

Overview

The LC723461W and LC723462W are ultralow-voltage electronic tuning microcontrollers that include a PLL that operates up to 250 MHz and a $1 / 4$ duty $1 / 2$ bias LCD driver on chip. This IC includes an on-chip DC-DC converter that can easily create the power supply voltages needed for electronic tuning and contribute to reducing end product costs. This IC is optimal for portable audio equipment that must operate from a single battery.

Function

- Program memory (ROM):
-4096×16 bits (8 K bytes) : LC723461
-6144×16 bits (12 K bytes): LC723462
- Data memory (RAM):
-256×4 bits: LC723461
-512×4 bits: LC723462
- Cycle time:
$40 \mu \mathrm{~s}$ (all 1-word instructions) at 75 kHz crystal oscillation
- Stack: 8 levels
- LCD driver: 48 to 80 segments (1/4 duty, $1 / 2$ bias drive)
- Interrupts: Two external interrupts

Timer interrupts ($1,5,10$, and 50 ms)

- A/D converter:

Four input channels (8-bit chopper A/D converter. The reference voltage can be switched using the ADCHG instruction.)

- Input ports: 8 ports (of which three can be switched for use as A/D converter input and one can be switched for use as IF counter input.)
- Output ports: 6 ports (of which 1 can be switched for use as the beep tone output and 2 are open-drain ports)
- I/O ports: 19 ports (of which 8 can be switched for use as LCD ports and as mask options, of which 3 can be
switched for use as serial I/O ports) Can be switched for CMOS output/open-drain outputs.
- Serial I/O: One system (LC723462)
- PLL: Reference frequencies:

$1,3,3.125,5,6.25,12.5$, and 25 kHz

- Input frequencies: FM band: 10 to 250 MHz

AM band (high): 2 to 20 MHz
AM band (low): 0.5 to 10 MHz

- Input sensitivity:

FM band: $35 \mathrm{mVrms}(10 \mathrm{mVrms}$ at 130 MHz$)$, 50 mVrms (130 to 250 MHz)
AM band (high, low): 35 mVrms

- IF count: HCTR input pin: 0.4 to 12 MHz (HCTR can be switched to function as a general-purpose input port.)

Continued on next page.

Package Dimensions

unit: mm
3190A-SQFP64

[^0]Continued from preceding page.

- External reset input: During CPU and PLL operations, instruction execution is started from location 0 .
- Built-in power-on reset circuit:

The CPU starts execution from location 0 when power is first applied.

- Halt mode: The controller-operating clock is stopped.
- Backup mode: The crystal oscillator is stopped.
- Static power-on function:

Backup state is cleared with the PF port

- Beep tone: 1.5 and 3.1 kHz
- Built-in DC-DC converter:

For LCD and A/D converter use (3 V)

Can also be used for TU + B creation by using a secondary coil. (The DC-DC converter voltage step-up operation can be stopped with the DCDCC instruction.)

- Built-in remaining battery life verification function: Converts the V_{DD} pin level through AD converter.
- Memory retention voltage: 0.5 V or higher
- Dedicated memory power supply: The RAM retention time has been increased by the provision of a dedicated memory power supply.
- Package: SQFP-64 (0.5-mm pitch)
- V_{DD} power supply: 0.9 to 1.8 V

Pin Assignment

*: The $V_{D D}$ pin can also function as ADI2 A/D converter input.

Specifications
Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\mathrm{DD} 1}$ max	$V_{D D}$	-0.3 to +3.0	V
	$\mathrm{V}_{\mathrm{DD}} 2$ max	VDDRAM	-0.3 to +4.0	V
	$\mathrm{V}_{\mathrm{DD}} 3$ max	VDC3	-0.3 to +4.0	V
Input voltage	$\mathrm{V}_{\text {IN }} 1$	FMIN, AMIN	-0.3 to $\mathrm{V}_{\mathrm{DD}} 1+0.3$	V
	V_{IN} 2	PA, PC, PD, PF, PK, PG, PH, BRES	-0.3 to $\mathrm{V}_{\mathrm{DD} 1}+0.3$	V
Output voltage	$\mathrm{V}_{\text {OUT }}{ }^{1}$	PE	-0.3 to +7	V
	$\mathrm{V}_{\text {OUT }}{ }^{2}$	PB, PC, PD, PG, PH	-0.3 to $\mathrm{V}_{\mathrm{DD}} 1+0.3$	V
	Vout3	VDC1, EO	-0.3 to $\mathrm{V}_{\mathrm{DD} 4}+0.3$	V
	$\mathrm{V}_{\text {OUT }} 4$	COM1 to COM4, S1 to S20	-0.3 to $\mathrm{V}_{\mathrm{DD}} 4+0.3$	V
Output current	lout ${ }^{1}$	PC, PD, PG, PH, EO	0 to 3	mA
	lout2	PB	0 to 1	mA
	lout ${ }^{\text {a }}$	PE	0 to 2	mA
	lout 4	S1 to S20	300	$\mu \mathrm{A}$
	lout5	COM1 to COM4	3	mA
Allowable power dissipation	Pdmax	$\mathrm{Ta}=-10$ to $+60^{\circ} \mathrm{C}$	100	mW
Operating temperature	Topr		-10 to +60	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-45 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathrm{Ta}=-10$ to $+60^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0.9$ to 1.8 V

