RF105

900 MHz Digital Spread Spectrum Transceiver

The RF105, a fully integrated transceiver device, provides the transmit, receive, and frequency synthesis functions for Digital Spread Spectrum (DSS) systems operating in the 902-928 MHz Industrial, Scientific, and Medical (ISM) band. It implements a direct conversion architecture and Time Division Duplexing (TDD) of the transmit and receive signals to minimize circuit complexity.

The receive path of the RF105 provides complete RF-to-baseband In-Phase and Quadrature (I/Q) demodulation, including a Low Noise Amplifier (LNA), doublebalanced quadrature mixers, fully integrated channel selection filters, and baseband variable-gain amplifiers. The transmit path is a variable-gain direct conversion modulator. These paths are shown in Figure 1.

A 902-928 MHz frequency synthesizer with on-chip VCO and resonator provides the LO frequency for both transmit and receive modes.

The RF105 features low-voltage operation (2.7-4.5 V) for low power consumption. The RF105, combined with Conexant's RF106 power amplifier, forms a complete system solution for a direct conversion 900 MHz DSS radio that is fully compliant with FCC Part 15 regulations in the ISM band.

Figure 1. RF105 Block Diagram

Figure 2. RF105 Pin Signals - 48 Pin TQFP

Features

- Complete 900 MHz ISM band transceiver with fully integrated synthesizer and VCO including resonator
- Low power dissipation
- Fast settling from standby mode to active mode
- Separate enable lines for transmit, receive, and synthesizer
- 41 programmable channels with 600 kHz channel spacing
- 3-battery cell operation (2.7-4.5 V)
- 48-pin TQFP package (see Figure 2

Receiver

- LNA/Quadrature mixer from RF down to baseband
- Selectable LNA gain
- Fully integrated channel selection filter with adjustable bandwidth
- Receiver baseband amplifier with variable gain
- Differential receiver baseband outputs

Transmitter

- Variable gain modulator
- Double-balanced mixer for baseband-to-RF modulation
- Differential RF outputs

Applications

- DSS cordless telephone
- Direct sequence spread spectrum systems
- Frequency hopping spread spectrum systems
- Wireless LANs
- Wireless modems
- Wireless security
- Inventory control systems

Technical Description

Baseband Filter Bandwidth

The receive baseband filters have a bandpass characteristic. The low-pass cutoff is determined by the GmC filters and is set by the Rgmc resistor connected to pin 19.

The GmC filter has a 3-pole Butterworth response and is preceded by a 4-pole Butterworth Sallen \& Key low-pass filter with a fixed cutoff frequency of 1.2 MHz . The fixed filters are designed to attenuate out-of-band blocking signals propagating through the receive path.

The baseband high-pass cutoff is set by the bandwidth of the $D C$ servo loop, which in turn is set by the value of the Cservo capacitors connected between pins 32 and 33 , and pins 34 and 35 . The DC servo loop nulls out the DC offset in the receive baseband path. It is designed to be tolerant of the Cservo Equivalent Series Resistance (ESR), so that common surface mount capacitors are suitable.

The baseband high-pass cutoff frequency should be set much lower than the low-pass cutoff frequency, or else the servo loop will become unstable.

The optimum receive bandwidth values are:

$$
\begin{aligned}
& \mathrm{f}_{\text {LPF }}=820 \mathrm{kHz}, \operatorname{Rgmc}=875 \Omega \\
& \mathrm{f}_{\text {HPF }}=20 \mathrm{kHz}, \mathrm{C}_{\text {servo }}=0.082 \mu \mathrm{~F}
\end{aligned}
$$

RF Output

The transmit RF outputs from the RF105 are differential and matched to 100Ω differential. If a single-ended connection is required, the unused output must be suitably terminated by a 50Ω resistor (see Figure 4. The transmit output power is determined by the output power control inputs, PS1 (pin 20) and PS2 (pin 21), and by the value of Rmod (connected to pin 14). Rmod sets the bias current into the modulator, which is then multiplied by a factor set by the state of PS1 and PS2. PS1 and PS2 input programming is described in the Transmitter section of Table 3.

