

High-Power NPN Silicon Transistors

... designed for use in industrial-military power amplifier and switching circuit applications.

• High Collector-Emitter Sustaining Voltage -

$$V_{CEO(sus)} = 100 \text{ Vdc (Min)} - 2N6338$$

= 150 Vdc (Min) - 2N6341

• High DC Current Gain -

$$h_{FE} = 30 - 120 @ I_C = 10 Adc$$

= 12 (Min) @ $I_C = 25 Adc$

• Low Collector-Emitter Saturation Voltage -

$$V_{CE(sat)} = 1.0 \text{ Vdc (Max)} @ I_C = 10 \text{ Adc}$$

• Fast Switching Times @ I_C = 10 Adc

 $t_r = 0.3 \text{ ms (Max)}$

 $t_s = 1.0 \text{ ms (Max)}$

 $t_f = 0.25 \text{ ms (Max)}$

• These devices are available in Pb-free package(s). Specifications herein apply to both standard and Pb-free devices. Please see our website at www.onsemi.com for specific Pb-free orderable part numbers, or contact your local ON Semiconductor sales office or representative.

*MAXIMUM RATINGS

Rating	Symbol	2N6338	2N6341	Unit
Collector-Base Voltage	V_{CB}	120	180	Vdc
Collector-Emitter Voltage	V _{CEO}	100	150	Vdc
Emitter-Base Voltage	V _{EB}	6.0		Vdc
Collector Current Continuous Peak	I _C	25 50		Adc
Base Current	Ι _Β	10		Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	200 1.14		Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	θ_{JC}	0.875	°C/W

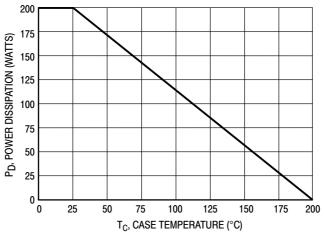
^{*}Indicates JEDEC Registered Data.

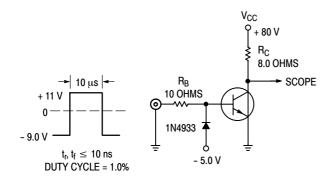
2N6338 2N6341*

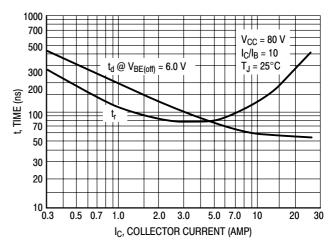
*ON Semiconductor Preferred Device

25 AMPERE
POWER TRANSISTORS
NPN SILICON
100, 120, 140, 150 VOLTS
200 WATTS

CASE 1-07 TO-204AA (TO-3)




