Bus-Controlled Video Matrix Switch

Main Features

■ 20 MHz Bandwidth
■ Cascadable with another TEA6415C (Internal Address can be changed by Pin 7 Voltage)

- 8 Inputs (CVBS, RGB, Chroma, ...)

■ 6 Outputs
■ Possibility of Chroma Signal for each Input by switching off the Clamp with an external Resistor Bridge
■ Bus Controlled
■ 6.5 dB Gain between any Input and Output
■ - 55 dB Crosstalk at 5 MHz
■ Full ESD Protection

Description

The main function of the TEA6415C is to switch 8 video input sources on the 6 outputs.

Each output can be switched to only one of the inputs, whereas any single input may be connected to several outputs.

All switching possibilities are controlled through the $\mathrm{I}^{2} \mathrm{C}$ bus.

DIP 20
(Plastic Dual In-line Package
ORDER CODE: TEA6415C

SO 20
(Plastic Small Outline Package)
ORDER CODE: TEA6415CD

Input		$1 \bigcirc 20$				In
Data				19		Ground
Input			E	18		Output
Clock			A	17		Output
Input			6	16		Output
Input			4	15		Output
Prog			5	14		Output
Input			C	13		Output
VCC				12		Ground
Input				11		Input

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

1 General Description

Figure 1: TEA6415C Block Diagram

The main function of the TEA6415C is to switch 8 video input sources on the 6 outputs.
Each output can be switched to only one of the inputs, whereas any single input may be connected to several outputs. The lowest level of each signal is aligned on each input (bottom of sync pulse for CVBS or Black Level for RGB signals).

The nominal gain between any input and output is 6.5 dB . For Chroma signals, the alignment is switched off by forcing, with an external $5 \mathrm{~V}_{\mathrm{DC}}$ resistor bridge on the input. Each input can be used as a normal input or as a Chroma input (with external resistor bridge). All the switching possibilities are changed through the $I^{2} \mathrm{C}$ bus.

Driving a 75Ω load requires an external transistor.
The switches configuration is defined by words of 16 bits: one word of 16 bits for each output channel.

So, 6 words of 16 bits are necessary to determine the starting configuration upon power-on (power supply: 0 to 10 V). But a new configuration needs only the words of the changed output channels.

2 Electrical Characteristics

2.1 Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (Pin 9)	12	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-20 to +150	${ }^{\circ} \mathrm{C}$

2.2 Thermal Data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {thJA }}$	Junction-to-Ambient Thermal Resistance	DIP20	80
	SO20	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2.3 Supply

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \mathrm{~kW}, \mathrm{C}_{\text {LOAD }}=3 \mathrm{pF}\right.$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{CC}	Supply Voltage (Pin 9)	8	10	11	V
I_{CC}	Power Supply Current (without load on outputs; $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$)	20	30	40	mA
Inputs					
	Signal Amplitude (CVBS signal)			2	V_{PP}
	Input Current (per output connected, input voltage $=5 \mathrm{~V}_{\mathrm{DC}}$) (This current is multiplied by 6 when all outputs are connected on the input)		1	3	$\mu \mathrm{A}$
	DC Level	3.3	3.6	3.9	V
	DC Level Shift (temperature from 0 to $70^{\circ} \mathrm{C}$)		5	100	mV
Outputs ($\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{PP}}$ for all dynamic tests) Pins 13,14, 15, 16, 17 and 18					
	Dynamic	4.5	5.5		V_{PP}
	Output Impedance		25	50	Ω
	Gain	6	6.5	7	dB
	Bandwidth -1 dB attenuation -3dB attenuation	7	$\begin{aligned} & 15 \\ & 20 \end{aligned}$		MHz
	Crosstalk $\begin{array}{r} f=3.58 \mathrm{MHz} \\ \mathrm{f}=5 \mathrm{MHz} \end{array}$		$\begin{aligned} & -55 \\ & -60 \end{aligned}$	$\begin{aligned} & -45 \\ & -50 \end{aligned}$	dB
	DC level	2.4	2.75	3.1	V
$\mathrm{I}^{2} \mathrm{C}$ Bus Input: DATA, CLOCK and PROG (Pins 2, 4 and 7)					
	Threshold Voltage	1.5	2	3	V

