Am2946/Am2947

Octal Three-State Bidirectional Bus Transceivers

DISTINCTIVE CHARACTERISTICS

- 8-bit bidirectional data flow reduces system package count
- 3-state inputs/outputs for interfacing with bus-oriented systems; PNP inputs reduce input loading
- V_{CC} 1.15V_{OH} interfaces with TTL, MOS and CMOS
- 48mA, 300pF bus drive capability; Low power 8mA per bidirectional bit
- Am2946 inverting transceivers; Am2947 noninverting transceivers; Transmit/Receive and Chip Disable simplify control logic
- Bus port stays in hi-impedance state during power up/ down

GENERAL DESCRIPTION

The Am2946 and Am2947 are 8-bit state Schottky transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 24mA drive capability on the A ports and 48mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

One input, Transmit/Receive, determines the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a 3-state condition. Chip Disable is functionally the same as an active LOW chip select.

The output high voltage (V_{OH}) is specified at V_{CC} – 1.15V minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

BLOCK DIAGRAM

BD002530

Am2946 has inverting transceivers.

05406A

Refer to Page 13-1 for Essential Information on Military Devices

CONNECTION DIAGRAM Top View

D-20-1

Note: Pin 1 is marked for orientation

LS001060

METALLIZATION AND PAD LAYOUT

DIE SIZE .069" x .089" Note: The Am2946 has inverting transceivers

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Device type Bidirectional Bus Transceivers

Valid Cor	nbinations
Am2946 Am2947	PC DC, DCB, DM, DMB XC

Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

PIN DESCRIPTION

Pin No.	Name		Description
1 111 1101	Ag-A7	1/0	A port inputs/outputs are receiver output drivers when T/R is LOW and are transmit inputs when T/R is HIGH.
	B ₀ -B ₇	1/0	B port inputs/outputs are transmit output drivers when T/R is HIGH and receiver inputs when T/R is LOW.
	CD	- 1"	Chip Disable forces all output drivers into 3-state when HIGH (same function as active LOW chip select, CS).
9			The state of the direction control determines whether A part or B port drivers are in 3-state. With T/R HIGH A
11	T/Ā	'	port is the input and B port is the output. With T/R LOW A port is the output and B port is the input.

FUNCTION TABLE

Inputs	Conditions			
Chip Disable	L	L	Н	
Transmit/Receive	L	Н	×	
A Port	Out	ln	HI-Z	
B Port	In	Out	HI-Z	

05406A

Refer to Page 13-1 for Essential Information on Military Devices

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to	+ 150°C
Supply Voltage	
Input Voltage	5.5V
Output Voltage	5.5V
Lead Temperature (Solder, 10 seconds)	300°C

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature	0°C to +70°C
Supply Voltage	+ 4.75V to +5.25V
Military (M) Devices	
Temperature	55°C to +125°C
Supply Voltage	+4.5V to +5.5V
Operating ranges define those lin	mits over which the function-