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$\mathrm{V}_{\mathrm{DD}} 1$	Voltage applied to the $\mathrm{V}_{\text {DD }}$ pin	0.9	1.3	1.8	V
	$\mathrm{V}_{\mathrm{DD}}{ }^{2}$	Voltage applied to the $\mathrm{V}_{\text {DD }}$ RAM pin	2.7	3.0	3.3	
	$\mathrm{V}_{\mathrm{DD}} 3$	Voltage applied to the VDC3 pin (See note.)		2.7		
	$\mathrm{V}_{\mathrm{DD}} 4$	Memory retention voltage	0.5			
VREF input voltage	$\mathrm{V}_{\text {REF }} 1$	The voltage input to the VREF pin (See note.)		0.66		V
Input high-level voltage	$\mathrm{V}_{\mathrm{H}} 1$	Ports PC, PD, PG, PH, and PK	$0.7 \mathrm{~V}_{\mathrm{DD} 1}$		$\mathrm{V}_{\mathrm{DD}} 1$	V
	$\mathrm{V}_{\mathrm{H} 2}{ }^{\text {2 }}$	Port PA	$0.8 \mathrm{~V}_{\mathrm{DD} 1}$		$\mathrm{V}_{\text {DD } 1}$	V
	$\mathrm{V}_{\mathrm{H}} 3$	Port PF	$0.8 \mathrm{~V}_{\mathrm{DD} 1}$		$\mathrm{V}_{\mathrm{DD} 1}$	V
	$\mathrm{V}_{\mathrm{HH} 4}$	Port BRES	$0.6 \mathrm{~V}_{\mathrm{DD} 1}$		$\mathrm{V}_{\mathrm{DD} 1}$	V
Input low-level voltage	$\mathrm{V}_{\text {IL }} 1$	Ports PC, PD, PG, PH, and PK	0		$0.3 \mathrm{~V}_{\mathrm{DD} 1}$	V
	$\mathrm{V}_{\mathrm{IL}}{ }^{2}$	Port PA	0		$0.2 \mathrm{~V}_{\mathrm{DD} 1}$	V
	$\mathrm{V}_{\text {IL }} 3$	Port PF	0		$0.2 \mathrm{~V}_{\mathrm{DD} 1}$	V
	$\mathrm{V}_{\text {IL }} 4$	Port BRES	0		$0.2 \mathrm{~V}_{\mathrm{DD} 1}$	V
Input amplitude	$\mathrm{V}_{\text {IN }} 1$	XIN	0.5		0.6	Vrms
	$\mathrm{V}_{\mathrm{IN}} 2$	FMIN, AMIN: $\mathrm{V}_{\mathrm{DD}} 1=0.9$ to 1.8 V	0.035		0.35	Vrms
	$\mathrm{V}_{\text {IN }} 3$	FMIN: $\mathrm{V}_{\mathrm{DD} 1} 1=0.9$ to 1.8 V	0.05		0.35	Vrms
	$\mathrm{V}_{\text {IN }} 4$	ADIO, ADI1, V ${ }_{\text {DD }}$, ADI3	0.035		0.35	Vrms
Input voltage range	$\mathrm{V}_{\text {IN }} 4$	ADIO, ADI1, ADI3, , VDD^{1}	0		$\mathrm{V}_{\mathrm{DD}} 3$	V
Input frequency	$\mathrm{F}_{\text {IN }} 1$	$\mathrm{XIN}: \mathrm{Cl} \leq 35 \mathrm{k} \Omega$	70	75	80	kHz
	$\mathrm{F}_{\mathrm{IN}} 2$	FMIN: $\mathrm{V}_{\text {IN }} 2, \mathrm{~V}_{\mathrm{DD} 1}=0.9$ to 1.8 V	10		130	MHz
	$\mathrm{F}_{\mathrm{IN}} 3$	FMIN: $\mathrm{V}_{\text {IN }} 3, \mathrm{~V}_{\text {DD }} 1=0.9$ to 1.8 V	130		250	MHz
	$\mathrm{F}_{1 \times 4}$	AMIN(L): $\mathrm{V}_{\text {IN }} 2, \mathrm{~V}_{\text {DD }} 1=0.9$ to 1.8 V	2		20	MHz
	$\mathrm{F}_{\text {IN } 5}$	$\operatorname{AMIN}(\mathrm{H}): \mathrm{V}^{\text {IN }} 2, \mathrm{~V}_{\text {DD }} 1=0.9$ to 1.8 V	0.5		10	MHz
	$\mathrm{F}_{\text {IN } 6}$	HCTR: $\mathrm{V}_{\text {IN }} 4, \mathrm{~V}_{\text {DD }} 1=0.9$ to 1.8 V	0.4		12	MHz

