Active-Matrix Liquid Crystal Display
 (AMLCD) Supply

Abstract

General Description The MAX1664 integrates power-supply and backplane drive circuitry for active-matrix thin-film-transistor (TFT) liquid crystal displays. Included are a single-output, pulse-width-modulation boost converter (0.25Ω switch), a dual-output (positive and negative) gate-driver supply using one inductor, an LCD backplane driver, and a simple phase-locked loop to synchronize all three outputs. High switching frequency (1 MHz nominal) and phaselocked operation allow the use of small, minimumheight external components while maintaining low output noise. $\mathrm{A}+2.8 \mathrm{~V}$ to +5.5 V input voltage range allows operation with any logic supply. Output voltages are adjustable to +5.5 V (DC-DC 1) and to +28 V and -10V (DC-DC 2). The negative output voltage can be adjusted to -20 V with additional components. Also included are a logic-level shutdown and a "Ready" output (RDY) that signals when all three outputs are in regulation. The boost-converter operating frequency can be set at 16,24 , or 32 times the backplane clock. This flexibility allows a high DC-DC converter frequency to be used with LCD backplane clock rates ranging from 20 kHz to 72 kHz . The MAX1664 is supplied in a 1.1 mm -high TSSOP package.

Applications
LCD Modules
LCD Panels

Pin Configuration

TOP VIEW		
	-	20 FPLL
		$19 \mathrm{LX1}$
		18 PGND1
	MAXINV	17 PGND2
	MAX1664	16 LX2N
		15 LX2P
		14 INP
		13 BPCLK
		$12 \mathrm{BPV} \mathrm{V}_{\text {D }}$
		11 BPDRV
	TSSOP	

Features

- Integrates All Active Circuitry for Three DC-DC Converters
- Ultra-Small External Components (ceramic capacitors, $2 \mu \mathrm{H}$ to $5 \mu \mathrm{H}$ inductors)
- DC-DC Converters Phase-Locked to Backplane Frequency for Lowest Noise
- Low Operating Voltage (down to $\mathbf{+ 2 . 8 \mathrm { V } \text {) }}$
- Adjustable Output Voltage from VIN to +5.5 V
- Load Currents Up to 500mA
- Adjustable TFT Gate Driver Output:

Positive, VIN to +28 V
Negative, 0 to $-10 \mathrm{~V}(-20 \mathrm{~V}$ with added components)

- Includes 0.35Ω Backplane Driver
- $1 \mu \mathrm{~A}$ Shutdown Current
- Power-Ready Output Signal

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1664CUP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP

Typical Operating Circuit

Active-Matrix Liquid Crystal Display (AMLCD) Supply

ABSOLUTE MAXIMUM RATINGS

RDY, IN, BPVDd to	-0.3V to +6V
FB2-, PGND1, PGND2 to GND $\pm 0.3 \mathrm{~V}$
LX1 to PGND1	..-0.3V to +6V
BPVss to GND	-3.3 V to +0.3 V
BPVDD to BPVSs	-0.3V to +6V
BPDRV to BPVss	..-0.3V to (VBPVDD +0.3 V)
LX2P to INP	.-15V to +0.3V
LX2N to PGND2.	.-0.3V to +30V
SHDN, INP, FB1, FB2+, REF, PLLC,	
BPCLK, FPLL to GND	..-0.3V to (V IN +0.3 V)

RDY Sink Curren
20 mA
LX2P, LX2N Peak Switch Currents $\pm 750 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
20-Pin TSSOP (derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 559 mW
Operating Temperature Range.............................. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{I N}=V_{I N P}=3.3 \mathrm{~V}, \overline{S H D N}=I N, V_{B P V D D}=4 \mathrm{~V}, \mathrm{~V}_{B P V S S}=-1 \mathrm{~V}\right.$, PGND1 $=P G N D 2=F P L L=G N D, f B P C L K=30 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Supply Range	VIN		2.8		5.5	V
Undervoltage Lockout Threshold	VUVLO		2.5		2.8	V
Quiescent Current	lQ	$\begin{aligned} & \mathrm{V}_{\mathrm{FB} 1+}=\mathrm{V}_{\mathrm{FB} 2+}=1.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB} 2-}=-0.1 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{INP}} \end{aligned}$		0.5	2	mA
Shutdown Current	ISD	$\overline{\mathrm{SHDN}}=\mathrm{GND}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IN}}+\mathrm{l}_{\text {INP }}$		0.01	10	$\mu \mathrm{A}$
DC-DC 1 (PWM MAIN OUTPUT)						
Output Voltage Range	Vout1		VIN		5.5	V
Operating Frequency	fop1	FPLL = GND	$32 \times$ fBPCLK			Hz
		FPLL $=$ REF	$24 \times$ fBPCLK			
		FPLL $=1 \mathrm{~N}$	$16 \times$ fBPCLK			
FB1 Regulation Voltage	$\mathrm{V}_{\text {FB1 }}$	$0<\mathrm{LLX1}$ < 1.2A	1.2125	1.2500	1.275	V
FB1 Input Bias Current	IfB1	$\mathrm{V}_{\mathrm{FB} 1}=1.3 \mathrm{~V}$			100	nA
LX1 On Resistance	Ron(LX1)			0.25	0.5	Ω
LX1 Leakage Current	lLKG(LX1)	$\mathrm{V}_{\mathrm{LX} 1}=6 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
LX1 Peak Current Limit	ILIM(LX1)		1.2	1.5	1.8	A
Power-Ready Trip Level	$\mathrm{V}_{\text {TH_RDY }}$	Rising edge, 2\% hysteresis	1.091	1.125	1.159	V
DC-DC 2 (PFM)						
Positive Output Voltage Range	Vout2+		VIN		28	V
Negative Output Voltage Range	Vout2-		-10		0	V
Maximum Operating Frequency	fop2(MAX)	FPLL = GND	$16 \times$ fBPCLK			Hz
		FPLL $=$ REF	$12 \times$ fBPCLK			
		FPLL $=1 \mathrm{~N}$	$8 \times$ fBPCLK			