ality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Parameters	Description		Test Conditions			Min	Typ (Note 1)	Max	Units		
A PORT (A ₀ -A ₇))										
/IH	Logical "1" Input Voltage		CD = VIL MAX, T/R = 2.0V			2.0			Volts		
VIL	Logical "0" Input Voltage		CD = V _{IL} MAX T/R = 2.0V			COM'L			0.8	Volts	
V	Logical "1" Output Voltage		CD = VIL MAX,			-0.4mA	V _{CC} - 1.15	V _{CC} - 0.7		Volts	
V OH	Logical 1 Cutput Voltage		T/A = 0.8V		IOH =	- 3.0mA	2.7	3.95		7010	
VoL	Logical ''0'' Output Voltage		CD = V _{IL} MAX, T/R = 0.8V	I _{OL} = 12mA COM'L I _{OL} =	24mA			0.3 0.35	0.4	Volts	
os	Output Short Circuit Current		CD = V _{IL} MAX, T _I V _{CC} = MAX, Note		= 0V,		-10	-38	-75	mA	
н	Logical "1" Input Current		CD = VIL MAX, TA	/R = 2.0V, V _I =	2.7V			0.1	80	μΑ	
·	Input Current at Maximum Inp	ut Voltage	CD = 2.0V, V _{CC} N	MAX, VI = VCC	MAX				1	mA	
	Logical "0" Input Current		CD = VIL MAX, T	/R = 2.0V, V _I =	0.4V			-70	- 200	μΑ	
c	Input Clamp Voltage	-	CD = 2.0V, I _{IN} = -			,	1	-0.7	- 1.5	Volts	
			CD = 2.0V		V _O = 0				-200		
lod	Output/Input 3-State Current		CD = 2.0V		V _O = 4	1.0V	<u> </u>		80	μΑ	
B PORT (B ₀ -B ₇)			CD = VII MAX, T	/B - V:: MAY			2.0			Volts	
iH	Logical "1" Input Voltage		CD = VIL MAX, I	H = VIL MIAX		Toolu	2.0		2.0	VORS	
V _{IL}	Logical "0" Input Voltage		CD ≖ V _{IL} MAX, T/R ≃ V _{IL} MAX			COM'L	 		0.8	Volts	
			I _{OH} = -0.4	-0.4mA	V _{CC} -1.15	V _{CC} -0.8					
1	Logical "1" Output Voltage	CD = VIL MAX,	~ 5.0mA	2.7	3.9		Volts				
О Н		T/R = 2.0V		– 10mA	2.4	3.6		1			
			CD = VIL MAX,		IOL =			0.3	0.4		
V OL	Logical "0" Output Voltage		T/R = 2.0V		loL =	48mA		0.4	0.5	Volts	
os	Output Short Circuit Current		$CD = V_{IL}$ MAX, $T/\overline{R} = 2.0V$, $V_{O} = 0V$ $V_{CC} = MAX$, Note 2		-25	-50	-150	mA			
4	Logical "1" Input Current		CD = VIL MAX, T/R = VIL MAX, VI = 2.7V			0.1	80	μA			
·	Input Current at Minimum Input	t Voltage	CD = 2.0V, V _{CC} =	MAX, VI = VCC	MAX				1	mA	
	Logical "0" Input Current		CD = VIL MAX, T.	/R = VIL MAX,	$V_1 = 0.4$	V		-70	- 200	μΑ	
	Input Clamp Voltage		CD = 2.0V, I _{IN} = -				į	-0.7	-1.5	Volts	
lco	Output/Input 3-State Current		CD = 2.0V		$V_O = 0$ $V_O = 0$				-200 200	μА	
	70 00 7/0				140	4.04	<u>. </u>	l	200	i	
CONTROL INPU			Τ				2.0			Volts	
′ін	Logical "1" Input Voltage					COM'L	2.0		0.8	¥ UIIS	
VIL	Logical "0" Input Voltage					MIL			0.7	Volt	
н	Logical "1" Input Current		V _I = 2.7V					0.5	20	μA	
	Input Current at Maximum Inp	ut Voltage	V _{CC} = MAX, V _I =	V _{CC} MAX					1.0	mA	
						T/Ħ		-0.1	-0.25		
iL	Logical "0" Input Current		V _I ≈ 0.4V			CD		-0.1	-0.25	mA	
С	Input Clamp Voltage		I _{IN} = – 12mA				<u> </u>	-0.8	-1.5	Volt	
POWER SUPPL	Y CURRENT						,		,		
	1		$CD = V_1 = 2.0V, V$	CC = MAX				70	100]	
		Am2946	CD = 0.4V, VINA	= T/R = 2.0V, V	CC = M	AX		100	150		
loc ·	Power Supply Current		CD = 2.0V, V _I = 0	.4V, V _{CC} = MA	x			70	100	mA	
	Am294	Am2947B	CD = V _{INA} = 0.4V	T/D = 201/ \	/aa - M	AY		90	140	⊣	

WF003110

SWITCHING TEST CIRCUIT

FULSE GENERATOR BOOK TEST TCOO1480

Am2946
A_n on B_n

OUTPUT
B_n on A_n

WF003150

SWITCHING TIME WAVEFORM

Note: C₁ includes test fixture capacitance.

t_r = t_f < 10ns 10% to 90%

Figure 1. Propagation Delay from A Port to B Port or from B Port to A Port.