The characteristic of the output Peak Envelope Power (PEP) versus Rmod is shown in Figure 3 for a sinusoidal 120 mV peak-to-peak input signal and for high power mode (PS1 = 0, PS2 = 0). For Rmod equal to $1.2 \mathrm{k} \Omega$, the typical RF105 output power is approximately -8 dBm in high-power mode. This provides approximately 20 dBm of transmit power when used with Conexant's RF106 (29 dB gain $P A$).

Figure 3. Tx PEP vs Rmod
(Txd signal $=120 \mathrm{mVpp}, 300 \mathrm{kHz}$ sinusoid, $\mathrm{Vcc}=3.0 \mathrm{~V}$)

Recommendations on Layout and Implementation

A typical applications schematic is shown in Figure 4 All Vcc pins should be decoupled as close to the supply pin as possible, preferably right at the input pins.

All ground pins should have minimum trace inductance to ground. If a ground plane cannot be provided right at the pins, the vias to the ground plane should be placed as close to the pins as possible. There should be one via for each ground pin. If the ground plane is at the bottom layer, it is recommended to have two vias in parallel for each ground pin.

VCC1 (pin 6), VCC2 (pin 26), and VCC3 (pin 31) should be connected to the common Vcc supply through individual decoupling networks.

ESD Sensitivity

The RF105 is a static-sensitive electronic device. Do not operate or store near strong electrostatic fields. Take proper Electrostatic Discharge (ESD) precautions.

Figure 4. Typical Applications Diagram - RF105

Synthesizer Programming

The synthesizer is programmed with a half-duplex 3-wire serial interface. The three signals are DATA, CLK, and STROBE. Each rising edge of the CLK signal shifts one bit of the data into the shift register and control register. When the STROBE input is toggled from low to high, the data latched in the shift register is transferred to the programmable counter. Six bits are shifted into the synthesizer for programming. The data format is as follows:
MSB

| S6 | SSB |
| :---: | :---: | :---: | :---: | :---: | :---: |

The timing relationship is shown in Figure 6 The values of the programming bits, S 1 to S 6 , for the programmable counter are defined in Table 1.

Channel Selection

Using a 9.6 MHz reference frequency, the Phase Locked Loop (PLL) synthesizer can generate frequencies from 903 MHz (Channel 1) to 927 MHz (Channel 41) at a channel spacing of 600 kHz . The LO frequency (FLo) is calculated by the following equation:

$$
F L O=(F R E F / R) \times[(M \times N)+A]
$$

where:
FREF is 9.6 MHz (reference oscillator)
R is 16 (reference divider)
M is $32 / 33$ (prescaler)
N is 47 (fixed counter)
A is 1 to 41 (programmable counter)

Examples:
$(9.6 \mathrm{MHz} / 16) \times(32 \times 47+1)=903 \mathrm{MHz}$
$(9.6 \mathrm{MHz} / 16) \times(32 \times 47+41)=927 \mathrm{MHz}$

Synthesizer Loop Filter

The VCO for the synthesizer is designed on-chip with the varactor referenced to VCC. Therefore, the loop filter components will need to be tied to VCC4 (pin 39) instead of ground. A typical loop filter design is shown below in Figure 5. The loop bandwidth is approximately 5 kHz with a nominal phase margin of 45 degrees.

Figure 5. Loop Filter

Figure 6. Timing Diagram

Table 1. Programmable Counter Data Input

DSS Telephone Channel No. *	Synthesizer Channel No. (A)	Frequency (MHz)	S6	S5	S4	S3	S2	S1
-	1	903.0	0	0	0	0	0	0
-	2	903.6	0	0	0	0	0	1
1	3	904.2	0	0	0	0	1	0
2	4	904.8	0	0	0	0	1	1
-	5	905.4	0	0	0	1	0	0
3	6	906.0	0	0	0	1	0	1
-	7	906.6	0	0	0	1	1	0
4	8	907.2	0	0	0	1	1	1
.
17	34	922.8	1	0	0	0	0	1
-	35	923.4	1	0	0	0	1	0
18	36	924.0	1	0	0	0	1	1
-	37	924.6	1	0	0	1	0	0
19	38	925.2	1	0	0	1	0	1
20	39	925.8	1	0	0	1	1	0
-	40	926.4	1	0	0	1	1	1
-	41	927.0	1	0	1	0	0	0

