focus and tracking driver blocks, and a similar design for the loading driver as well.

Functions

- (1) Spindle motor driver block
 - Three-phase brushless motor driver
 - Adopts a current feedback direct PWM drive design
 - Supports analog inputs and features a V-type control amplifier
 - Built-in oscillator circuit (The oscillator frequency can be set with an external capacitor.)
 - Soft-switching drive
 - FG output for one phase (the U phase)
 - Built-in reverse rotation prevention circuit
 - Built-in Hall sensor power supply (npn transistor, open collector output)
 - Current limiter setting function (The limit is set by the resistor RF.)
 - Standby mode (SS) function that operates for the spindle driver and BTL amplifiers.
- (2) Sled motor driver block
 - Adopts a current feedback direct PWM drive design
 - Supports stepping motors
 - Muting function (MUTE-SLD; only applies to the sled driver)
- (3) Sled motor driver block
 - BTL amplifier based design
- Built-in input operational amplifiers
- Built-in level shifting circuits
- Standby mode (SS) function
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

- (4) Loading block
 - BTL amplifier based design
 - Muting function (MUTE-LOAD; only applies to the loading driver)
- (5) Other circuits
 - Built-in thermal shutdown circuit (design guarantee)

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage - V _{CC}	V _{CC} S	Signal system supply voltage, V _{CC} ≥ VS-*	14	V
Supply voltage - P-SPD	VS-SPD	Spindle block power stage supply voltage	14	V
Supply voltage - P-SLD	VS-SLD	Sled block power stage supply voltage	14	V
Supply voltage - P-BTL	VS-BTL	BTL amplifier block power stage supply voltage	14	V
Allowable power dissipation	Pd max1	Independent IC	0.85	W
	Pd max2	When mounted on the specified circuit	1.72	W
Maximum input voltage	V _{IN} max		6	V
Maximum output current 1	I _O max1	Spindle block	1.25	Α
Maximum output current 2	I _O max2	Sled block output	0.5	Α
Maximum output current 3	I _O max3	Outputs for the focus, tracking, and loading blocks	0.5	А
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

^{*} Specified board size : 76.1mm×114.3mm×1.6mm, glass epoxy board.

Recommended Operating Conditions at Ta = 25°C

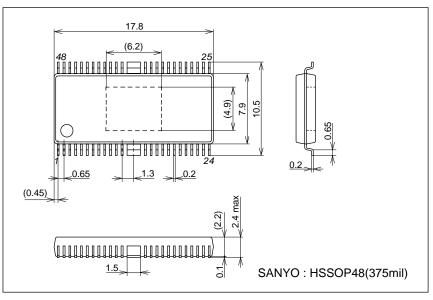
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage S	V _{CC} -S	V _{CC} -S ≥ VS-*	6 to 13	٧
Supply voltage P	V _{CC} -P*	V _{CC} -S ≥ VS-*	6 to 13	٧

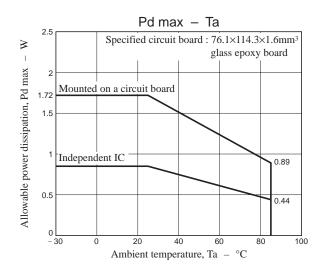
^{*:} The term "VS-*" refers to VS-SPD, VS-BTL, and VS-SLD.

Electrical Characteristics at Ta = 25 °C, $V_{CC} = VS\text{-SPD} = VS\text{-SLD} = VS\text{-BTL} = 8V$, VREF = 1.65V, $RF\text{-SPD} = 0.5\Omega$, unless especially specified.