5001390

t_f = t_f < 10ns 10% to 90%

Note: C2 and C3 include test fixture capacitance.

Figure 2. Propagation Delay from T/R to A Port or B Port.

Note: C₄ includes test fixture capacitance. Port input is in a fixed logical condition.

 $t_{\rm f} = t_{\rm f} < 10 {\rm ns} \ 10\% \ {\rm to} \ 90\%$

Figure 3. Propagation Delay from CD to A Port or B Port.

SWITCHING CHARACTERISTICS (T_A = $\pm 25^{\circ}$ C, V_{CC} = 5.0V) Am2946

Parameter	Description	Test Conditions	Typ (Note 1)	Max	Units
	A PORT DAT	A/MODE SPECIFICATIONS	L		
[†] PDHLA	Propagation Delay to a Logical "0" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	8	12	ns
^t PDLHA	Propagation Delay to a Logical "1" from B Port to A Port	CD = 0.4V, $T/\overline{R} = 0.4V$ (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	11	16	ns
t _{PLZA}	Propagation Delay from a Logical "0" to 3-State from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	10	15	ns
^t PHZA	Propagation Delay from a Logical "1" to 3-State from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
^t PZLA	Propagation Delay from 3-State to a Logical "0" from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 30pF$	19	25	ns
^t PZHA	Propagation Delay from 3-State to a Logical "1" from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$	19	25	ns
	B PORT DAT	A/MODE SPECIFICATIONS			
t _{PDHLB}	Propagation Delay to a Logical "0" from A Port to B Port	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega$, $R_2 = 1k$, $C_1 = 300pF$	12	18	ns
	TOTAL TO BY ON	$H_1 = 667\Omega$, $H_2 = 5k$, $C_1 = 45pF$	7	12	ns
t _{PDLHB}	Propagation Delay to a Logical "1" from A Port to B Port	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) R_1 = 100 Ω , R_2 = 1k, C_1 = 300pF	15	20	ns
	A POIL to B POIL	$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	9	14	ns
t _{PLZ8}	Prepagation Delay from a Logical "0" to 3-State from CD to B Port	A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	13	18	ns
tрнzв	Propagation Delay from a Logical "1" to 3-State from CD to B Port	A_0 to $A_7 = 0.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
	Propagation Delay from 3-State to a Logical "0"	A ₀ to A ₇ = 0.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 1, R ₅ = 100 Ω , C ₄ = 300pF	25	35	ns
tpzlB	from CD to B Port	$S_3 = 1$, $R_5 = 667\Omega$, $C_1 = 45pF$	16	22	ns
	Propagation Delay from 3-State to a Logical "1"	A ₀ to A ₇ = 0.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 0, R ₅ = 1k, C ₄ = 300pF	22	35	ns
^t PZHB	from CD to B Port	S ₃ = 0, R ₅ = 5k, C ₁ = 45pF	14	22	ns
	TRANSMIT REC	EIVE MODE SPECIFICATIONS			
[†] TAL	Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 1$, $R_3 = 1k$, $C_2 = 30pF$	23	33	ns
тян	Propagation Delay from Transmit Mode to Receive a Logical "1", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 0$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 0$, $R_3 = 5k$, $C_2 = 30pF$	22	33	ns
HATL	Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to B Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 300pF$ $S_2 = 1$, $R_3 = 300\Omega$, $C_2 = 5pF$	26	35	ns
Іятн	Propagation Delay from Transmit Mode to Receive a Logical "1", T/R to B Port	CD = 0.4V (Figure 2) $S_1 = 0$, $R_4 = 1k$, $C_3 = 300pF$ $S_2 = 0$, $R_3 = 300\Omega$, $C_2 = 5pF$	27	35	ns

1. All typical values given are for V_{CC} = 5.0V and T_A = 25°C. 2. Only one output at a time should be shorted.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified Am2946