2.4 I ${ }^{2} \mathrm{C}$ Bus Characteristics

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
SCL					
$V_{\text {IL }}$	Low Level Input Voltage		-0.3	+ 1.5	V
V_{IH}	High Level Input Voltage		3.0	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
l_{LI}	Input Leakage Current	$\mathrm{V}_{1}=0$ to V_{CC}	-10	+ 10	$\mu \mathrm{A}$
$\mathrm{f}_{\text {SCL }}$	Clock Frequency		0	100	kHz
t_{R}	Input Rise Time	1.5 V to 3 V		1000	ns
t_{F}	Input Fall Time	3 V to 1.5 V		300	ns
C_{1}	Input Capacitance			10	pF
SDA					
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		-0.3	+ 1.5	V
V_{IH}	High Level Input Voltage		3.0	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
l_{LI}	Input Leakage Current	$\mathrm{V}_{1}=0$ to V_{CC}	-10	+ 10	$\mu \mathrm{A}$
C_{1}	Input Capacitance			10	pF
t_{R}	Input Rise Time	1.5 V to 3 V		1000	ns
t_{F}	Input Fall Time	3 V to 1.5 V		300	ns
V_{OL}	Low Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$		0.4	V
$\mathrm{t}_{\text {F }}$	Output Fall Time	3 V to 1.5 V		250	ns
C_{L}	Load Capacitance			400	pF
TIMING					
tLow	Clock Low Period		4.7		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HIGH}}$	Clock High Period		4.0		$\mu \mathrm{s}$
$t_{\text {SU }}$, DAT	Data Set-up Time		250		ns
t_{HD}, DAT	Data Hold Time		0	340	ns
${ }^{\text {tsu }}$, sto	Set-up Time from Clock High to Stop		4.0		$\mu \mathrm{s}$
$\mathrm{t}_{\text {BUF }}$	Start Set-up Time following a Stop		4.7		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD, STA }}$	Start Hold Time		4.0		$\mu \mathrm{s}$
${ }^{\text {tsu, STA }}$	Start Set-up Time following Clock Low-to High Transition		4.7		$\mu \mathrm{s}$

Figure 2: ${ }^{2} \mathrm{C}$ Bus Timing

$2.5 \quad I^{2} \mathrm{C}$ Bus Selections

The $I^{2} \mathrm{C}$ chip address is defined by the first byte. The second byte defines the input/output configuration.

Chip Address byte (1st byte of transmission)

| 86 (hex) | 10000110 (bin) |
| :---: | :---: | When PROG pin is connected to Ground

Input/Output Selection byte (2nd byte of transmission)
Table 1: ${ }^{2} \mathrm{C}$ Bus Output Selections

Output Address (MSB)	Input Address (LSB)	Selected Output
00000	XXX	Pin 18
00100	XXX	Pin 14
00010	XXX	Pin 16
00110	-	Not Used
Output is selected		
	BXX the 5 MSBs.	
	XXX	Pin 17
00011	XXX	Pin 13
00111	-	Pin 15

Table 2: $1^{2} \mathrm{C}$ Bus Input Selections

Output Address (MSB)	Input Address (LSB)	Selected Input	
$00 X X X$	000	Pin 5	
$00 X X X$	100	Pin 8	
$00 X X X$	010	Pin 3	
$00 X X X$	110	Pin 20	
Input is selected by			
	001	Pin 6	
$00 X X X$	101	Pin 10	
$00 X X X$	011	Pin 1	
$00 X X X$	111	Pin 11	

Example: 00100101 connects pin 10 (input) to pin 14 (output) (equals 25 in hexadecimal)

2.6 Input/Output Pin Configuration Input Configuration

Figure 3: Input Configuration

Figure 4: Output Configuration

Figure 5: Bus I/O Configuration

Figure 6: VCC Pin Configuration

2.7 Using a Second TEA6415C

The programming input pin (PROG) allows two TEA6415C circuits to operate in parallel and to select them independently through the $I^{2} \mathrm{C}$ bus by modifying the address byte. Consequently, the switching capabilities are doubled, or IC1 and IC2 can be cascaded.

Figure 7: Cascadable TEA6415C Configuration

2.8 Crosstalk Improvement

1. Whenever an input is not used, it must be bypassed to ground through a 220 nF capacitor.
2. Performances can be greatly improved in regards to input crosstalk by using the application example described in the figure below.

Figure 8: Application Diagram Example

3 Package Mechanical Data

Figure 9: 20-Pin Plastic Dual In-Line Package, 300-mil Width

Table 3: DIP20 Package

Dim.	mm			inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
c	0.20	0.25	0.36	0.008	0.010	0.014
D	24.89		26.92	0.980		1.060
e		2.54			0.100	
E1	6.10	6.35	7.11	0.240	0.250	0.280
L	2.92	3.30	3.81	0.115	0.130	0.150
	Number of Pins					
N	20					

Figure 10: 20-Pin Plastic Small Outline Package, 300-mil Width

Table 4: SO20 Package

Dim.	mm			inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	2.35		2.65	0.0926		0.1043
A1	0.10			0.0040		
B	0.33		0.51	0.0130		0.0200
C			0.32			0.0125
D	4.98		13.00	0.1961		0.5118
E	7.40		7.60	0.2914		0.2992
e		1.27			0.050	
H	10.01		10.64	0.394		0.419
h	0.25		0.74	0.010		0.029
K	0°		8°	0°		8°
L	0.41		1.27	0.016		0.050
G			0.10			0.004
	Number of Pins					
N	20					

NOTES:

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
www.st.com