Active-Matrix Liquid Crystal Display (AMLCD) Supply

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N}=\mathrm{V}_{I N P}=3.3 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{IN}, \mathrm{V}_{\mathrm{BPVDD}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{BPVSS}}=-1 \mathrm{~V}, \mathrm{PGND} 1=\mathrm{PGND} 2=\mathrm{FPLL}=\mathrm{GND}, \mathrm{f}_{\mathrm{BPCLK}}=30 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
FB2+ Regulation Voltage	$\mathrm{V}_{\text {FB2+ }}$			1.225	1.25	1.275	V
FB2- Regulation Voltage	$\mathrm{V}_{\text {FB2- }}$			-15	0	15	mV
FB2+, FB2- Input Bias Current	$\begin{aligned} & \text { IFB2+, } \\ & \text { IFB2- } \end{aligned}$	$\mathrm{V}_{\mathrm{FB} 2+}=1.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB} 2-}=-0.1 \mathrm{~V}$		-100		100	nA
LX2N, LX2P On-Resistance	Ron(LX2N), Ron(LX2P)				0.9	1.7	Ω
LX2N, LX2P Leakage Current	lLKG(LX2N), ILKG(LX2P)	V LX2N $=28 \mathrm{~V}, \mathrm{~V}$ LX2P $=-10 \mathrm{~V}$			0.05	10	$\mu \mathrm{A}$
FB2- Power-Ready Trip Level	$\mathrm{V}_{\text {TH(RD) }}$	Falling edge, 40 mV hysteresis		85	120	165	mV
FB2+ Power-Ready Trip Level	$\mathrm{V}_{\text {TH(RDY }}$	Rising edge, 40mV hysteresis		1.091	1.125	1.159	V
BACKPLANE DRIVER							
BPV ${ }_{\text {DD }}$ Supply Range	VBPVDD			2.5		5.5	V
BPVSs Supply Range	VBPVSS			-3		0	V
BPVDD to BPVSS Voltage Range	VVDD to VSS			2.5		5.5	V
BPVDD Shutdown Current	ISHDN(BP)	$\overline{\text { SHDN }}=$ GND			0.1	10	$\mu \mathrm{A}$
BPDRV On-Resistance	RON(BPDRV)	Source and sink			0.35	0.7	Ω
BPDRV Leakage Current	ILKG(BPDRV)	$\overline{\text { SHDN }}=$ GND		-10		10	$\mu \mathrm{A}$
BPV ${ }_{\text {DD }}$ Supply Current	$\operatorname{lin}(\mathrm{BPVDD})$	VBPCLK $=0$ or 3.3 V			80	200	$\mu \mathrm{A}$
BPCLK Input Low Voltage	VIL(BPCLK)			$0.3 \times \mathrm{V} \mathrm{IN}$			V
BPCLK Input High Voltage	$\mathrm{V}_{\mathrm{IH} \text { (BPCLK) }}$			$0.7 \times \mathrm{V}$ IN			V
BPCLK Input Current	$\operatorname{lin}($ BPCLK $)$				0.01	1	$\mu \mathrm{A}$
PLL							
VCO Center Frequency (Note 1)	fc	PLLC $=$ REF, BPCLK = GND		1.63	1.92	2.20	MHz
BPCLK Input Frequency Range	$f_{\text {fPCLK }}$	CpLLC $=22 \mathrm{nF}$ RPLLC $=100 \mathrm{k} \Omega$ CSHUNT $=2.2 \mathrm{nF}$	FPLL = GND	20		36	kHz
			FPLL = REF	27		48	
			FPLL $=1 \mathrm{~N}$	40		72	
Reference Voltage	$\mathrm{V}_{\text {REF }}$	$-2 \mu \mathrm{~A}<\mathrm{I}_{\text {REF }}<50 \mu \mathrm{~A}$		1.225	1.250	1.275	V
Undervoltage Lockout	VREF(UVLO)			0.90	1.05	1.20	V
LOGIC SIGNALS							
$\overline{\text { SHDN }}$ Input Low Voltage	VIL(SHDN)	(0.10 \times VIN) typical hysteresis		$0.3 \times \mathrm{V}$ IN			V
$\overline{\text { SHDN }}$ Input High Voltage	$\mathrm{V}_{\mathrm{IH}(\overline{S H D N})}$			$0.7 \times \mathrm{V}$ IN			V
$\overline{\text { SHDN }}$ Input Current	$\mathrm{IIN}(\overline{\text { SHDN }})$				0.01	1	$\mu \mathrm{A}$
FPLL Input Current	$\operatorname{liN(FPLL)}$	FPLL = GND or IN			0.01	1	$\mu \mathrm{A}$
RDY Output Low Voltage	VOL(RDY)	ISINK $=2 \mathrm{~mA}$			0.05	0.4	V
RDY Output High Leakage	lLKG(RDYOH)	$\mathrm{V}_{\mathrm{RDY}}=5.5 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$