	The second secon	The state of the s	COMMERCIAL Am2946	MILITARY Am2946		
Parameter	Description	Test Conditions	Max	Max	Units	
- SI Ellister		ORT DATA/MODE SPECIFICATIONS				
PDHLA	Propagation Delay to a Legical	CD = 0.4V, T/R = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	16	19	ns	
POLHA	Propagation Delay to a Logical "1" from B Port to A Port	$CD = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 1) $R_1 = 1k$, $R_2 = 5k$, $C_1 = 30pF$	20	23	ns	
	Description Delay from a Logical	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	18	21	ns	
PLZA	"0" to 3-State from CD to A Port Propagation Delay from a Logical	B_0 to $B_7 = 0.4V$, $T/R = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	18	21	ns	
PHZA	Propagation Delay from CD to A Port Propagation Delay from 3-State to a Logical "0" from CD to A Port	B_0 to $B_7 = 2.4V$, $T/R = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 30pF$	28	33	ns	
PZ.A.	Propagation Delay from 3-State to	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$	28	33	ns	
PZHA	la Logical "" from CD to A Pull	ORT DATA/MODE SPECIFICATIONS	}			
	7	CD = 0.4V, T/R = 2.4V (Figure 1)				
	Propagation Delay to a Logical	$R_1 = 100\Omega$, $R_2 = 1k$, $C_1 = 300pF$	24	29	ns	
PDHLB	"0" from A Port to B Port	$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	16	19	ns	
		CD = 0.4V, T/R = 2.4V (Figure 1)	25	30	ns	
PDLHB	Propagation Delay to a Logical "1" from A Port to B Port	$R_1 = 100\Omega$, $R_2 = 1k$, $C_1 = 300pF$ $R_1 = 367\Omega$, $R_2 = 5k$, $C_1 = 45pF$	19	22	ns	
	Propagation Delay from a Logical	A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	23	26	ns	
tenze	"o" to 3-State from CD to B Port Propagation Delay from a Logical "1" to 3-State from CD to B Port	A ₀ to A ₇ = 0.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 0, R ₅ = 1k, C ₄ = 15pF	18	, 21	ns	
PHZB	"1" to 3-State from OD to D 1 or	A ₀ to A ₇ = 2.4V, T/\overline{R} = 2.4V(Figure 3)	38	43	ns	
tpzlB	Propagation Delay from 3-State to a Logical "6" from CD to B Port	$S_3 = 1$, $R_5 = 100\Omega$, $C_4 = 300pF$		30	ns	
+ ZCD	a Logical C 175m CD to B FUT	$S_3 = 1$, $R_5 = 567\Omega$, $C_4 = 45pF$ A_0 to $A_7 = 0.4V$, $T/R = 2.4V$ (Figure 3)	26			
	Propagation Delay from 3-State to	$S_3 = 0$, $R_5 = 1k$, $C_4 = 300pF$	38	43	ns	
tpzhB	a Logical "1" from CD to B Port	S ₃ = 0, R ₅ = 5k, C ₄ = 45pF	26	30	ns	
	TRAN	SMIT RECEIVE MODE SPECIFICATI	ONS	· · · · · · · · · · · · · · · · · · ·	- t-	
†TRL	Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 1$, $R_3 = 1k$, $C_2 = 30pF$	38	43	ns	
tten	Propagation Delay from Transmit Mode to Receive a Logical "1",	CD = 0.4V (Figure 2) $S_1 = 0$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 0$, $R_3 = 5k$, $C_2 = 30pF$	38	43	ns	
^t RTL	T/R to A Port Propagation Delay from Receive Mode to Transmit a Logical "0", T/R to B Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 300pF$ $S_2 = 1$, $R_3 = 300\Omega$, $C_2 = 5pF$	41	47	ns	
	Propagation Delay from Receivs Mode to Transmit a Logical "1". T/R to B Port	CD = 0.4V (Figure 2) S ₁ = 0, R ₄ = 1k, C ₃ = 300pF S ₂ = 0, R ₃ = 300Ω, C ₂ = 5pF	41	47	ns	