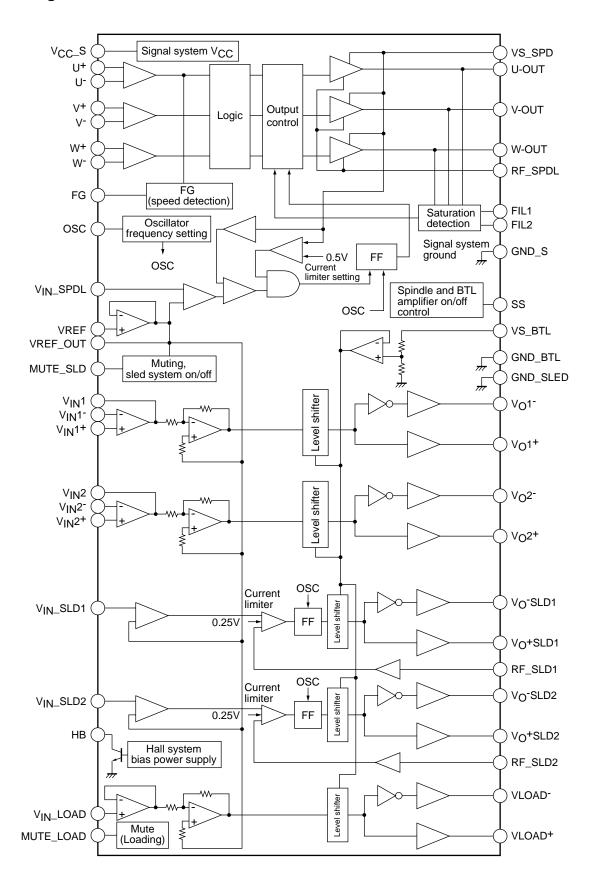
Symbol	Conditions			Unit		
Cymbol	Conditions	min	typ	max	Offic	
I _{CC} -ON1	SS: H, MUTE SLED/LOAD: H		50	58	mA	
I _{CC} -OFF	SS/MUTE SLED/MUTE LOAD : L		12	20	mA	
TSD	Junction temperature, design guarantee	150	180	210	°C	
ΔTSD	Junction temperature, design guarantee		40		°C	
V _{OFF} -VREF	The potential difference between VREF and VREF-OUT	-7		7	mV	
IVCREF	VC = VREF = 1.65V			1	μΑ	
indle driver)				•		
V _{SS} L				0.5	V	
V _{SS} H		2.0			V	
I _{SS} H				60	μΑ	
and loading driver						
V _{MUTE} L				0.5	V	
V _{MUTE} H		2.0			V	
IMUTEH				60	μΑ	
	ICC-OFF TSD ATSD VOFF-VREF IVCREF IVCREF IVSSL VSSH ISSH And loading driver VMUTEL VMUTEH	I _{CC} -ON1 SS: H, MUTE SLED/LOAD: H I _{CC} -OFF SS/MUTE SLED/MUTE LOAD: L TSD Junction temperature, design guarantee ΔTSD Junction temperature, design guarantee VOFF-VREF The potential difference between VREF and VREF-OUT IVCREF VC = VREF = 1.65V indle driver) V _{SS} L V _{SS} H I _{SS} H and loading driver VMUTEL VMUTEL VMUTEH	I _{CC} -ON1 SS : H, MUTE SLED/LOAD : H I _{CC} -OFF SS/MUTE SLED/MUTE LOAD : L TSD Junction temperature, design guarantee 150 ΔTSD Junction temperature, design guarantee 150 ΔTSD Junction temperature, design guarantee 150 VOFF-VREF The potential difference between VREF and VREF-OUT IVCREF VC = VREF = 1.65V Indide driver VSSL	ICC-ON1 SS: H, MUTE SLED/LOAD: H 50 ICC-OFF SS/MUTE SLED/MUTE LOAD: L 12 TSD Junction temperature, design guarantee 150 180 ΔTSD Junction temperature, design guarantee 40 VOFF-VREF The potential difference between VREF and VREF-OUT IVCREF VC = VREF = 1.65V Indide driver) VSSL 2.0 ISSH 2.0 ISSH 2.0 IMAGE VMUTEL VMUTEL VMUTEL VMUTEL VMUTEH 2.0 ISSH 2.0	Symbol Conditions min typ max	