[^0]
Interface Description

Table 2. Pin Description

Pin	Name	Description	Pin	Name	Description
1	GND1	Ground	25	GND6	Ground
2	CLK	Synthesizer programming clock input	26	VCC2	Supply for baseband outputs
3	FREF	Reference frequency input for synthesizer	27	RX Q-	Q channel baseband differential outputs
4	DATA	Synthesizer programming data input	28	RX Q+	
5	TXREF	Reference for TX data input, ac-coupled to ground	29	RXI-	I channel baseband differential outputs
6	VCC1	Supply for LNA and RX mixer	30	RX I+	
7	TXD	Baseband TX data input	31	VCC3	Supply for baseband circuits
8	GND2	LNA emitter ground	32	SR Q-	Q channel DC offset cancellation servo external capacitor connections
9	RXEN	Receive enable	33	SR Q+	
10	LNAATTN	LNA attenuation control $0=$ high-gain mode, $1=$ low-gain mode	34	SR I-	I channel DC offset cancellation servo external capacitor connections
11	LNAIN	LNA RF input	35	SR I+	
12	GND3	Ground	36	GND7	Ground
13	GND4	Ground	37	GND8	Ground
14	MODSET	Input to set TX modulator gain	38	NC	No connect
15	RF01	Differential TX RF output	39	VCC4	Supply for VCO
16	RFO2	Differential TX RF output, inverse polarity	40	CON	VCO control input
17	TXEN	Transmit enable	41	VCOBPC	Bias bypass capacitor for VCO bias
18	MIXBPC	Bypass capacitor for RX mixer bias	42	GND9	Ground for VCO
19	GMCRES	Resistor to set cutoff frequency of channel selection filter	43	NC	No connect
20	PS1	Modulator power control input (see [able 3)	44	CHPO	Charge pump output
21	PS2	Modulator power control input (see [rable 3)	45	VCC5	Supply for synthesizer
22	GCREF	Reference for gain control input connected to ground	46	SYNTHEN	Synthesizer enable
23	GC	Baseband variable gain amplifier control input	47	STROBE	Synthesizer programming load enable
24	GND5	Ground	48	GND10	Ground

Specifications

Table 3. Electrical Specifications (1 of 3)
Note: $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{VcC}=3.6 \mathrm{~V}, \mathrm{fLO}=915 \mathrm{MHz}$