SWITCHING CHARACTERISTICS ($T_A = +25$ °C, $V_{CC} = 5.0$ V) Am2947

Parameter	Description	Test Conditions	Typ (Note 1)	Max	Units
	A PORT DATA	A/MODE SPECIFICATIONS			
[†] PDHLA	Propagation Delay to a Logical "0" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	14	18	пѕ
t _{PDLHA}	Propagation Delay to a Logical "1" from B Port to A Port	$CD = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 1) $R_1 = 1k$, $R_2 = 5k$, $C_1 = 30pF$	13	18	ns
[†] PLZA	Propagation Delay from a Logical "0" to 3-State from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	11	15	ns
[†] PHZA	Propagation Delay from a Logical "1" to 3-State from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
[†] PZLA	Propagation Delay from 3-State to a Logical "0" from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 30pF$	19	25	ns
^t PZHA	Propagation Delay from 3-State to a Logical "1" from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$	19	25	ns
	B PORT DATA	A/MODE SPECIFICATIONS			
•	Propagation Delay to a Logical "0" from	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega$, $R_2 = 1$ k, $C_1 = 300$ pF	18	23	ns
tPDHLB	A Port to B Port	$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	11	18	ns
•	Propagation Delay to a Logical "1" from	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega$, $R_2 = 1$ k, $C_1 = 300$ pF	16	23	ns
PDLHB	A Port to B Port	$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	11	18	ns
¹PLZB	Propagation Delay from a Logical "0" to 3-State from CD to B Port	A_0 to $A_7 = 0.4V$, $T/\overline{R} = 2.4V$ (Figure 3) S_3 , = 1, $R_5 = 1k$, $C_4 = 15pF$	` 13	18	ns
t _{PHZB}	Propagation Delay from a Logical "1" to 3-State from CD to B Port	A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3) S_3 , = 0, $R_5 = 1k$, $C_4 = 15pF$	8	15	пѕ
	Propagation Delay from 3-State to a Logical "0"	A ₀ to A ₇ = 0.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 1, R ₅ = 100 Ω , C ₄ = 300pF	25	35	ns
[†] PZLB	from CD to B Port	$R_3 = 1$, $R_5 = 667\Omega$, $C_1 = 45pF$	16	22	ns
	Propagation Delay from 3-State to a Logical "1"	A ₀ to A ₇ = 2.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 0, R ₅ = 1k, C ₄ = 300pF	26	35	ns
^t PZHB	from CD to B Port	S ₃ = 0, R ₅ = 5k, C ₁ = 45pF	14	22	ns
	TRANSMIT REC	EIVE MODE SPECIFICATIONS			
t _{TRL}	Propagation Delay from Transmit Mode to Receive a Logical "O", T/R to A Port	CD = 0.4V (Figure 2) S ₁ = 1, R ₄ = 100Ω , C ₃ = 5pF	28	38	ns
		$S_2 = 1$, $R_3 = 1k$, $C_2 = 30pF$ CD = 0.4V (Figure 2)			-
t _{TRH}	Propagation Delay from Transmit Mode to Receive a Logical "1", T/R to A Port	$S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 0$, $R_3 = 5k$, $C_2 = 30pF$	28	38	ns
t RTL	Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to B Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 300pF$ $S_2 = 0$, $R_3 = 300\Omega$, $C_2 = 5pF$	31	40	ns
tятн	Propagation Delay from Transmit Mode to Receive a Logical ''1'', 가취 to B Port	CD = 0.4V (Figure 2) $S_1 = 0$, $R_4 = 1k$, $C_3 = 300pF$ $S_2 = 1$, $R_3 = 300\Omega$, $C_2 = 5pF$	31	40	ns

Note: 1. All typical values given are for V_{CC} = 5.0V and T_A = 25°C. 2. Only one output at a time should be shorted.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified Am2947