Note:

Electrical Characteristics within allowable operating conditions

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Input high-level current	$\mathrm{l}_{1 \mathrm{H}^{1}}$	XIN : $\mathrm{V}_{\mathrm{DD}} 1=1.3 \mathrm{~V}$			3	$\mu \mathrm{A}$
	$1_{1 H^{2}}$	FMIN, AMIN, HCTR: $\mathrm{V}_{\text {DD }} 1=1.3 \mathrm{~V}$	3	8	20	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{3}}$	Port PF: $\mathrm{V}_{\mathrm{DD} 1} 1=1.3 \mathrm{~V}$			4	$\mu \mathrm{A}$
	${ }_{1 / 1} 4$	PA (without pull-down resistors), the PC, PD, PG, and PH ports, and BRES, PK: $V_{D D} 1=1.3 \mathrm{~V}$			3	$\mu \mathrm{A}$
Input low-level current	ILL 1	XIN: $\mathrm{V}_{\text {D } 1}=\mathrm{V}_{\text {SS }}$			-3	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {L }}{ }^{\text {2 }}$	FMIN, AMIN, HCTR: $\mathrm{V}_{\text {DD }}{ }^{1}=\mathrm{V}_{\text {SS }}$	-3	-8	-20	$\mu \mathrm{A}$
	1LL 3	Port PF: $\mathrm{V}_{\mathrm{DD}} 1=\mathrm{V}_{\text {SS }}$			-4	$\mu \mathrm{A}$
	$1_{1 L} 4$	PA (without pull-down resistors), the PC, PD, PG, and PH ports, and BRES, PK: $V_{D D} 1=V_{S S}$			-3	$\mu \mathrm{A}$
Input floating voltage	$\mathrm{V}_{\text {IF }}$	PA (with pull-down resistors)			$0.05 \mathrm{~V}_{\mathrm{DD}} 1$	V
Pull-down resistor values	$\mathrm{R}_{\text {PD }} 1$	PA (with pull-down resistors), $\mathrm{V}_{\mathrm{DD}} 1=1.3 \mathrm{~V}$	75	100	200	$\mathrm{k} \Omega$
	R_{PD} 2	TEST1 (with pull-down resistor), $V_{D D} 1=1.3 \mathrm{~V}$		10		k Ω
Hysteresis	V_{H}	BRES	$0.1 \mathrm{~V}_{\mathrm{DD} 1}$	$0.2 \mathrm{~V}_{\mathrm{DD} 1}$		V
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	$\mathrm{PB}: \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	$\begin{array}{r} \mathrm{V}_{\mathrm{DD} 1}- \\ 0.7 \mathrm{~V}_{\mathrm{DD}} \\ \hline \end{array}$		$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 1} 1- \\ & 0.3 \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	V
	$\mathrm{V}_{\mathrm{OH}}{ }^{2}$	$\mathrm{PC}, \mathrm{PD}, \mathrm{PG}$ and $\mathrm{PH}: \mathrm{I}_{0}=1 \mathrm{~mA}$	$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{DD} 1}- \\ 0.3 \mathrm{~V}_{\mathrm{DD} 1} \\ \hline \end{array}$			V
	$\mathrm{V}_{\mathrm{OH}}{ }^{3}$	EO: $\mathrm{I}_{\mathrm{O}}=500 \mu \mathrm{~A}$	$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{DD} 3}- \\ 0.3 \mathrm{~V}_{\mathrm{DD}} 3 \\ \hline \end{array}$			V
	$\mathrm{V}_{\mathrm{OH}} 4$	XOUT: $\mathrm{I}_{\mathrm{O}}=200 \mu \mathrm{~A}$	$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{DD} 1}- \\ 0.3 \mathrm{~V}_{\mathrm{DD} 1} \\ \hline \end{array}$			V