Parameter	Min	Typical	Max	Units
RECEIVER SECTION				
$\begin{array}{\|c} \hline \text { RX voltage gain: } \quad \text { LNA high-gain mode }(\text { LNAATTN }=0) \\ \mathrm{GC}=1.3 \mathrm{~V} \\ \mathrm{GC}=1.6 \mathrm{~V} \\ \mathrm{GC}=1.9 \mathrm{~V} \\ \text { LNA gain step } \end{array}$	$\begin{aligned} & 99.5 \\ & 77.5 \\ & 37.5 \end{aligned}$	$\begin{gathered} 105 \\ 82.5 \\ 38 \\ 19 \\ \hline \end{gathered}$	$\begin{aligned} & 109.5 \\ & 87.5 \\ & 42.5 \end{aligned}$	dB
RX gain variation vs. frequency 902 MHz < fLO < 928 MHz		0.5	1	dB
RX SSB noise figure: High-gain mode, GC = 1.3 V		6.5	8.0	dB
RX input IP3: LNA high-gain mode, $\mathrm{GC}=1.9 \mathrm{~V}$ LNA low-gain mode, $\mathrm{GC}=1.9 \mathrm{~V}$		$\begin{aligned} & \hline-36 \\ & -15 \end{aligned}$		dBm
$\begin{array}{lc} \hline \text { RX input P1dB: } \quad \text { LNA high-gain mode }(\text { LNAATTN }=0) \\ \mathrm{GC}=1.3 \mathrm{~V} \\ \mathrm{GC}=1.6 \mathrm{~V} \\ \mathrm{GC}=1.9 \mathrm{~V} \\ & \text { LNA low-gain mode }(\text { LNAATTN }=1) \\ \mathrm{GC}=1.9 \mathrm{~V} \end{array}$	$\begin{gathered} -101 \\ -79 \\ -47 \end{gathered}$	$\begin{aligned} & -97 \\ & -74 \\ & -43 \\ & -22 \end{aligned}$		dBm
AM demodulation suppression at LNA input to mixer output	60			dB
LO power at LNAIN		-80		dBm
I/Q phase imbalance		± 1	± 5	deg
I/Q amplitude imbalance		0.5	3	dB
Input high voltage, LNAATTN, RXEN	1.9		0.75	V
Input high current, RXEN IIH Input low current, RXEN IIL	-25	125	200	$\mu \mathrm{A}$
Input high current, LNAATTN IIH Input low current, LNAATTN IIL	-25		60	$\mu \mathrm{A}$
GC lin	-500		500	$\mu \mathrm{A}$
Baseband amplifier gain control range ($\mathrm{GC}=1.3 \mathrm{~V}-1.9 \mathrm{~V}$)	60	67	75	dB
GC input voltage range	1.2	1.6	2.0	V
Baseband amplifier gain control sensitivity $\mathrm{GC}=1.3-1.9 \mathrm{~V}$ $\mathrm{GC}=1.3 \mathrm{~V}$ $\mathrm{GC}=1.6 \mathrm{~V}$ $\mathrm{GC}=1.9 \mathrm{~V}$		$\begin{aligned} & 0.04 \\ & 0.14 \\ & 0.13 \end{aligned}$	0.17	dB/mV
RX P1dB @ 3.9 MHz offset LNA high gain, LNA low gain, $G C=1.9 \mathrm{~V}$ 		$\begin{aligned} & -45 \\ & -14 \end{aligned}$		dBm
Baseband output load capacitance		20	50	pF
Baseband LPF 3 dB bandwidth ($\mathrm{Rgmc}=875 \Omega$)	0.65	0.82	0.97	MHz
Baseband selectivity @ 3.9 MHz	60	70		dB
Baseband differential output VCM	1.0		VDD-1.0	V
Baseband output DC offset			25	mV
RXI, RXQ DC and gain settle time (note 1) from initial RXEN input at TDD rate $>250 \mathrm{~Hz}$		50	100	$\mu \mathrm{S}$
Baseband HPF 3dB bandwidth (servo capacitors = 82 nF)	13	20	29	kHz
Baseband output voltage swing (peak differential)		300		mV
Baseband output SNR (GC = 1.9 V)		24		dB

Table 3. Electrical Specifications (2 of 3)

