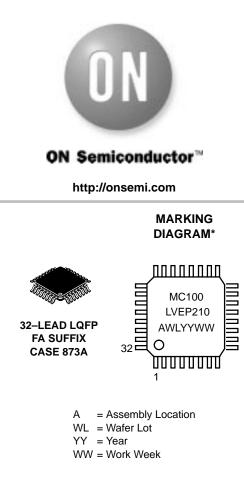
2.5V / 3.3V 1:5 Dual Differential ECL/PECL/HSTL Clock Driver

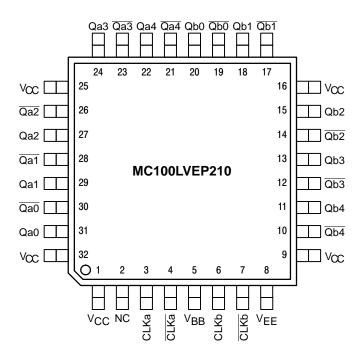
The MC100LVEP210 is a low skew 1–to–5 dual differential driver, designed with clock distribution in mind. The ECL/PECL input signals can be either differential or single–ended if the V_{BB} output is used. The signal is fanned out to 5 identical differential outputs. HSTL inputs can be used when the EP210 is operating in PECL mode.


The LVEP210 specifically guarantees low output-to-output skew. Optimal design, layout, and processing minimize skew within a device and from device to device.

To ensure the tight skew specification is realized, both sides of the differential output need to be terminated identically into 50 Ω even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew.

The MC100LVEP210, as with most other ECL devices, can be operated from a positive V_{CC} supply in PECL mode. This allows the LVEP210 to be used for high performance clock distribution in +3.3 V or +2.5 V systems. Single–ended CLK input operation is limited to a V_{CC} \geq 3.0 V in PECL mode, or V_{EE} \leq -3.0 V in ECL mode.

Designers can take advantage of the LVEP210's performance to distribute low skew clocks across the backplane or the board. In a PECL environment, series or Thevenin line terminations are typically used as they require no additional power supplies. For more information on using PECL, designers should refer to Application Note AN1406/D.

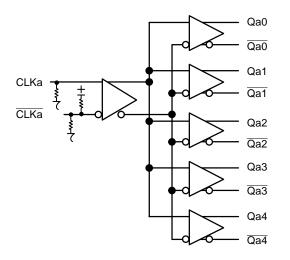

- 85 ps Typical Device-to-Device Skew
- 20 ps Typical Output-to-Output Skew
- VBB Output
- Jitter Less than 1 ps RMS
- 350 ps Typical Propagation Delay
- Maximum Frequency > 3 GHz Typical
- The 100 Series Contains Temperature Compensation
- PECL and HSTL Mode Operating Range: $V_{CC} = 2.375$ V to 3.8 V with $V_{EE} = 0$ V
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -2.375 V to -3.8 V
- Open Input Default State
- LVDS Input Compatible
- Fully Compatible with Motorola MC100EP210

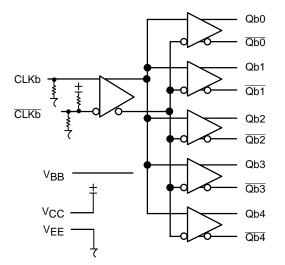
*For additional information, see Application Note AND8002/D

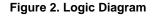
ORDERING INFORMATION

	Device	Package	Shipping			
MC	100LVEP210FA	LQFP	250 Units/Tray			
MC	100LVEP210FAR2	LQFP	2000 Tape & Reel			

PIN DESCRIPTION


PIN	FUNCTION
CLKn*, CLKn**	ECL/PECL/HSTL CLK Inputs
Qn0:4, Qn0:4	ECL/PECL Outputs
V _{BB}	Reference Voltage Output
Vcc	Positive Supply
VEE	Negative Supply


Pins will default LOW when left open.