	$\mathrm{V}_{\mathrm{OH}} 5$	S1 to S20: $\mathrm{I}_{0}=20 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}{ }^{\text {-1 }}$			V
	$\mathrm{V}_{\mathrm{OH}} 6$	COM1, COM2, COM3, COM4: $\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}} 3$-1			V
	$\mathrm{V}_{\mathrm{OH}} 7$	VDC1: $\mathrm{I}_{0}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}{ }^{\text {-1 }}$			V
Output low-level voltage	$\mathrm{V}_{\text {OL }} 1$	PB: $\mathrm{IO}=-50 \mu \mathrm{~A}$	$0.3 \mathrm{~V}_{\mathrm{DD} 1}$		$0.7 \mathrm{~V}_{\mathrm{DD} 1}$	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	PC, PD, PG, PH: $\mathrm{I}_{\mathrm{O}}=-1 \mathrm{~mA}$			$0.3 \mathrm{~V}_{\mathrm{DD} 1}$	V
	$\mathrm{V}_{\text {OL }} 3$	EO: $\mathrm{I}_{0}=-500 \mu \mathrm{~A}$			$0.3 \mathrm{~V}_{\mathrm{DD}} 3$	V
	$\mathrm{V}_{\text {OL }} 4$	XOUT: $\mathrm{I}_{0}=-200 \mu \mathrm{~A}$			$0.3 \mathrm{~V}_{\mathrm{DD} 1}$	V
	$\mathrm{V}_{\text {OL }} 5$	S1 to S20: $\mathrm{I}_{0}=-20 \mu \mathrm{~A}$			$\mathrm{V}_{\mathrm{DD}} \mathrm{V}^{3-2}$	V
	$\mathrm{V}_{\text {OL }} 6$	COM1, COM2, COM3, COM4: $\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$			$V_{\text {DD }} 3-2$	V
	$\mathrm{V}_{\text {OL }} 7$	PE: $\mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}$			$0.6 \mathrm{~V}_{\mathrm{DD} 1}$	V
	$\mathrm{V}_{\text {OL }} 8$	VDC1: $\mathrm{I}_{0}=1 \mathrm{~mA}$			1	V
Output off leakage current	loff1	Ports PB, PC, PD, PG and EO	-3		+3	$\mu \mathrm{A}$
	$\mathrm{l}_{\text {OFF2 }}$	Port PE	-100		+100	nA
A/D converter error		When the reference voltage is 2.7 V : ADIO, ADI1, VDD1, ADI3. $\mathrm{Ta}=25^{\circ} \mathrm{C}$	-1		+1	LSB
		When the reference voltage is 2.0 V : ADIO, ADI1, VDD1, ADI3. $\mathrm{Ta}=25^{\circ} \mathrm{C}$ Note: Linearity is maintained in the converted data.	-1		+1	LSB
Current drain	$\mathrm{I}_{\mathrm{DD} 1}$	$\mathrm{V}_{\text {DD } 1}=1.3 \mathrm{~V}: \mathrm{F}_{\text {IN }} 2130 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$		2		mA
	IDD^{3}	$\mathrm{V}_{\text {DD } 1}=1.3 \mathrm{~V}$: In HALT mode, $\mathrm{Ta}=25^{\circ} \mathrm{C} * 1$		0.1		mA
	$\mathrm{I}_{\mathrm{DD} 4}$	$\mathrm{V}_{\mathrm{DD}} 1=1.8 \mathrm{~V}$, with the oscillator stopped, $\mathrm{Ta}=25^{\circ} \mathrm{C} * 2$		1		$\mu \mathrm{A}$
VDC3 current	$\mathrm{I}_{\mathrm{DC} 3} 1$	Vdd3 $=2.7 \mathrm{~V}$: Halt mode, $\mathrm{Ta}=25^{\circ} \mathrm{C}$		100		$\mu \mathrm{A}$