Note 1: DC-DC 1 operates at one-half of the V_{CO} frequency ($\mathrm{f}_{\mathrm{C}} / 2$).

Active-Matrix Liquid Crystal Display (AMLCD) Supply

Typical Operating Characteristics (fBPCLK $=22.5 \mathrm{kHz}, \mathrm{FPLL}=\mathrm{GND}, \mathrm{L} 1=3.3 \mu \mathrm{H}, \mathrm{L} 2=4.7 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

DC-DC 2 EFFICIENCY vs. LOAD CURRENT

VouT2+ RIPPLE

$5 \mu \mathrm{~s} / \mathrm{div}$
$V_{\text {OUT2 }}=-5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V}$, LIOAD $=5 \mathrm{~mA}$,
COUT2 $=0.47 \mu \mathrm{~F}, \mathrm{AC}$ COUPLED

Active-Matrix Liquid Crystal Display (AMLCD) Supply

Typical Operating Characteristics (continued)

(fBPCLK $=22.5 \mathrm{kHz}, \mathrm{FPLL}=\mathrm{GND}, \mathrm{L} 1=3.3 \mu \mathrm{H}, \mathrm{L} 2=4.7 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Vout2+ LINE-TRANSIENT RESPONSE

$V_{\text {Out } 2+}=15 \mathrm{~V}$, LLOAD $=5 \mathrm{~mA}$, Cout $2+=0.22 \mu \mathrm{~F}$
A: VOuT2 $+200 \mathrm{mV} / \mathrm{div}$, AC COUPLED
B: $V_{\mathbb{N},}, 3 V$ to $4 V$

VOUT2 $=-5 \mathrm{~V}$, LIOAD $=5 \mathrm{~mA}$, COUT2 $=0.47 \mu \mathrm{~F}$
A: Vout2-, $200 \mathrm{mV} / \mathrm{div}$, AC COUPLED
B: $V_{\mathbb{I},}, 3 V$ to $4 V$

A: Vout1, $50 \mathrm{mV} / \mathrm{div}$, AC COUPLED
B: lout $1,25 \mathrm{~mA}$ TO $225 \mathrm{~mA}, 100 \mathrm{~mA} /$ div

Active-Matrix Liquid Crystal Display (AMLCD) Supply

Typical Operating Characteristics (continued)
(fBPCLK $=22.5 \mathrm{kHz}, \mathrm{FPLL}=\mathrm{GND}, \mathrm{L} 1=3.3 \mu \mathrm{H}, \mathrm{L} 2=4.7 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Active-Matrix Liquid Crystal Display (AMLCD) Supply

