ST1155B

Version: A.05

Issue Date : 2003/03/18

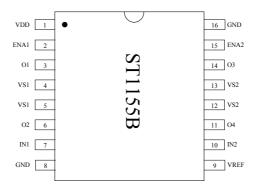
File Name : ST1155B_SSOP16_A05.doc

Total Pages: 7

Low-saturation, Low-voltage Bi-directional Motor Driver

ST1155B

Low-saturation, Low-voltage **Bi-directional Motor Driver**


General Specifications

The device is a two-channel low-saturation bi-directional motor driver IC. The design is optimal for stepper-motor applications, such as cameras, printers, FDDs, or other portable devices.

Features and Benefits

- Low voltage operation ($V_{DD \, min} = V_{S1 \, min} = V_{S2 \, min} = 1.5 V$)
- Low saturation voltage (Upper transistor + low transistor residual voltage; 0.3V typ. at 400mA; 0.6V typ. at 750mA)
- Parallel connection (two-channel driver: Upper transistor + low transistor residual; 0.4V typ. at 800mA)
- Separate control logic power supply and motor driver power supply
- High output sinking and driving capability
- Thin, highly reliable package (SSOP-16)

Pin Assignment

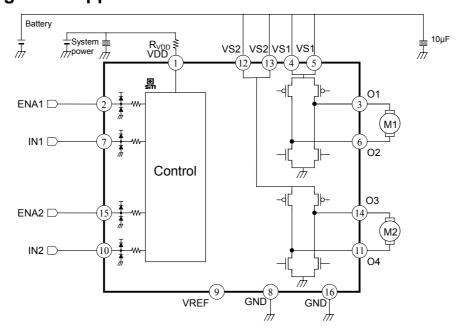
PIN NO.	PIN NAME	DESCRIPTION		
1	VDD	Power supply pin for controller.		
2	ENA1	Input pin that enable/disable drivers O1/O2.		
3	O1	Output sinking / driving pin.		
4	VS1	Power supply pin for output driver O1/ O2.		
5	VS1	Power supply pin for output driver O1/ O2.		
6	O2	Output sinking / driving pin.		
7	IN1	Input pin that determines driving mode		
8	GND	Ground pin		
9	VREF	Reference Voltage output		
10	IN2	Input pin that determines driving mode.		
11	O4	Output sinking / driving pin.		
12	VS2	Power supply pin for output driver O3/ O4.		
13	VS2	Power supply pin for output driver O3/ O4.		
14	O3	Output sinking / driving pin.		
15	ENA2	Input pin that enable/disable drivers O3/O4.		
16	GND	Ground pin		

Absolute Maximum Ratings (Unless otherwise noted, T_A = 25 $^{\circ}$ C)

Characteristic	Symbol	Rating	Unit
Supply Voltage	V_{DD}	5.5	٧
Supply Voltage	V _S	3.5	V
Input Voltage	V _{IN}	V _{DD} +0.4	٧
Io Peak Current (in parallel connection)	I _{OPeak}	2	Α
Power Dissipation	P_{D}	800	mW
Operating Temperature Range	T _{OPR}	-40 ~ 125	°C
Storage Temperature Range	T _{STG}	-65 ~ 150	°C

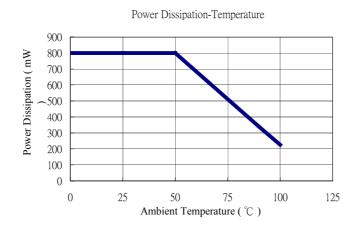
Electrical Characteristic

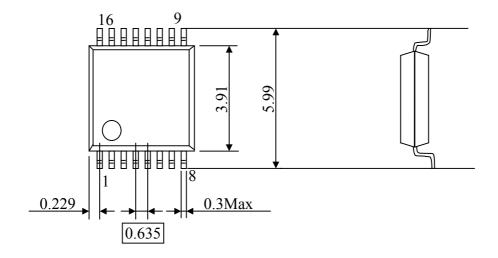
(Unless otherwise noted, T_A = 25 $^{\circ}$ C & V_{DD} = V_S = 3 $^{\circ}$ V)

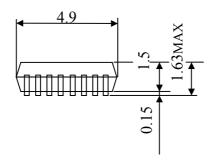

Characteristic	Sym.	Candition	Limit			l loit
Characteristic		Condition	Min.	Тур.	Max.	Unit
Supply Voltage	V_{DD}		1.5	3	5.5	V
Supply voltage	Vs		1.5	3	5.5	V
Supply Current	I_{DD0}	$V_{ENA1, 2}$ =0V, $V_{IN1,2}$ =0V or 3V		0.1	10	μ A
(I _{DD} + I _S)	I _{DD1}	V _{ENA1, 2} =3V, V _{IN1,2} =0V or 3V		0.05	0.5	mA
ENA1 / ENA2 / IN1 / IN	2 Input	Terminal (T _J = 25°C)				
Input Voltage "H"	V _{IH}	-	0.8*V _{DD}	-	V _{DD} +0.4	V
Input Voltage "L"	V_{IL}	-	-0.4	-	0.2*V _{DD}	٧
Input Current "H"	I _{IH}	$V_{IN} = V_{DD}$	-	-	±5	μ A
Input Current "L"	I _{IL}	V _{IN} = 0 V	-	-	±5	μ A
O1 / O2 / O3 / O4 Outp	ut Termi	nal (T _J = 25°C)				
	V _{OUT1}	I _{OUT} = 200 mA	-	0.2	0.3	V
	V_{OUT2}	I _{OUT} = 400 mA	-	0.3	0.6	V
Output Voltage	V_{OUT3}	I _{OUT} = 750 mA	-	0.6	0.95	V
(upper + lower)	V_{OUT4}	I _{OUT} = 400 mA (parallel connection)	-	0.2	0.35	V
	V _{OUT5}	I _{OUT} = 800 mA (parallel connection)	-	0.4	0.7	V
Output Sustaining Voltage	V _{O(SUS)}	I _{OUT} = 400 mA	-	-	Vs	V

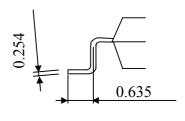
Truth Table

IN1 / IN2	ENA1 / ENA2	O1 / O3	02 / 04	Mode
L	Н	Н	L	Forward
Н	Н	L	Н	Reverse
Н	L	OFF	OFF	Standby
L	L	OFF	OFF	Standby


Block Diagram & Application Circuit


Application Notes


- \square To increase system stability, it is suggestion to connect a resistor R_{VDD} about 470Ω between battery power and driver's VDD pin as shown on application circuit.
- The power dissipated by the IC varies widely with the supply voltage, the output current, and loading. It is important to ensure the application does not exceed the allowable power dissipation of the IC package. The recommended motor driver power dissipation versus temperature is depicted as follows:



Package Specifications(SSOP-16)

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Silicon Touch Technology, Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Silicon Touch Technology, Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.