[^1]*1. Halt and PLL STOP mode current test circuit

With all ports other than those specified above left open. With output mode selected for PC and PD.
With segments S13 to S20 selected.
Enter halt mode by software command.
The state where CPU operation is stopped with the crystal oscillator unstopped.
*2. Backup mode current test circuit

With all ports other than those specified above left open.
With output mode selected for PC and PD.
With segments S13 to S20 selected.
Enter backup mode by software command.
The state where the crystal oscillator is stopped.

Block Diagram

Pin Functions

| Pin No. | Pin | | Function |
| :--- | :--- | :--- | :--- | :--- | :--- |

Continued on next page.

Continued from preceding page.

Pin No.	Pin	I/O	Function	I/O circuit
22 21 20	PFO/ADIO PF1/ADI1 PF2/ADI3	1	General-purpose input and A/D converter input shared function ports. The IOS instruction is used to switch between the general-purpose input and A/D converter port functions. The general-purpose input and A/D converter port functions can be switched in a units, with 0 specifying general-purpose input, and 1 specifying the A/D converter input function. To select the A/D converter function, set up the A/D converter pin with an IOS instruction with Pwn set to 1. The A/D converter is started with the UCC instruction $(b 3=1, b 2=1)$. The ADCE flag is set when the conversion completes. The INR instruction is used to read in the data. *: If an input instruction is executed for one of these pins which is set up for analog input, the read in data will be at the low level since CMOS input is disabled. In backup mode these pins go to the input disabled high-impedance state. These ports are set to their general-purpose input port function after a reset. The A/D converter is a 8 -bit successive approximation type converter, and features a conversion time of 0.64 ms . Note that the full-scale A/D converter voltage (FFH) is VDC3/2.0 V.	CMOS input/analog input
31 32 33 34 35 36 37 38	$\begin{gathered} \text { PG3/S20 } \\ \text { PG2/S19 } \\ \text { PG1/S18 } \\ \text { PG0/S17 } \\ \text { PH3/S16 } \\ \text { PH2/S15 } \\ \text { PH1/S14 } \\ \text { PH0/S13 } \\ \text { *2 } \end{gathered}$	0	LCD driver segment output and general-purpose I/O shared function ports. The IOS instruction is used for switching between the segment output and generalpurpose I/O functions and between input and output for the general-purpose I/O port function. - When used as segment output ports The segment output port is selected with the IOS instruction (Pwn = 8). b0 to b3 = S17 to 20/PG0 to 3 (0: Segment output, 1: PG0 to 3) The segment output port is selected with the IOS instruction ($\mathrm{Pwn}=9$). b0 to b3 = S13 to 16/PH0 to 3 (0: Segment output, 1: PH0 to 3) - When used as general-purpose I/O ports The IOS instruction is used to select input or output. Note that the mode can be set in a bit units. $\begin{array}{ll} \mathrm{b} 0=\mathrm{PG} 0 & \mathrm{~b} 0=\mathrm{PH} 0 \\ \mathrm{~b} 1=\mathrm{PG} 1 & \mathrm{~b} 1=\mathrm{PH} 1 \\ \mathrm{~b} 2=\mathrm{PG} 2 & \mathrm{~b} 2=\mathrm{PH} 2 \\ \mathrm{~b} 3=\mathrm{PG} 3 & \mathrm{~b} 3=\mathrm{PH} 3 \end{array} \quad\binom{0: \text { Input }}{\text { 1: Output }}$ Note that there is a mask option that allows these pins to be used as n-channel open drain ports. In backup mode, these pins go to the input disabled high-impedance state if set up as general-purpose outputs, and are fixed at the low level if set up as segment outputs. These ports are set up as segment outputs after a reset. Although the general-purpose port/LCD port setting is a mask option, the IOS instruction must be used as described above to set up the port function.	CMOS push-pull
$\begin{gathered} 39 \text { to } \\ 50 \end{gathered}$	S12 to S1	0	LCD driver segment output pins. A $1 / 4$-duty $1 / 2$-bias drive technique is used. The frame frequency is 75 Hz . In backup mode, these outputs are fixed at the low level. After a reset, these outputs are fixed at the low level.	CMOS push-pull
51 52 53 54	COM4 COM3 COM2 COM1	0	LCD driver common output pins. A $1 / 4$-duty $1 / 2$-bias drive technique is used. The frame frequency is 75 Hz . In backup mode, these outputs are fixed at the low level. After a reset, these outputs are fixed at the low level.	

Continued on next page.

Continued from preceding page.

Pin No.	Pin	I/O	Function	I/O circuit
56	$\overline{\mathrm{RES}}$	I	System reset input. In CPU operating mode or halt mode, applications must apply a low level for at least one full machine cycle to reset the system and restart execution with the PC set to location 0 . This pin is connected in parallel with the internal power on reset circuit.	(2)
28	VDDRAMVADJ	1	RAM backup power supply. Connected to the VDC3 voltage through a diode.	
30	VDC1	O	Output for the 3 V step-up circuit clock. Outputs $1 / 2$ the AM local oscillator frequency in AM reception mode, and $1 / 256$ the FM local oscillator or 75 kHz in FM reception mode.	
29	VDC3	I	Voltage stepped up by the DC-DC converter (3 V) May also be used to input an equivalent voltage.	
26	VREF	I	VDC3 reference voltage input. When 0.7 V is input, the VDC3 voltage will be 3 V . The VDC3 sample-to-sample variations can be held to $\pm 3 \%$ by attaching an external metal-film resistor and a zener diode.	
55	COMC	O	LCD driver intermediate potential output. The COM waveform must be stabilized by attaching an external capacitor of about $0.1 \mu \mathrm{~F}$.	
59	FMIN	1	FM VCO (local oscillator) input. This pin is selected with the PLL instruction CW1. The input must be capacitor coupled. Input is disabled in backup mode, in halt mode, after a reset, and in PLL stop mode.	CMOS amplifier input
60	AMIN	1	AM VCO (local oscillator) input. This pin and the bandwidth are selected with the PLL instruction CW1. The input must be capacitor coupled. Input is disabled in backup mode, in halt mode, after a reset, and in PLL stop mode.	CMOS amplifier input
57	HCTR	1	General-purpose input and universal counter input shared-function port. The IOS instruction is used to switch between the general-purpose input port and the universal counter input functions. - When performing frequency measurements, select the HCTR frequency measurement mode and the measurement time with the UCS instruction (b3 $=0, \mathrm{~b} 2$ $=0$), and start the count with the UCC instruction. The CNTEND flag is set when the count completes. Since this circuit operates as an AC amplifier in this mode, the input signal must be capacitor coupled. When used as a general-purpose input, the input data is acquired with the INR instruction. Input is disabled in backup mode, halt mode, during a reset, and in PLL stop mode. Note that after a reset, the universal counter input port function will be selected.	CMOS amplifier input

Continued on next page.