Pin Description

PIN	NAME	FUNCTION
1	$\overline{\text { SHDN }}$	Shutdown Input. Drive low to enter shutdown mode. Drive high or connect to IN for normal operation. All IC sections are off when SHDN is low.
2	RDY	Ready Indicator Output, DC-DC 1 and DC-DC 2. Open-drain N-channel output becomes high impedance when all three outputs are within 10\% of regulation.
3	FB1	Regulator Feedback Input, DC-DC 1. Regulates to 1.25V nominal.
4	REF	Internal Reference Output. Connect a 0.22 μ F capacitor from this pin to GND. REF can source up to 50uA.
5	GND	Analog Ground. Connect to PGND1 and PGND2. See Supply Connections and Layout section.
6	IN	Supply Input to the IC. The input voltage range is +2.8V to +5.5V.
7	FB2-	Regulator Feedback Input for Negative Output, DC-DC 2. Regulates to 0V nominal.
8	FB2+	Regulator Feedback Input for Positive Output, DC-DC 2. Regulates to 1.25V nominal.
9	PLLC	PLL Compensation. Connect compensation network as in Figure 4.
10	BPVSS	Backplane Driver Negative Supply. Typically connected to PGND1. May be connected to a separate supply.
11	BPDRV	Backplane Driver Output
12	BPVDD	Backplane Driver Positive Supply. Typically connected to VouT1 of DC-DC 1. May be connected to a separate supply.
13	BPCLK	Backplane Driver Clock Input. See Table 1 for input frequency ranges.
14	INP	DC-DC 2 Power Input. Source of Internal LX2P P-channel MOSFET.
15	LX2P	Drain of Internal LX2P P-Channel MOSFET
16	LX2N	Drain of Internal LX2N N-Channel MOSFET
17	PGND2	Power Ground 2. Connect to PGND1. Source of internal LX2N N-channel MOSFET.
18	PGND1	Power Ground 1. Connect to PGND2. Source of internal LX1 N-channel MOSFET.
19	LX1	Drain of Internal LX1 N-Channel MOSFET
20	FPLL	Sets the BPCLK input frequency range for PLL synchronization. Connect to GND, REF, or IN. See Table 1.

Active-Matrix Liquid Crystal Display (AMLCD) Supply

Figure 1. Functional Diagram

Detailed Description

The MAX1664 combines power supply and backplane drive circuitry for active matrix thin-film-transistor (TFT) liquid crystal displays (LCD) into one IC. Included are a pulse-width-modulation (PWM) boost converter, a dualoutput (positive and negative) converter using one inductor, an LCD backplane driver, and a phaselocked loop (PLL) to synchronize all three outputs to the backplane clock.
A high switching frequency (1 MHz nominal) and phaselocked operation allow the use of small, minimumheight external components while maintaining low output noise. Output voltages are adjustable to +5.5 V (DC-DC 1) and to +28 V and -10 V (DC-DC 2). The negative output voltage can be set to as low as -20 V with additional components.
The frequency ratio between the DC-DC 1 converter and the backplane clock can be set to 16,24 , or 32. This flexibility allows high DC-DC converter frequencies
to be used with LCD backplane clock rates ranging from 20 kHz to 72 kHz .

Start-Up
At start-up, both converters remain disabled until VREF reaches 90% of its nominal value. VOUT1 is activated first. Once VOUT1 is regulated, VOUT2- is enabled. Vout2+ is held at 0 until Vout2- is within 90% of its regulation target. All three outputs power up in a similar order when power is applied or when coming out of shutdown. See the Out-of-Shutdown Sequence photo in the Typical Operating Characteristics section.

DC-DC 1 Boost Converter

DC-DC 1 uses a current-mode boost PWM architecture to produce a positive regulated voltage, adjustable from 3 V to 5.5 V (but not less than V_{IN}). This converter uses an internal N -channel MOSFET with a maximum on-resistance of 0.5Ω. Cycle-by-cycle peak current limiting protects the switch under fault conditions. Upon start-up, DC-DC 1 is the first converter to be enabled.

Active-Matrix Liquid Crystal Display (AMLCD) Supply

Table 1. Switching Frequency Options

FPLL	fBPCLK $\mathbf{(k H z)}$	fDC-DC 1 $\mathbf{(k H z)}$	fDC-DC 2 MAX $\mathbf{(k H z)}$	fDC-DC 1: fBPCLK	fDC-DC 2 MAX: fBPCLK	\mathbf{N}^{*}
IN	40 to 72	640 to 1152	320 to 576	$16: 1$	$8: 1$	32
REF	27 to 48	640 to 1152	320 to 576	$24: 1$	$12: 1$	48
GND	20 to 36	640 to 1152	320 to 576	$32: 1$	$16: 1$	64

*See Figure 2

Fixed-frequency, current-mode operation ensures that the switching noise exists only at the operating frequency and its harmonics. The switching frequency is phase locked to the backplane clock input. Table 1 illustrates the possible switching-frequency options.

DC-DC 2 Dual Outputs

DC-DC 2 uses a synchronized, fixed on-time PFM architecture to provide the positive and negative output voltages that allow the driver ICs to turn the TFT gates on and off. When pulses occur, they are synchronized to DC-DC 1, thereby minimizing converter interactions and subharmonic interference.
The DC-DC 2 inductor current is always discontinuous, enabling the dual outputs to be regulated independently. This allows one output to be at 100% load while the other is at no load.