** Pins will default to V_{CC}/2 when left open.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 32-Lead LQFP Pinout (Top View)

ATTRIBUTES

Characteris	Characteristics			
Internal Input Pulldown Resistor		75 kΩ		
Internal Input Pull-up Resistor		37.5 kΩ		
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 100 V > 2 kV		
Moisture Sensitivity (Note 1)		Level 2		
Flammability Rating Oxygen Index		UL-94 code V-0 A 1/8" 28 to 34		
Transistor Count		461 Devices		
Meets or exceeds JEDEC Spec EIA/	JESD78 IC Latchup Test			

1. For additional information, see Application Note AND8003/D.

MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
Vcc	PECL Mode Power Supply	V _{EE} = 0 V		6	V
VEE	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 —6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
ТА	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θJA	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	32 LQFP 32 LQFP	80 55	°C/W °C/W
θJC	Thermal Resistance (Junction-to-Case)	std bd	32 LQFP	12 to 17	°C/W
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

2. Maximum Ratings are those values beyond which device damage may occur.

PECL DC CHARACTERISTICS V_{CC} = 3.3 V; V_{EE} = 0 V (Note 3)

			–40°C		25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current	60	70	90	60	70	90	60	70	90	mA
VOH	Output HIGH Voltage (Note 4)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 4)	1355	1480	1695	1355	1480	1695	1355	1480	1695	mV
VIH	Input HIGH Voltage (Single–Ended)	2135		2420	2135		2420	2135		2420	mV
VIL	Input LOW Voltage (Single–Ended)	1490		1675	1490		1675	1490		1675	mV
V _{BB}	Output Reference Voltage (Note 5)	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 6)	1.2		3.3	1.2		3.3	1.2		3.3	V
Ίн	Input HIGH Current			150			150			150	μA
۱	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established.

NOTE: 100UVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary + 0.925 V to -0.5 V.
All loading with 50 Ω to V_{CC}-2.0 volts.
Single ended input operation is limited V_{CC} ≥ 3.0 V in PECL mode.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

PECL DC CHARACTERISTICS V_{CC} = 2.5 V; V_{EE} = 0 V (Note 7)

			–40°C 25°C		85°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current	60	70	90	60	70	90	60	70	90	mA
VOH	Output HIGH Voltage (Note 8)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
VOL	Output LOW Voltage (Note 8)	555	680	895	555	680	895	555	680	895	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 9)	1.2		2.5	1.2		2.5	1.2		2.5	V
IIН	Input HIGH Current			150			150			150	μΑ
Ι _{ΙL}	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

7. Input and output parameters vary 1:1 with V_{CC}.. V_{EE} can vary + 0.125 V to -1.3 V.

All loading with 50 Ω to V_{EE}.
 V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

		−40°C			25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current	60	70	90	60	70	90	60	70	90	mA
VOH	Output HIGH Voltage (Note 11)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 11)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
VIH	Input HIGH Voltage (Single–Ended)	-1165		-880	-1165		-880	-1165		-880	mV
VIL	Input LOW Voltage (Single–Ended)	-1810		-1625	-1810		-1625	-1810		-1625	mV
V _{BB}	Output Reference Voltage (Note 12)	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 13)	VEE	+ 1.2	0.0	VEE	+ 1.2	0.0	VEE	+ 1.2	0.0	V
ЧΗ	Input HIGH Current			150			150			150	μA
۱ _{IL}	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150		150	μA

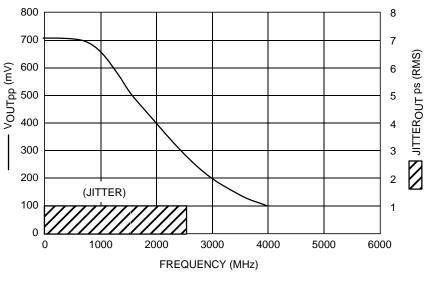
NECL DC CHARACTERISTICS $V_{CC} = 0 \text{ V}, V_{EE} = -2.375 \text{ V} \text{ to } -3.8 \text{ V} \text{ (Note 10)}$

NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

10. Input and output parameters vary 1:1 with V_{CC}.

11. All loading with 50 Ω to V_{CC}-2.0 volts.

12. Single ended input operation is limited V_{EE} \leq -3.0V in NECL mode.


13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

HSTL DC CHARACTERISTICS V_{CC} = 2.375 to 3.8 V, V_{EE} = 0 V

		–40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
VIH	Input HIGH Voltage	1200			1200			1200			mV
VIL	Input LOW Voltage			400			400			400	mV
V ₉₆	Input Crossover Voltage	680		900	680		900	680		900	mV
ICC	Power Supply Current	60	70	90	60	70	90	60	70	90	mA