Continued from preceding page.

Pin No.	Pin	I/O	Function	I/O circuit
62	EO	O	Main charge pump output. When the local oscillator frequency divided by N is higher than the reference frequency a high level is output, when lower, a low level is output, and the pin is set to the high-impedance state when the frequencies match. This output goes to the high-impedance state in backup mode, in halt mode, after a reset, and in PLL stop mode.	CMOS push-pul
$\begin{aligned} & 61 \\ & 27 \\ & 58 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	-	Power supply pin. This pin must be connected to ground. This pin must be connected to ground. This pin must be connected to V_{DD}. Supports A / D converter.	-

Note*: When a pin in an I/O switching port is used as an output, applications must first set up the data with an OUT, SPB, or RPB instruction and then set up output mode with an IOS instruction.

LC723461W/723462W Series Instruction Set

Terminology

ADDR : Program memory address
b : Borrow
C : Carry
DH : Data memory address High (Row address) [2 bits]
DL : Data memory address Low (Column address) [4 bits]
I : Immediate data [4 bits]
M : Data memory address
$\mathrm{N} \quad$: Bit position [4 bits]
Rn : Resister number [4 bits]
Pn : Port number [4 bits]
PW : Port control word number [4 bits]
r : General register (One of the addresses from 00H to 0FH of BANK0)
(), [] : Contents of register or memory
M (DH, DL) : Data memory specified by DH, DL

	Mnemonic	Operand		Function	Operations function	Instruction format												
		1st	2nd			f	e	d	c	b	a	98	7	65	4	3	2	0
	AD	r	M	Add M to r	$r \leftarrow(\mathrm{r})+(\mathrm{M})$	0	1	0	0	0	0	DH		DL			r	
	ADS	r	M	Add M to r , then skip if carry	$r \leftarrow(r)+(M)$, skip if carry	0	1	0	0	0	1	DH		DL			r	
	AC	r	M	Add M to r with carry	$r \leftarrow(\mathrm{r})+(\mathrm{M})+\mathrm{C}$	0	1	0	0	1	0	DH		DL			r	
	ACS	r	M	Add M to r with carry, then skip if carry	$r \leftarrow(r)+(M)+C$ skip if carry	0	1	0	0	1	1	DH		DL			r	
	AI	M	1	Add I to M	$\mathrm{M} \leftarrow(\mathrm{M})+1$	0	1	0	1	0	0	DH		DL			1	
	AIS	M	1	Add I to M, then skip if carry	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{l}$, skip if carry	0	1	0	1	0	1	DH		DL			1	
	AIC	M	1	Add I to M with carry	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{I}+\mathrm{C}$	0	1	0	1	1	0	DH		DL			I	
	AICS	M	1	Add I to M with carry, then skip if carry	$\mathrm{M} \leftarrow(\mathrm{M})+\mathrm{I}+\mathrm{C},$ skip if carry	0	1	0	1	1	1	DH		DL			1	
	SU	r	M	Subtract M from r	$r \leftarrow(\mathrm{r})-(\mathrm{M})$	0	1	1	0	0	0	DH		DL			r	
	SUS	r	M	Subtract M from r, then skip if borrow	$r \leftarrow(r)-(M)$ skip if borrow	0	1	1	0	0	1	DH		DL			r	
	SB	r	M	Subtract M from r with borrow	$r \leftarrow(r)-(M)-b$	0	1	1	0	1	0	DH		DL			r	
	SBS	r	M	Subtract M from r with borrow, then skip if borrow	$r \leftarrow(r)-(M)-b,$ skip if borrow	0	1	1	0	1	1	DH		DL			r	
	SI	M	1	Subtract I from M	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{l}$	0	1	1	1	0	0	DH		DL			I	
	SIS	M	1	Subtract I from M, then skip if borrow	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{I},$ skip if borrow	0	1	1	1	0	1	DH		DL			1	
	SIB	M	1	Subtract I from M with borrow	$\mathrm{M} \leftarrow(\mathrm{M})-\mathrm{l}-\mathrm{b}$	0	1	1	1	1	0	DH		DL			I	
	SIBS	M	1	Subtract I from M with borrow, then skip if borrow	$M \leftarrow(M)-I-b,$ skip if borrow	0	1	1	1	1	1	DH		DL			1	
$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	SEQ	r	M	Skip if r equal to M	(r) - (M), skip if zero	0	0	0	1	0	0	DH		DL			r	
	SEQI	M	1	Skip if M equal to I	(M) - I, skip if zero	0	0	0	1	1	0	DH		DL			1	
	SNEI	M	1	Skip if M not equal to I	(M) - I, skip if not zero	0	0	0	0	0	1	DH		DL			1	
	SGE	r	M	Skip if r is greater than or equal to M	$\begin{aligned} & \text { (r) - (M), } \\ & \text { skip if not borrow } \end{aligned}$	0	0	0	1	1	0	DH		DL			r	
	SGEI	M	1	Skip if M is greater than equal to I	(M) - I, skip if not borrow	0	0	0	1	1	1	DH		DL			1	
	SLEI	M	1	Skip if M is less than I	(M) - I, skip if borrow	0	0	0	0	1	1	DH		DL			1	