DC-DC 2 Operation In normal operation, DC-DC 2 alternates between charging the negative and positive outputs (Figure 1). During the first half-cycle of the PFM clock period, both the N-channel and P-channel MOSFETs turn on, applying the input supply across inductor L2. This causes the inductor current to ramp up at a rate proportional to VINP. During the second half-cycle, the P-channel MOSFET turns off and the inductor transfers its energy into the negative output filter capacitor.
Assuming that the energy transfer is completed during this second half-cycle and the inductor current ramps down to zero, the process is repeated for the positive output during the next clock cycle. During the first half of the second clock cycle, both the N -channel and P channel MOSFETs turn on again. The current in the inductor again rises at the same rate. During the second half of the second clock cycle, the N -channel MOSFET is turned off and this time the inductor energy transfers to the positive output filter capacitor.
During conditions of heavy loads, DC-DC 2 will continue to operate in this manner, alternately delivering pulses to the negative and positive outputs. For lighter
loads, the controller may skip one or more cycles of either polarity, thereby keeping the outputs in regulation. See Table 1 for the relationship between the maximum DC-DC 2 pulse frequency and the backplane clock frequency.

Backplane Driver
The MAX1664 provides a low-impedance backplane driver, as shown in Figure 1, that level-translates the BPCLK signal from a logic level to BPVDD/BPVss levels. The backplane driver consists of an N-channel/P-channel complementary pair of high-current MOSFETs. These devices drive BPDRV to either BPVDD or BPVSS when BPCLK goes either high or low, respectively. The switches have a maximum on-resistance of 0.7Ω with a typical propagation delay of 50 ns . Power for the backplane driver can be taken from the output of DC-DC 1, VOUT1, as shown in the Typical Operating Circuit.

Phase-Locked Loop

The MAX1664 contains an on-board PLL to synchronize the PWM and PFM converter clocks to the backplane clock (Figure 2). This will minimize noise and interference. The PLL is a frequency-multiplying type, generating a nominal 1 MHz clock signal for DC-DC 1 and a nominal 500 kHz clock for DC-DC 2. Three input frequency ranges, spanning 20 kHz to 72 kHz , permit synchronization over a broad range of backplane clock input frequencies while maintaining optimal conversion frequencies (Table 1).

Abstract

\section*{Outputs with Low Step-Up or Inversion Ratios}

For DC-DC 2 output voltage setpoints, which require minimum step-up or inversion ratios (for example, VOUT $+<6 \mathrm{~V}$ or VOUT- $>-3 \mathrm{~V}$, when VINP $=5 \mathrm{~V}$), more than one half-cycle may be required to transfer the inductor energy to the appropriate output filter capacitor. In such cases, subsequent conversion cycles are delayed, as necessary, by one or more PFM clock cycles to preserve discontinuous mode operation.

Active-Matrix Liquid Crystal Display (AMLCD) Supply

Figure 2. Internal PLL Operation within the MAX1664
The heart of the PLL is the VCO, which is trimmed to a nominal frequency of 1.92 MHz for a control voltage (at the PLLC pin) of 1.250 V . This high-frequency internal clock is divided digitally with a division ratio selected by pin-strapping FPLL to GND, REF, or IN. This divided clock is compared to the backplane clock by an internal phase comparator (rising-edge triggered). The phase detector in turn adjusts the VCO control voltage until the two frequencies (and phases) match. This feedback loop is compensated at the PLLC pin.
In some applications, the backplane clock may be halted for several cycles between screen scans or may not be immediately applied on power-up. The PLL contains a proprietary phase-detector architecture that minimizes frequency error during clock dropouts of more than two cycles and re-establishes lock immediately when the clock resumes.

Ready Indic ator (RDY)
The RDY pin has an open-drain output and indicates when all three outputs are in regulation. The open-drain output becomes high impedance when all three converter outputs are within 10% of their regulation setpoints.

Design Procedure and Component Selection

Output Voltage Selection

The three output voltages as well as the DC bias for the backplane clock are adjustable on the MAX1664, as shown in Figure 3. Set each output using two standard 1% resistors to form a voltage divider between the selected output and its respective feedback pin. Use the following equations to calculate the resistances.