LA6505

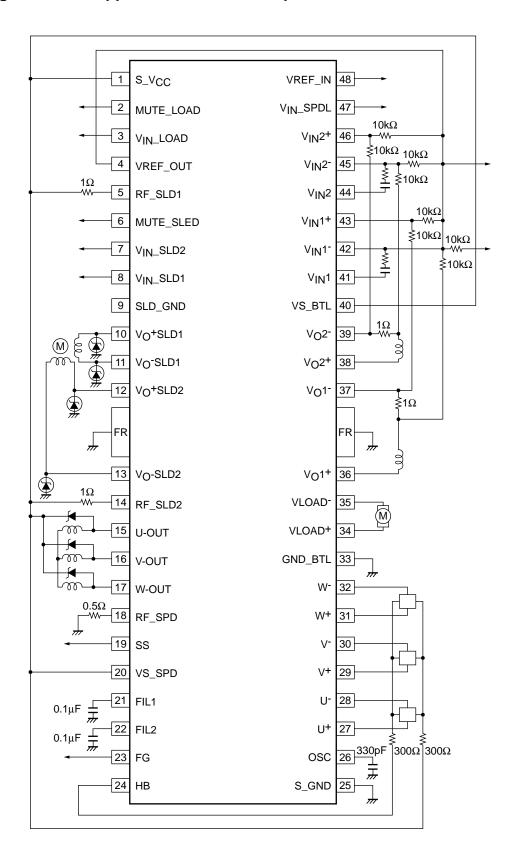

Parameter	Symbol	Conditions	Ratings			Unit
i didilicici	,		min	typ	max	Offic
Spindle Motor Driver Block (Outp	out Block)	1	1			
Output saturation voltage	V _O SATL	$I_O = 0.5A, V_O (SINK)$		0.4	0.45	V
	V _O SATH	$I_O = 0.5A, V_O (SOURCE)$		1.2	1.5	V
Output leakage current	IO-LEAK (L)	Sink side			100	μΑ
	IO-LEAK (H)	Source side			100	μΑ
Hall Amplifier Block						
Input offset voltage	V _{OFF} -HALL		-6		6	mV
Input bias current	IHB			1	3	μΑ
Input voltage range	V _I CM		1.3		4	V
Minimum Hall sensor input level	V_HIN		60			mV
PWM Oscillator						
PWM oscillator frequency	FOSC	Between OSC and ground : 330 pF	65	86	105	kHz
Input Amplifier						
VC pin input current	IVCTL	VC = VREF = 1.65V, spindle motor driver input			1	μА
Forward gain	GDF+		0.4	0.46	0.52	V/V
Reverse gain	GDF-		0.4	0.46	0.52	V/V
Forward limiter voltage	VRF1		0.42	0.5	0.58	V
Reverse limiter voltage	VRF2		0.42	0.5	0.58	V
Startup voltage	VIN		1.5		1.8	V
Input dead zone width	VDZ-SPDL		150	200	250	mV
FG Pin : Speed pulse output		1	1			
Low-level output voltage	V _{FG} L	IFG = 2mA			0.4	V
Hall comparator hysteresis	V _{FG} HYS		4	8	15	mV
Hall Sensor Power Supply	10 -		<u> </u>			
Hall sensor power supply voltage	VH	I _H = 5 mA, with respect to the ground potential.		0.8	1.2	V
Allowable current	lн	potential			20	mA
Sled Driver Block (Output Block)			<u> </u>			
Maximum output voltage	V _O -SLD	I _O = 0.2A	6.35	6.8		V
Output leakage current	I _O LEAK (L)	Sink side			100	μА
3	I _O LEAK (H)	Source side			100	μА
Input Amplifier	.0 (,	1				F
V _{IN} pin input current	IVCTL	VC = VREF = 1.65V, sled driver input			1	μА
I/O gain	VG-SLD		0.2	0.23	0.26	V/V
Output limit voltage	LIMT-SLD		0.21	0.25	0.29	V
Startup voltage	VIN		1.5		1.8	V
Input dead zone width	VDZ-SLD		100	150	200	mV
Input voltage range	V _{IN} -OP (SLD)	Design guarantee, input buffer amplifier	0	.00	V _{CC} -1.5	V
Output on delay time	TON	g go-,par sanor ampinor		2	10	μs
Output off delay time	TOFF			2	10	
Switching time	TSW			2	10	μs μs
Focus and Tracking (BTL-AMP)	1000	1		۷	10	μδ
	Voes PTI	Input operational amplifier buffer	E0.	I	E0	m\/
Output offset voltage	V _{OFF} -BTL	Input operational amplifier buffer	-50 5.7	6	50	mV V
Maximum output voltage	V _O -BTL	I _O = 0.3A				
I/O gain	V _G -BTL		3.6	4	4.4	times
Slew rate	SR	Across the BTL amplifier output		1		V/µs