Continued on next page

Continued from preceding page.

	Mnemonic	Operand		Function	Operations function	Instruction format												
		1st	2nd				e d	c	b	a	98	7	6	5	4	3	21	0
Logic operation instructions	AND	r	M	AND M with r	$\mathrm{r} \leftarrow(\mathrm{r})$ AND (M)		01	0	0	0	DH		DL	L			r	
	ANDI	M	1	AND I with M	$\mathrm{M} \leftarrow(\mathrm{M})$ AND I		01	0	0	1	DH		DL	L			1	
	OR	r	M	OR M with r	$r \leftarrow(\mathrm{r}) \mathrm{OR}(\mathrm{M})$		01	0	1	0	DH			L			r	
	ORI	M	1	OR I with M	$\mathrm{M} \leftarrow(\mathrm{M})$ OR I		01	0	1	1	DH			L			1	
	EXL	r	M	Exclusive OR M with r	$\mathrm{r} \leftarrow(\mathrm{r}) \mathrm{XOR}(\mathrm{M})$		01	1	0	0	DH			L			r	
	EXLI	M	1	Exclusive OR M with M	$\mathrm{M} \leftarrow(\mathrm{M})$ XOR I		01	1	1	0	DH		DL	L			1	
	SHR	r		Shift r right with carry	$\square_{(\mathrm{r})}^{\text {carry }}$ ¢		00	0	0	0	00	1	1		0		r	
	LD	r	M	Load M to r	$r \leftarrow(M)$		10	1	0	0	DH			L			r	
	ST	M	r	Store r to M	$\mathrm{M} \leftarrow(\mathrm{r})$		10	1	0	1	DH		D	L			r	
	MVRD	r	M	Move M to destination M referring to r in the same row	$[\mathrm{DH}, \mathrm{Rn}] \leftarrow(\mathrm{M})$		10	1	1	0	DH			L			r	
	MVRS	M	r	Move source M referring to r to M in the same row	$\mathrm{M} \leftarrow[\mathrm{DH}, \mathrm{Rn}]$		10	1	1	1	DH			L			r	
	MVSR	M1	M2	Move M to M in the same row	[DH, DL1] $\leftarrow[\mathrm{DH}, \mathrm{DL2}]$		11	0	0	0	DH			L1			DL2	
	MVI	M	1	Move I to M	$\mathrm{M} \leftarrow \mathrm{I}$		11	0	0	1	DH		DL	L			I	
	TMT	M	N	Test M bits, then skip if all bits specified are true	if $\mathrm{M}(\mathrm{N})=$ all 1 , then skip		11	1	0	0	DH			L			N	
蓇릉․	TMF	M	N	Test M bits, then skip if all bits specified are false	if $\mathrm{M}(\mathrm{N})=$ all 0 , then skip		11	1	0	1	DH			L			N	
$\stackrel{\text { ® }}{ }$	JMP	ADDR		Jump to the address	$\mathrm{PC} \leftarrow \mathrm{ADDR}$		00	ADDR (13 bits)										
	CAL	ADDR		Call subroutine	$\begin{aligned} & \mathrm{PC} \leftarrow \mathrm{ADDR} \\ & \text { Stack } \leftarrow(\mathrm{PC})+1 \end{aligned}$		01	ADDR (13 bits)										
	RT			Return from subroutine	$\mathrm{PC} \leftarrow$ Stack		00	0	0	0	00	1	0	0	0			
	RTI			Return from interrupt	$\mathrm{PC} \leftarrow$ Stack, BANK \leftarrow Stack, CARRY \leftarrow Stack		00	0	0	0	00	1	0	0				
	SS	SWR	N	Set status register	(Status W-reg) $\mathrm{N} \leftarrow 1$		11	1	1	1	11	0	0	-			N	
	RS	SWR	N	Reset status register	(Status W-reg) $\mathrm{N} \leftarrow 0$		11	1	1	1	11	0	0	1	NR1		N	
	TST	SRR	N	Test status register true	If (Status R-reg) $\mathrm{N}=$ all 1 , then skip		11	1	1	1	11	0	1	SR	RR		N	
	TSF	SRR	N	Test status register false	$\begin{aligned} & \text { If (Status R-reg) } \mathrm{N}=\text { all } 0 \text {, } \\ & \text { then skip } \end{aligned}$		11	1	1	1	11	1	0		RR		N	
	TUL	N		Test Unlock F/F	$\begin{aligned} & \text { If Unlock F/F }(\mathrm{N})=\text { All } 0, \\ & \text { then skip } \end{aligned}$		00	0	0	0	00	1	1	0	1		N	
	PLL	M		Load M to PLL register	PLL reg \leftarrow PLL data		11	1	1	0	DH			L			r	
	SIO	11			SIO reg \leftarrow 11, 12		00	0	0	0	01		11	1			12	
	UCS	1		Set I to UCCW1	UCCW1 $\leftarrow 1$		00	0	0	0	00	0	0	0	1		I	
	UCC	1		Set I to UCCW2	UCCW2 $\leftarrow 1$		00	0	0	0	00	0	0	1	0		1	
	BEEP	1		Beep control	BEEP $\mathrm{reg} \leftarrow \mathrm{I}$		00	0	0	0	00	0	1	1	0		1	
	DZC	1		Dead zone control	DZC reg $\leftarrow 1$		00	0	0	0	00	1	0	1	1		1	
	TMS	I		Set timer register	Timer reg $\leftarrow 1$		00	0	0	0	00	1	1	0	0		1	
	IOS	PWn	N	Set port control word	IOS reg $\mathrm{PWn} \leftarrow \mathrm{N}$	1	11	1	1	1				N			N	
	DAC	1		DA converter control	DAC reg \leftarrow DAC data		00	0	0	0	00	0	0	1	1		1	
	IN	M	Pn	Input port data to M	$\mathrm{M} \leftarrow(\mathrm{Pn})$	1	11	0	1	0	DH			L			Pn	
	OUT	M	Pn	Output contents of M to port	$\mathrm{P} 1 \mathrm{n} \leftarrow \mathrm{M}$	1	11	0	1	1	DH			L			Pn	
	INR	M	Pn	Input register/port data to M	$\mathrm{M} \leftarrow(\mathrm{Pn})$	0	01	1	1	0	DH			L			Pn	
	SPB	P1n	N	Set port1 bits	$(\mathrm{Pn}) \mathrm{N} \leftarrow 1$		00	0	0	0	10			Pn			N	
	RPB	P1n	N	Reset port1 bits	$(\mathrm{Pn}) \mathrm{N} \leftarrow 0$		00	0	0	0	11			n			N	
	TPT	P1n	N	Test port1 bits, then skip if all bits specified are true	If $(\mathrm{Pn}) \mathrm{N}=$ all 1 , then skip		11	1	1	1	00			P			N	
	TPF	P1n	N	Test port1 bits, then skip if all bits specified are false	If (Pn) $\mathrm{N}=$ all 0 , then skip		11	1	1	1	01			P			N	
	BANK	I		Select Bank	BANK $\leftarrow 1$	0	00	0	0	0	00	0	1	1	1		1	