Figure 3. Output Voltage Selection

DC-DC 1 Output

For VOUT1 $=5 \mathrm{~V}$, typical values are $\mathrm{R} 2=100 \mathrm{k} \Omega$ and R 1 $=301 \mathrm{k} \Omega$. To set VouT1 to another voltage, choose R2 = $100 \mathrm{k} \Omega$ and $\mathrm{CFB1}^{2}=50 \mathrm{pF}$, and calculate R1 as follows:

$$
\mathrm{R} 1=\mathrm{R} 2\left(\frac{\mathrm{~V}_{\mathrm{OUT} 1}}{\mathrm{~V}_{\mathrm{FB} 1}}-1\right)
$$

DC-DC 2 Positive Output
For VOUT2+ $=15 \mathrm{~V}$, typical values are $\mathrm{R} 8=49.9 \mathrm{k} \Omega$ and R7 $=549 \mathrm{k} \Omega$. To set VOUT2+ to another voltage, choose R8 $=49.9 \mathrm{k} \Omega$ and calculate R7 as follows:

$$
\mathrm{R} 7=\mathrm{R} 8\left(\frac{\mathrm{~V}_{\mathrm{OUT} 2+}}{\mathrm{V}_{\mathrm{FB} 2+}}-1\right)
$$

DC-DC 2 Negative Output For the negative output voltage, the FB2- threshold voltage is 0 . For VouT2- $=-5 \mathrm{~V}$, typical values are $\mathrm{R} 5=$ $49.9 \mathrm{k} \Omega$ and $R 6=200 \mathrm{k} \Omega$. To set VoUT2+ to another voltage, choose R5 $=49.9 \mathrm{k} \Omega$ and calculate R 6 as follows:

$$
R 6=R 5\left|\frac{V_{\text {OUT2- }}}{V_{\text {REF }}}\right|
$$

DC Bias for the Backplane Driver
For VDCBIAS $=$ VBPVDD/2, typical values are $\mathrm{R} 3=\mathrm{R} 4=$ $100 \mathrm{k} \Omega$. To set the DC bias to a different value, choose R4 and calculate R3 as follows:

$$
R 3=R 4\left(\frac{V_{B P V D D}-V_{B P V S S}}{V_{D C B I A S}-V_{B P V S S}}-1\right)
$$

Active-Matrix Liquid Crystal Display (AMLCD) Supply

Figure 4. Detailed Typical Operating Circuit

Inductor Selection

The optimum inductor value for L 1 is $3.3 \mu \mathrm{H}$, as shown in Figure 4. Inductors with less than $300 \mathrm{~m} \Omega$ DC series resistance are recommended to achieve the highest efficiency. Using a larger value for L1 (e.g., $4.7 \mu \mathrm{H}$) increases the output current capability of DC-DC 1 (by reducing the peak ripple current) at the expense of size and the additional output filter capacitance needed for loop stability.
For DC-DC 2, at large input voltages (i.e., 5V) and low switching frequencies (i.e., $\leq 400 \mathrm{kHz}$), the value of L 2 should be increased (e.g., $6.8 \mu \mathrm{H}$ or $10 \mu \mathrm{H}$) to limit the peak current. In some cases it may be necessary to reduce the value of $L 2$ to increase the output current capability of DC-DC 2 (Table 2). The relationship between input voltage, output voltage, switching frequency, inductor value, and maximum load current for DC-DC 2 is complex and nonlinear. This relationship is summarized in Table 2. The L2 equation is as follows:

$$
\mathrm{L} 2>\frac{\mathrm{V}_{\mathrm{INP}}-\left[\mathrm{R}_{\mathrm{ON}(\mathrm{LX2P})}+\mathrm{R}_{\mathrm{ON}(\mathrm{LX} 2 \mathrm{~N})}+\mathrm{R}_{\mathrm{L} 2}\right] \frac{\left(\mathrm{I}_{\mathrm{PEAK}}\right)}{2}}{\mathrm{I}_{\text {PEAK }} \times 2\left(\mathrm{f}_{\mathrm{DC}-\mathrm{DC} 1}\right)}
$$

where:
Internal MOSFET on-resistance:
RON(LX2P) $=$ RON(LX2N) $=0.9 \Omega$ typical
External inductor DC resistance:
RL2 $=0.3 \Omega$ typical
Inductor peak current:
IPEAK $=700 \mathrm{~mA}$ (750 mA absolute maximum)
Due to the MAX1664's high switching frequency, inductors with a high-frequency core material such as ferrite are recommended. Powdered iron compounds are not recommended due to their higher core losses. Typical small-size, low-profile inductors include the ILS-3825 (Dale Electronics-Vishay) and the CLQ61B (Sumida). These inductors are primarily used for DC-DC converters with low height requirements. See Table 3 for more information on manufacturers who provide low-profile inductors.