Figure 1. Power Derating


*ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (1) (I _C = 50 mAdc, I _B = 0)	2N6338 2N6341	V _{CEO(sus)}	100 150	_ _	Vdc
Collector Cutoff Current $(V_{CE} = 50 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 75 \text{ Vdc}, I_B = 0)$	2N6338 2N6341	I _{CEO}	_ _	50 50	μAdc
Collector Cutoff Current $ (V_{CE} = \text{Rated V}_{CEO}, V_{EB(off)} = 1.5 \text{ Vdc}) $ $ (V_{CE} = \text{Rated V}_{CEO}, V_{EB(off)} = 1.5 \text{ Vdc}, T_{C} = 150^{\circ}\text{C}) $		I _{CEX}	_ _	10 1.0	μAdc mAdc
Collector Cutoff Current (V _{CB} = Rated V _{CB} , I _E = 0)		I _{CBO}	-	10	μAdc
Emitter Cutoff Current (V _{BE} = 6.0 Vdc, I _C = 0)		I _{EBO}	-	100	μAdc
ON CHARACTERISTICS (1)					
DC Current Gain) $ \begin{aligned} &(I_C=0.5 \text{ Adc, } V_{CE}=2.0 \text{ Vdc)} \\ &(I_C=10 \text{ Adc, } V_{CE}=2.0 \text{ Vdc)} \\ &(I_C=25 \text{ Adc, } V_{CE}=2.0 \text{ Vdc)} \end{aligned} $		h _{FE}	50 30 12	- 120 -	-
Collector Emitter Saturation Voltage ($I_C = 10$ Adc, $I_B = 1.0$ Adc) ($I_C = 25$ Adc, $I_B = 2.5$ Adc)		V _{CE(sat)}	_ _	1.0 1.8	Vdc
Base–Emitter Saturation Voltage ($I_C = 10$ Adc, $I_B = 1.0$ Adc) ($I_C = 25$ Adc, $I_B = 2.5$ Adc)		V _{BE(sat)}	_ _	1.8 2.5	Vdc
Base-Emitter On Voltage (I _C = 10 Adc, V _{CE} = 2.0 Vdc)		V _{BE(on)}	-	1.8	Vdc
DYNAMIC CHARACTERISTICS				•	
Current-Gain - Bandwidth Product (2) (I _C = 1.0 Adc, V _{CE} = 10 Vdc, f _{test} = 10	MHz)	f _T	40	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)		C _{ob}	-	300	pF
SWITCHING CHARACTERISTICS					
Rise Time ($V_{CC} \approx 80 \text{ Vdc}$, $I_C = 10 \text{Adc}$, $I_{B1} = 1.0 \text{ Adc}$, $V_{BE(off)} = 6.0 \text{ Vdc}$)		t _r	-	0.3	μS
Storage Time ($V_{CC} \approx 80 \text{ Vdc}$, $I_C = 10 \text{ Adc}$, $I_{B1} = I_{B2} = 1.0 \text{ Adc}$)		t _s	-	1.0	μS
Fall Time (V _{CC} ≈ 80 Vdc, I _C = 10 Adc, I _{B1} = I _{B2} = 1.0 Adc)		t _f	-	0.25	μS

^{*}Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.


⁽²⁾ $f_T = |h_{fe}| \cdot f_{test}$.

NOTE: For information on Figures 3 and 6, R_B and R_C were varied to obtain desired test conditions.

Figure 3. Turn-On Time

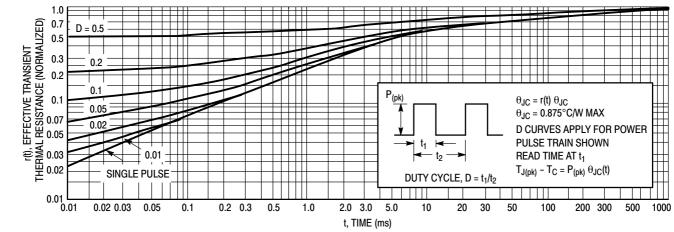


Figure 4. Thermal Response

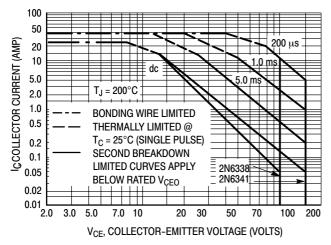
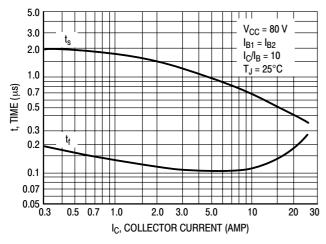



Figure 5. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 200$ °C; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 200$ °C. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

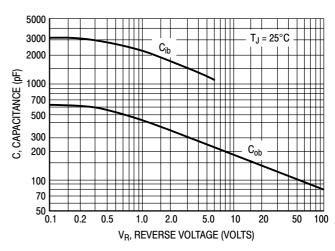
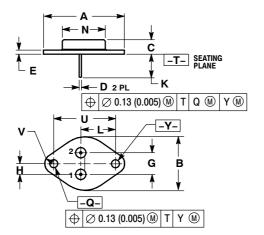



Figure 7. Capacitance

PACKAGE DIMENSIONS

CASE 1-07 TO-204AA (TO-3)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		39.37 REF		
В		1.050		26.67	
С	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
Е	0.055	0.070	1.40	1.77	
G	0.430 BSC		10.92 BSC		
Н	0.215 BSC		5.46 BSC		
K	0.440	0.480	11.18	12.19	
L	0.665	BSC	16.89 BSC		
N		0.830		21.08	
œ	0.151	0.165	3.84	4.19	
J	1.187 BSC		30.15 BSC		
٧	0.131	0.188	3.33	4.77	

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) solicit esserves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.