	0	0		Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Input Operational Amplifier			•		•		
Output offset voltage	V _{OFF} -OP		-7		7	mV	
Output sink current	SINK-OP		2			mA	
Output source current	SOURCE-OP		300	500		μΑ	
Input voltage range	V _{IN} -OP			1		V/μs	
Input voltage range	V _{IN} -OP (BTL)		0		V _{CC} -1.5	V	
Loading Block (BTL-AMP)			•		•		
Output offset voltage	V _{OFF} -LOAD		-50		50	mV	
Maximum output voltage	V _O -LOAD	I _O = 0.5A	6	6.6		V	
I/O gain	V _G -LOAD		3.6	4	4.4	times	
Slew rate	SR			1		V/μs	
Input voltage range	VIN-LOAD	Design guarantee, input buffer amplifier	0		Vcc-1.5	V	

Package Dimensions


unit: mm (typ)

3278



Block Diagram

Pin Assignment and Application Circuit Example

For the diodes between the spindle outputs (pins 15, 16, and 17), use Schottky barrier diodes with current capacities of over 1A, small temperature coefficients, and low reverse currents.

LA6505

Pin Functions

Pin No.	Pin	Descriptions					
1	V _{CC} _S	Signal system power supply and BTL amplifier output stage power supply					
2	MUTE_LOAD	Loading output on/off control					
3	V _{IN} _LOAD	Loading input					
4	VREF-OUT	VREG amplifier (buffer) output					
5	RF_SLD1	SLED1 output current detection					
6	MUTE_SLED	Sled output on/off control					
7	V _{IN} _SLD2	SLED2 input					
8	V _{IN} SLD1	SLED1 input					
9	GND_SLD	Power system ground, Sled					
10	VO ⁺ SLD1	SLED1+ output					
11	V _O -SLD1	SLED1 ⁻ output					
12	V _O +SLD2	SLED2+ output					
13	V _O -SLD2	SLED2 ⁻ output					
14	RF_SLD2	SLED2 output current detection					
15	U-OUT	U phase output					
16	V-OUT	V phase output					
17	W-OUT	W phase output					
18	RF_SPDL	Output current detection (SPINDLE)					
19	SS	BTL amplifier (channels 1 and 2) and spindle driver on/off control					
20	VS_SPDL	Spindle output stage power supply					
21	FIL1	Source side output oscillation prevention					
22	FIL2	Sink side output oscillation prevention					
23	FG	FG output. This is an open collector output that outputs one of the Hall phases (the U phase).					
24	НВ	Hall sensor bias power supply (open collector output)					
25	GND_S	Signal system ground					
26	OSC	PWM oscillator frequency setting (A capacitor is connected between this pin and ground.)					
27	U+	Hall sensor bias input (U ⁺)					
28	U-	Hall sensor bias input (U ⁻)					
29	V+	Hall sensor bias input (V ⁺)					
30	V-	Hall sensor bias input (V ⁻)					
31	W+	Hall sensor bias input (W ⁺)					
32	W ⁻	Hall sensor bias input (W ⁻)					
33	GND_BTL	Power system ground and BTL amplifier (including loading driver)					
34	VLOAD+	Loading driver output (+)					
35	VLOAD⁻	Loading driver output (-)					
36	V _O 1+	Channel 1 output (+)					
37	V _O 1⁻	Channel 1 output (-)					
38	V _O 2+	Channel 2 output (+)					
39	V _O 2 ⁻	Channel 2 output (-)					
40	VS_BTL	Power system ground and BTL amplifier (including loading driver)					
41	V _{IN} 1	Channel 1 input, channel 1 operational amplifier output					
42	V _{IN} 1-	Channel 1 input, input operational amplifier inverting input					
43	V _{IN} 1+	Channel 1 input, input operational amplifier noninverting input					
44	V _{IN} 2	Channel 2 input, channel 1 operational amplifier output					
45	V _{IN} 2-	Channel 2 input, input operational amplifier inverting input					
46	V _{IN} 2+	Channel 2 input, input operational amplifier noninverting input					
47	V _{IN} SPDL	Spindle input					
48	VREF_IN	Reference voltage input					