Active Matrix Liquid Crystal Display (AMLCD) Supply

Table 2. Typical DC-DC 2 Operation

Vout2+ (V)	Vout2- (V)	$\begin{aligned} & V_{\text {IN }} \\ & (V) \end{aligned}$	fBPCLK (kHz)	$\begin{gathered} \mathrm{L2} \\ (\mu \mathrm{H}) \end{gathered}$	$\underset{(\mathrm{mA})}{\text { IOUT2+(MAX) }}$	$\underset{(\mathrm{mA})}{\text { IOUT2-(MAX) }}$	$\underset{(\mathrm{kHz})}{\mathrm{fDC}-\mathrm{MC})}$	INDUCTOR PEAK CURRENT* (mA)
+15	-5	3.0	22.5	4.7	6	15	360	375
+15	-5	3.0	22.5	2.7	8	23	360	585
+15	-5	3.3	22.5	4.7	7	19	360	425
+15	-5	3.3	22.5	2.7	10	27	360	643
+15	-5	4.5	22.5	4.7	15	35	360	550
+15	-5	5.0	22.5	4.7	20	43	360	600
+20	-10	3.0	22.5	4.7	3	6	360	385
+20	-10	3.0	22.5	2.7	5	10	360	585
+20	-10	3.0	25.0	4.7	2	5	400	340
+20	-10	3.0	25.0	2.7	4	8	400	530
+20	-10	3.0	30.0	4.7	3	4	480	300
+20	-10	3.0	30.0	2.7	3	6	480	451
+20	-10	3.3	22.5	4.7	4	8	360	425
+20	-10	3.3	22.5	2.7	6	12	360	643
+20	-10	3.3	25.0	4.7	4	7	400	370
+20	-10	3.3	25.0	2.7	6	10	400	583
+20	-10	3.3	30.0	4.7	4	5	480	340
+20	-10	3.3	30.0	4.7	4	8	480	496
+20	-10	4.5	22.5	4.7	9	16	360	580
+20	-10	4.5	25.0	4.7	8	14	400	500
+20	-10	4.5	30.0	4.7	8	12	480	450
+20	-10	4.5	30.0	2.7	10	17	480	679
+20	-10	5.0	22.5	4.7	11	20	360	640
+20	-10	5.0	25.0	4.7	10	18	400	550
+20	-10	5.0	30.0	4.7	10	15	480	500

*Note: Absolute maximum peak current at LX2P and LX2N is 750 mA .

Diode Selection

The MAX1664's high switching frequency requires fast diodes. Schottky diodes such as the MBR0520L and MBR0540L (Motorola) are recommended because they have the necessary power ratings in a low-height SOD123 package. Also recommended is the MBRM5817 which is 1.1 mm high. Use a Schottky diode with a forward current rating greater than:

$$
\mathrm{I}_{\mathrm{F}}>\frac{\mathrm{I}_{\mathrm{OUT}} \mathrm{~V}_{\mathrm{OUT}}}{0.9 \mathrm{~V}_{\mathrm{IN}}}
$$

For the positive output of DC-DC 2, use a Schottky diode with a voltage rating that exceeds VOUT2+. For the negative output, use a Schottky diode with a rating
that exceeds VIN + |VOUT2-|. See Table 3 for more information on Schottky diode manufacturers.

Filter Capacitor Selection
An output filter capacitor's ESR and size can greatly influence a switching converter's output ripple, as shown in the following equation.

$$
\begin{aligned}
& V_{\text {RIPPLE(PK-PK })} \cong I_{\text {PEAK }} \times R_{\text {ESR }}+I_{\text {OUT }}\left(\frac{t_{O N}}{C_{O U T}}\right) \\
& D C-D C 1 t_{O N}=\frac{1}{f_{D C-D C ~}}\left(\frac{V_{O U T 1}+V_{F}-V_{I N}}{V_{O U T 1}+V_{F}}\right) \\
& D C-D C 2 t_{O N}=\frac{1}{2 f_{D C-D C ~} 1}
\end{aligned}
$$

Active-Matrix Liquid Crystal Display (AMLCD) Supply

Ceramic capacitors are recommended because they have low ESR and the lowest profile. Typical ceramic capacitors are the C3225X5R series from TDK and JMK325 series from Taiyo Yuden. See Table 3 for more information on the manufacturers who provide surfacemount ceramic capacitors.

PLL Compensation In most applications, the recommended compensation component values shown in Figure 4 will give optimal system performance. If no backplane clock is used, connect PLLC to REF.

Table 3. Component Manufacturers

MANUFACTURER	PHONE	FAX
INDUCTORS		
Dale Inductors	$(605) 668-4131$	$(605) 665-1627$
Sumida USA	$(847) 956-0666$	$(847) 956-0702$
DIODES		
Central Semiconductor	$(516) 435-1110$	$(516) 435-1824$
International Rectifier	$(310) 322-3331$	$(310) 322-3232$
Motorola	$(602) 303-5454$	$(602) 994-6430$
CERAMIC CAPACITORS		
Marcon/United Chemicon	$(847) 696-2000$	$(847) 696-9278$
TDK	$(847) 390-4373$	$(847) 390-4428$
Taiyo Yuden	$(408) 573-4150$	$(408) 573-4159$
Vishay/Vitramon	$(203) 268-6261$	$(203) 452-5670$

Applications Information

Increasing Vout Above 5.5V

For Vout1 output voltages above 5.5 V , connect the supplemental charge pump circuit shown in Figure 5. The connection shown supplies a 10 V 150 mA output, but other voltages from $2 \times$ VIN to 10 V can be set by selecting the appropriate values for R1 and R2 (see $D C-D C 1$ Output section). C2-C4 are shown as parallel combinations of $3.3 \mu \mathrm{~F}$ ceramic capacitors so that a 1.1 mm height restriction can be met. If height is not restricted, then larger values can be used instead of parallel capacitor combinations.