			COMMERCIAL Am2947	MILITARY Am2947	
Dave marker	Description	Test Conditions	Max	Max	Units
Parameter		ORT DATA/MODE SPECIFICATIONS			
PDHLA	Propagation Delay to a Logical	CD = 0.4V, $T/R = 0.4V$ (Figure 1) $R_1 = 1k$, $R_2 = 5k$, $C_1 = 30pF$	21	24	ns
PDLHA	Propagation Delay to a Logical	CD = 0.4V, $T/R = 0.4V$ (Figure 1) $R_1 = 1k$, $R_2 = 5k$, $C_1 = 30pF$	21	24	ns
PLZA	Propagation Delay from a Logical "0" to 3-State from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	18	21	ns
PHZA	Propagation Delay from a Logical "1" to 3-State from CD to A Port	B_0 to $B_7 = 2.4V$, $T/R = 0.4V$ (Figure 3) $S_2 = 0$, $R_5 = 1k$, $C_4 = 15pF$	18	21	ns
PZLA	Propagation Delay from 3-State to a Logical "0" from CD to A Port	B_0 to $B_7 = 0.4V$, $T/R = 0.4V$ (Figure 3) $S_2 = 1$ $R_5 = 1k$, $C_4 = 30pF$	28	33	ns
IPZHA	Propagation Delay from 3-State to a Logical "1" from CD to A Port	B_0 to $B_7 = 2.4$ V, $T/R = 0.4$ V (Figure 3) $S_3 = 0$, $R_5 = 5$ k, $C_4 = 30$ pF	28	33	ns
TZIIA	B P	ORT DATA/MODE SPECIFICATIONS			,
		CD = 0.4V, T/R = 2.4V (Figure 1)	28	34	ns
t _{PDHLB}	Propagation Delay to a Logical "0" from A Port to B Port	$R_1 = 100\Omega$, $R_2 = 1k$, $C_1 = 300pF$ $R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	22	25	ns
		CD = 0.4V, $T/\bar{R} = 2.4V$ (Figure 1)	28	34	ns
tPDLH8	Propagation Delay to a Logical	$R_1 = 100\Omega$, $R_2 = 1k$, $C_1 = 300pF$ $R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	22	25	ns
t _{PLZB}	Propagation Delay from a Logical	A ₀ to A ₇ = 0.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 1, R ₅ = 1k, C ₄ = 15pF	23	26	ns
tPHZB	Propagation Delay from a Logical "1" to 3-State from CD to B Port	A ₀ to A ₇ = 2.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 0, R ₅ = 1k, C ₄ = 15pF	18	21	ns
чнив		A_0 to $A_7 = 0.4V$, $T/\overline{R} = 2.4V$ (Figure 3)	38	43	ns
tPZLB	Propagation Delay from 3-State to a Logical "0" from CD to B Port	$S_3 = 1$, $R_5 = 100\Omega$, $C_4 = 300pF$ $S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$	26	30	ns
		A ₀ to A ₇ = 2.4V, T/R = 2.4V (Figure 3)	38	43	ns
^t PZHB	Propagation Delay from 3-State to a Logical "1" from CD to B Port	$S_3 = 0$, $R_5 = 1k$, $C_4 = 300pF$ $S_3 = 0$, $R_5 = 5k$, $C_4 = 45pF$	26	30	ns
	TRAN	SMIT RECEIVE MODE SPECIFICATION	ONS		
ttel.	Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 0$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 1$, $R_3 = 1k$, $C_2 = 30pF$	42	48	ns
^t TRH	Propagation Delay from Transmit Mode to Receive a Logical "1", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 0$, $R_3 = 5k$, $C_2 = 30pF$	42	48	ns
t _{RTL}	Propagation Delay from Receive Mode to Transmit a Logical "0", T/R to B Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 300pF$ $S_2 = 1$, $R_3 = 300\Omega$, $C_2 = 5pF$	45	51	ns
trth	Propagation Delay from Receive Mode to Transmit a Logical "1", T/R to B Port	CD = 0.4V (Figure 2) $S_1 = 0$, $R_4 = 1k$, $C_3 = 300pF$ $S_2 = 1$, $R_3 = 300\Omega$, $C_2 = 5pF$	45	51	ns