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit
f _{max} PECL/ HSTL	Maximum Frequency (See Figure 3. F _{max} /JITTER)		> 3			> 3			> 3		GHz
^t PLH ^t PHL	Propagation Delay Propagation Delay @ 2.5 V	220	300	380	270	350	430	300 330	500 410	750 490	ps
tskew	Within–Device Skew (Note 15) Device–to–Device Skew (Note 16)		20 85	25 160		20 85	25 160		20 85	35 160	ps
^t JITTER	Cycle-to-Cycle Jitter (See Figure 3. F _{max} /JITTER)		0.2	< 1		0.2	< 1		0.2	< 1	ps
VPP	Minimum Input Swing	150	800	1200	150	800	1200	150	800	1200	mV
t _r /t _f	Output Rise/Fall Time (20%-80%)	100	170	250	120	190	270	150	280	350	ps

14. Measured with 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC}-2 V. 15. Skew is measured between outputs under identical transitions of similar paths through a device. 16. Device–to–Device skew for identical transitions at identical V_{CC} levels.

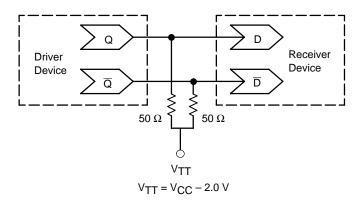
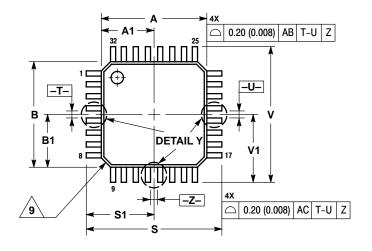
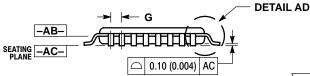
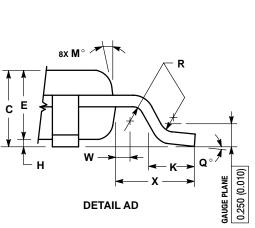
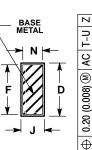


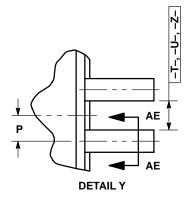
Figure 4. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 - Termination of ECL Logic Devices.)


Resource Reference of Application Notes


- AN1404 - ECLinPS Circuit Performance at Non-Standard VIH Levels AN1405 ECL Clock Distribution Techniques Designing with PECL (ECL at +5.0 V) AN1406 AN1504 Metastability and the ECLinPS Family AN1568 Interfacing Between LVDS and ECL AN1650 - Using Wire–OR Ties in ECLinPS Designs AN1672 - The ECL Translator Guide AND8001 Odd Number Counters Design
- AND8002 Marking and Date Codes
- AND8009 ECLinPS Plus Spice I/O Model Kit
- AND8020 Termination of ECL Logic Devices


For an updated list of Application Notes, please see our website at http://onsemi.com.


PACKAGE DIMENSIONS



SECTION AE-AE

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 2. DATUM PLANE -AB- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD
- 4.
- 5.
- LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. DATUMS -T-, -U-, AND -Z- TO BE DETERMINED AT DATUM PLANE -AB-. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -AC-. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -AB-. DIMENSION D DOES NOT INCLUDE AMBAR 6.
- 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE
- 0.0076 (0.0003). 9. EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION.

	MILLIN	IETERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	7.000	BSC	0.276 BSC				
A1	3.500	BSC	0.138	BSC 8			
В	7.000	BSC	0.276	BSC			
B1	3.500	BSC	0.138	BSC			
C	1.400	1.600	0.055	0.063			
D	0.300	0.450	0.012	0.018			
E	1.350	1.450	0.053	0.057			
F	0.300	0.400	0.012	0.016			
G	0.800	BSC	0.031 BSC				
н	0.050	0.150	0.002	0.006			
J	0.090	0.200	0.004	0.008			
K	0.500	0.700	0.020	0.028			
Μ	12°	REF	12° REF				
N	0.090	0.160	0.004	0.006			
Р	0.400	BSC	0.016	BSC			
Q	1°	5°	1°	5 °			
R	0.150	0.250	0.006	0.010			
S	9.000	BSC	0.354	BSC			
S1	4.500	BSC	0.177	' BSC			
V	9.000	BSC	0.354 BSC				
V1	4.500	BSC	0.177 BSC				
W	0.200	REF	0.008 REF				
X	1.000	REF	0.039	REF			

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

MC100LVEP210