3.3V to -20V Charge-Pump Configuration

For applications requiring negative voltages down to -20 V , an inverting charge-pump block can be added to the Vout2- output (Figure 6). Typical values for C_{F} and

D1, D2, D3- MBRM5817
C1, C2, C3-ALL CERAMIC TYPES

Figure 5. Charge Pump Configuration to Increase Vout1 Above 5.5V.

Cout are $0.47 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ and $4.7 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$, respectively. As a general rule, Cout should be ten times greater than CF. This circuit operates as follows:

1) During the first PFM cycle, the voltage at V 1 is charged by inductor L2 to some fraction of its final steady-state voltage, in the normal manner described in the Detailed Description.
2) During the first half of subsequent PFM cycles, pin LX2P is pulled to $\mathrm{V}_{\text {INP, }}$ and capacitor CF_{F} is charged to ($\left.\mathrm{V}_{\mathrm{INP}}+\left|\mathrm{V}_{1}\right|-\mathrm{V}_{\mathrm{D}}\right)$, where V_{D} is a diode forward voltage.
3) During subsequent second half-cycles when LX2P flies negatively below V1, capacitor CF transfers some of its energy to output capacitor Cout, which then is charged to a negative voltage of approximately ($\mathrm{V}_{\mathrm{INP}}+2 \times\left|\mathrm{V}_{1}\right|-2 \mathrm{~V} \mathrm{~V}_{\mathrm{D}}$).
4) This process continues until VOUT reaches the desired voltage, as determined by the ratio of the FB2- feedback resistors.
5) During steady-state (in-regulation) operation, the magnitude of the voltage at LX2P is equal to ($\left|V_{\text {OUT }}\right| / 2-\mathrm{V}_{\text {INP }} / 2+\mathrm{V}_{\mathrm{D}}$), which must be limited to less than 10V.

Active-Matrix Liquid Crystal Display (AMLCD) Supply

Supply Connections and Layout

The MAX1664 performs both precision analog and high-power switching functions. Carefully plan supply connections, bypassing, and layout. Bypass IN and INP with a 33Ω isolation resistor (R9, Figure 4) between them. In addition, sufficient low-ESR bypassing must be provided on the INP bus to ensure stability of DC-DC 1.
A solid ground plane under the power components, with a separate ground plane under the analog nodes, is highly recommended. These ground planes should be connected at a single, quiet point. Analog reference and feedback signals should be referred to and routed over the analog ground plane. Figure 7 shows a typical layout using separate ground planes.

Figure 6. VOUT2- Voltage-Doubler Charge Pump

Figure 7b. MAX1664 PC Board Layout-Component Side

Figure 7c. MAX1664 PC Board Layout—Solder Side

Active-Matrix Liquid Crystal Display (AMLCD) Supply

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

WHAT'S NEW	PRODUCTS	SOLUTIONS	DESIGN	APPNOTES	SUPPORT	BUY	COMPANY	MEMBERS

MAX1664

Part Number Table

Notes:

1. See the MAX1664 QuickView Data Sheet for further information on this product family or download the MAX1664 full data sheet (PDF, 264kB).
2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.
3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
4. Part number suffixes: T or T\&R = tape and reel; + = RoHS/lead-free; \# = RoHS/lead-exempt. More: See full data sheet or Part Naming Conventions.
5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
MAX1664CUP		TSSOP;20 pin;4.4mm Dwg:21-0066I (PDF) Use pkgcode/variation: U20-2*	OC to +70C	RoHS/Lead-Free: No Materials Analysis	
MAX1664CUP-T		TSSOP;20 pin;4.4mm Dwg: 21-0066I (PDF) Use pkgcode/variation: U20-2*	OC to +70C	RoHS/Lead-Free: No Materials Analysis	
MAX1664EUP		TSSOP;20 pin;4.4mm Dwg:21-0066I (PDF) Use pkgcode/variation: U20-2*	-40C to +85C	RoHS/Lead-Free: No Materials Analysis	
MAX1664EUP-T		TSSOP;20 pin;4.4mm Dwg:21-0066I (PDF) Use pkgcode/variation: U20-2*	-40C to +85C	RoHS/Lead-Free: No Materials Analysis	

Didn't Find What You Need?

