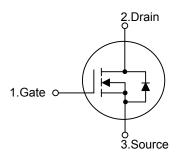


UNISONIC TECHNOLOGIES CO., LTD

9N70 **Preliminary Power MOSFET**

9A, 700V N-CHANNEL POWER MOSFET

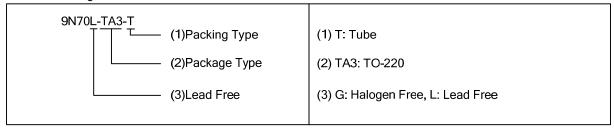
DESCRIPTION


The UTC 9N70 is a high voltage and high current power MOSFET designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and a high rugged avalanche characteristics. This power MOSFET is usually used at DC-DC, AC-DC converters for power applications.

TO-220

FEATURES

- * $R_{DS(ON)}$ =1.3 Ω @ V_{GS} =10V
- * Low gate charge (typical 44 nC)
- * Low Crss (typical 10 pF)
- * High switching Speed
- * 100% avalanche tested
- * Improved dv/dt capability


SYMBOL

ORDERING INFORMATION

Ordering Number		Dealtage	Pin Assignment			Daskins	
Lead Free	Halogen Free	Package	1	2	3	Packing	
9N70L-TA3-T	9N70G-TA3-T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	700	V
Gate-Source Voltage		V_{GSS}	±30	V
Drain Current	Continuous T _C =25°C	I _D	9	Α
	V _{GS} @ 10V T _C =100°C		5	Α
	Pulsed (Note 2)	I _{DM}	40	Α
Avalanche Current		I _{AR}	9	Α
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	305	mJ
	Repetitive	E _{AR}	9	mJ
Power Dissipation (T _C =25°C)		P_{D}	156	W
Linear Derating Factor			1.25	W/°C
Junction Temperature		T_J	+150	°C
Storage Temperature		T_{STG}	-55~+150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Pulse width limited by safe operating area.
- 3. Starting T_J =25°C, V_{DD} =50V, L=6.8mH, R_G =25 Ω , I_{AS} =9A.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambien	θ_{JA}	62	°C/W	
Junction to Case	θ_{JC}	0.8	°C/W	

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =1mA, V _{GS} =0V	700			V
Breakdown Voltage Temperature Coefficient		$\triangle BV_{DSS}/\triangle T_{J}$	Reference to 25°C, I _D =1mA		0.6		V/°C
Drain-Source Leakage Current		I_{DSS}	V _{DS} =700V, V _{GS} =0V, T _J =25°C			10	μΑ
Gate- Source Leakage Current	Forward	,	V _{GS} =+30V			+100	nA
	Reverse	I_{GSS}	V _{GS} =-30V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2		4	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =4.5A		1.1	1.25	Ω
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			2660		pF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		170		pF
Reverse Transfer Capacitance		C_{RSS}			10		pF
SWITCHING PARAMETERS							
Total Gate Charge (Note 2)		Q_{G}			44		nC
Gate to Source Charge		Q_GS	V_{GS} =10V, V_{DS} =560V, I_{D} =9A		11		nC
Gate to Drain Charge		Q_{GD}			12		nC
Turn-ON Delay Time (Note 2)		t _{D(ON)}			19		ns
Rise Time		t_R	V_{DD} =350V, I_{D} =9A, R_{G} =10 Ω ,		21		ns
Turn-OFF Delay Time		t _{D(OFF)}	V_{GS} =10V, R_D =38 Ω		56		ns
Fall-Time		t_{F}			24		ns
SOURCE- DRAIN DIODE RATII	NGS AND CHA	RACTERISTIC	s				
Maximum Body-Diode Continuous Current		I _S	$V_D = V_G = 0V, V_S = 1.5V$			9	Α
Maximum Body-Diode Pulsed Current (Note 1)		I _{SM}				40	Α
Drain-Source Diode Forward Voltage (Note 2)		V_{SD}	I_S =9A, V_{GS} =0V, T_J = 25°C			1.5	V

Notes: 1. Pulse width limited by safe operating area.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

^{2.} Pulse width≤300µs, duty cycle≤2%.