Continued on next page.

Continued from preceding page.

	Mnemonic	Operand		Function	Operations function	Instruction format														
		1st	2nd			f	e	d	c	b	a	9	8	7	6				21	0
	LCDA	M	1	Output segment pattern to LCD digit direct	LCD (DIGIT) $\leftarrow \mathrm{M}$		1	0	0	0	0	DH			DL				DIGIT	
	LCDB	M	1				1	0	0	0	1	DH			DL				DIGIT	
	LCPA	M	1	Output segment pattern to LCD digit through LA	$\mathrm{LCD}(\mathrm{DIGIT}) \leftarrow \mathrm{LA} \leftarrow \mathrm{M}$	1	1	0	0	1	0	DH			DL				DIGIT	
	LCPB	M	1			1	1	0	0	1	1	DH			D				DIGIT	
$\begin{aligned} & \stackrel{\rightharpoonup}{=} \\ & \stackrel{\rightharpoonup}{\sigma} \\ & \stackrel{\oplus}{む} \end{aligned}$	ADCHG	1		AD converter reference voltage change			1	1	1	1	1	1	1	1	1				1	
	DCDCC	1		DC/DC clock control	HALT reg $\leftarrow \mathrm{I}$, then CPU clock stop		0	0	0	0	0	0	0	1	1				I	
	HALT	I		Halt mode control			0	0	00	0	0	00		0		0			1	
	CKSTP			Clock stop	Stop x'tal OSC		0	0	0	0	0		0	0	1					
	NOP			No operation	No operation		0	0	0	0	0		0	0						

Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
■ SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.

■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
\square Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 2003. Specifications and information herein are subject to change without notice.

[^0]: \square Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
 \square SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

[^1]: Note*: The halt mode current drain is due to 20 instructions being executed every 125 ms .