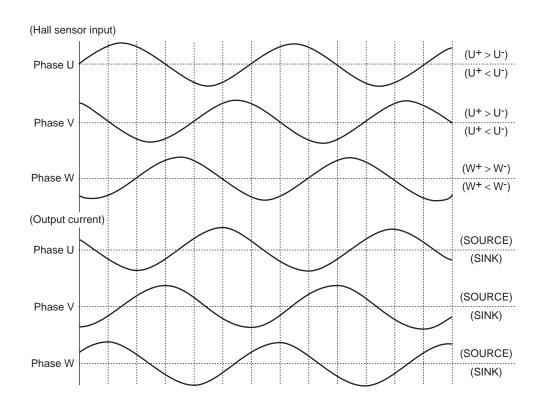
Pin Description

Pin No.	Pin	Function	Equivalent circuit
43 42 41 46 45 44	VIN1+ VIN1- VIN1 VIN2+ VIN2- VIN2	Channel 1 and channel 2 (BTL amplifier) input. operational amplifier inputs and outputs.	V _{IN} 1-/V _{IN} 2- 10μA (
3	V _{IN} _LOAD	Loading driver input.	V _{IN_} LOAD 10µА
8 7 47	V _{IN} _SLD1 V _{IN} _SLD2 V _{IN} _SLD3	Sled and spindle driver inputs.	V _{IN_SLD1} / V _{IN_SLD2} 12.5µA VCC_S GND_S
48	VREF_IN	VREF-IN input (VREF amplifier input).	VCC_S VREF_IN 8μΑ GND_S
36 37 38 39 34 35	V _O 1+ V _O 1- V _O 2+ V _O 2- VLOAD+ VLOAD-	Outputs for channel 1, channel 2, and the loading driver.	VS_BTL VO1 ⁻ /VO1 ⁻ VO2 ⁻ /VO2 LOAD ⁺ /LOAD Devices market with a broken circle are diodes added for structural reasons.

Continued from preceding page. Equivalent circuit Pin No. Pin Function VS_SPD 20 Spindle and other output VS_SPD)U-OUT V-OUT RF_SPDL 18 pins. U-OUT 15 V-OUT 16 17 W-OUT RF_SPDL Devices market with a broken circle are diodes added for structural reasons. RF_SLD1 Sled system output pins. 5 RF_SLD2 14 RF_SLD1/RF_SLD2 SLD_GND 9 VO⁺SLD1 10 VO⁻SLD1 11 12 VO+SLD2 VO⁻SLD2 13 SLD_GND(V_O-SLD1/V_O-SLD2 VO-SLD1/VO+SLD2 Devices market with a broken circle are Devices market with a protein circle diodes added for structural reasons. U+ 27 Hall sensor bias inputs. 28 U-VCC_S V_{CC}_S 29 30 31 W+ GND_S 32 W-100μΑ U+/V+/W+ U-/V-/W-26 osc Oscillator frequency setting. This pin sets the PWM oscillator frequency. 23 FG FG output. This pin outputs a signal synchronized with the U phase. (Single Hall sensor output)

LA6505

Continued ire	om preceding page.		
Pin No.	Pin	Function	Equivalent circuit
24	НВ	Hall bias output.	V _{CC} _S HB GND_S
6 2 19	MUTE_SLED MUTE_LOAD SS	SS and muting control inputs. These inputs control the on/off states of the corresponding outputs.	MUTE_SLED VCC_S /MUTE_LOAD /SS 75kΩ GND_S 100kΩ


Spindle Truth Table

(For forward rotation, $V_{\mbox{IN}}$ SPDL > VREF)

		Hall sensor input									
	Input	l	J	,	V	V	٧	0011005		OINII	FG output
		U+	U-	V+	V-	W+	W-	SOURCE	\rightarrow	SINK	
(1)		Н	L	Н	L	L	Н	W	\rightarrow	V	Н
(2)		Н	L	L	Н	L	Н	W	\rightarrow	U	Н
(3)	l	Н	L	L	Н	Н	L	V	\rightarrow	U	Н
(4)	H	L	Н	L	Н	Н	L	V	\rightarrow	W	L
(5)		L	Н	Н	L	Н	L	U	\rightarrow	W	L
(6)		L	Н	Н	L	L	Н	U	\rightarrow	V	L

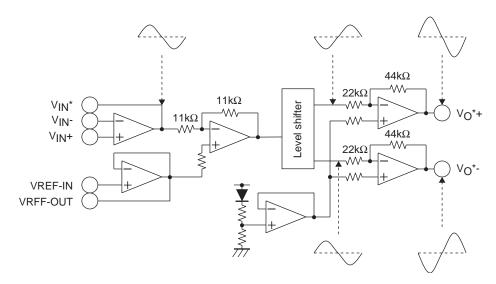
(For reverse rotation, $V_{\mbox{IN}}$ SPDL < VREF)

				Hall sen	sor input						
	Input	l	J	,	/	٧	٧	0011005		OINII	FG output
		U ⁺	U⁻	٧+	V-	W+	W-	SOURCE \rightarrow SIN	SINK		
(1)		Н	L	Н	L	L	Н	V	\rightarrow	W	Н
(2)		Н	L	L	Н	L	Н	U	\rightarrow	W	Н
(3)		Н	L	L	Н	Н	L	U	\rightarrow	V	Н
(4)	Н	L	Н	L	Н	Н	L	W	\rightarrow	V	L
(5)		L	Н	Н	L	Н	L	W	\rightarrow	U	L
(6)		L	Н	Н	L	L	Н	V	\rightarrow	U	L

Output On/Off Control Functions

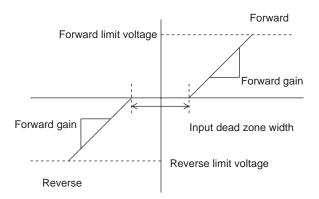
1. Relationships Between Muting Inputs and Output States

MUTE SLED	Sled output
Н	ON
L	OFF


MUTE SLED	Loading driver output	
Н	ON	
L	OFF	

2. Relationship Between S/S and the Corresponding Output

MUTE SLED	Spindle BTL-AMP	
Н	ON	
L	OFF	


- *: The BTL amplifier and the loading driver input amplifier operate regardless of the MUTE inputs. The output on/off states are controlled only by muting the output amplifiers.
- *: When both the MUTE and S/S pins are low, the outputs go to the high-impedance state. However, note that the output amplifier gain setting feedback resistor is connected.

BTL Amplifier I/O Relationship

- * : The loading driver input operational amplifier is a voltage-follower circuit (V_{IN} and V_{IN}- are shorted together).
- * : To make the I/O relationship easier to see in figure 7, Block Diagram, the diagram is written as though gain is applied in the input amplifier. In the actual circuit, however, the gain occurs in the output amplifier.

Spindle and Sled Gain and Limiter

(SPINDLE)

RF resistor	Forward/reverse	I/O gain		
(Ω)	limiter current (A)	(A/V)	(V/V)	
0.5	1.0	1.0	0.5	
1.0	0.5	0.5	0.5	

(SLED)

RF resistor	Forward/reverse	I/O gain	
(Ω)	limiter current (A)	(A/V)	(V/V)
0.5	0.50	0.50	0.25
1.0	0.25	0.25	0.25

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2007. Specifications and information herein are subject to change without notice.