Parameter		Min	Typical	Max	Units
FREQUENCY SYNTHESIZER SECTION					
LO frequency range		903		927	MHz
PLL VCO center frequency @ control voltage of 1.1 V			915		MHz
PLL VCO sensitivity		35	50	75	MHz/V
LO settling time $\Delta f=10 \mathrm{MHz}$, settle to $\mathrm{f}_{\text {FINaL }} \pm 5 \mathrm{kHz}, 5 \mathrm{kHz}$ LFBW				2	msec
LO phase noise 100 kHz offset 1 MHz offset			-100	$\begin{gathered} \hline-95 \\ -115 \end{gathered}$	dBc/Hz
VCO (varactor) input leakage			0.01		$\mu \mathrm{A}$
Input reference frequency, FREF			9.6		MHz
Frequency step, $\mathrm{F}_{\text {S }}$			600		kHz
Comparison frequency (600 kHz) spur level				-60	dBc
RMS phase jitter, 25-700 kHz				5	degrees RMS
Input high voltage, STROBE, CLK, DATA, SYNTHEN Input low voltage, STROBE, CLK, DATA, SYNTHEN	$\begin{aligned} & \text { VIH } \\ & \text { VIL } \end{aligned}$	1.9		0.75	V
Input high current, STROBE, CLK, DATA Input low current, STROBE, CLK, DATA	$\begin{aligned} & \hline \mathrm{IH} \\ & \mathrm{IIL} \end{aligned}$	-25		40	$\mu \mathrm{A}$
Input high current, SYNTHEN Input low current, SYNTHEN	$\begin{aligned} & \text { IIH } \\ & \text { IIL } \end{aligned}$	-25		100	$\mu \mathrm{A}$
Input high voltage, FREF Input low voltage, FREF	$\begin{aligned} & \text { VIH } \\ & \text { VIL } \end{aligned}$	1.9		0.75	V
Input high current, FREF Input low current, FREF	$\begin{aligned} & \text { IIH } \\ & \text { IIL } \end{aligned}$	-25		100	$\mu \mathrm{A}$
Charge-pump output current			± 225		$\mu \mathrm{A}$
Output short-circuit current	CHPO			1.0	mA
TRANSMITTER SECTION					
Gain variation vs. frequency 902 MHz < fLO < 928 MHz			0.5	1.0	dB
Peak-envelope output power (single-ended): High power mode (PS1 $=0$, PS2 $=0$) Medium power mode (PS1 $=0$, PS2 $=1$) Low power mode (PS1 $=1$, PS2 $=0)$ Undefined mode (PS1 $=1$, PS2 $=1$)		-11	$\begin{gathered} -8 \\ -19 \\ -27.5 \\ \text { not used } \end{gathered}$	-6.5	dBm
IM3 (TXD input signal 2 tones each 60 mVpp)		-30	-40		dBc
Output VSWR for unconditional stability				10:1	
LO suppression		-15	-25		dBc
TXD input impedance			10		$\mathrm{k} \Omega$
TXD input peak-to-peak sine wave for target output peak-envelope power			120		mV pp
TXD input bandwidth			80		MHz
TXD to RF settle time to within spec value from TXEN				50	$\mu \mathrm{s}$
TX DC offset				2	mV
Input high voltage, PS1, PS2, TXEN Input low voltage, PS1, PS2, TXEN	$\begin{aligned} & \text { VIH } \\ & \text { VIL } \end{aligned}$	1.9		0.75	V
Input high current, PS1, PS2, TXEN Input low current, PS1, PS2, TXEN	$\begin{aligned} & \text { IIH } \\ & \text { IIL } \end{aligned}$	-25		60	$\mu \mathrm{A}$
Input high current TXEN Input low current TXEN	$\begin{aligned} & \mathrm{IIH} \\ & \hline \end{aligned}$	-25		100	$\mu \mathrm{A}$

Table 3. Electrical Specifications (3 of 3)

Parameter	Min	Typical	Max	Units
POWER SUPPLY				
Total supply current: RX mode (RXEN, SYNTHEN = 1) TX mode (TXEN, SYNTHEN = 1) (note 2) High power mode Medium power mode Low power mode Synth mode (SYNTHEN = 1) Sleep mode (RXEN, TXEN, SYNTHEN, LNAATTN = 0)	$\begin{aligned} & 48 \\ & \\ & 25 \\ & 20 \\ & 20 \\ & 15 \end{aligned}$	$\begin{gathered} 65 \\ \\ 33 \\ 28 \\ 27 \\ 21 \\ 5 \end{gathered}$	$\begin{gathered} 78 \\ \\ 41 \\ 35 \\ 34 \\ 25 \\ 100 \end{gathered}$	mA mA mA mA mA $\mu \mathrm{A}$
Power supply range (note 3)	2.7	3.6	4.5	VDC
Notes: 1. Gain settled to within 90% of final value, DC settled to within 10% of desired signal's final value. 2. TXD input signal $120 \mathrm{mVpp}, 300 \mathrm{kHz}$ sinusoidal, $\mathrm{Rmod}=1.2 \mathrm{k} \Omega$. 3. The specifications in Table 3 are guaranteed at a supply voltage (Vcc) of 3.6 V . At Vcc below 3.0 V , the RF105 is functional, but the system performance may be degraded.				

Table 4. Absolute Maximum Ratings

Parameter	Min	Max	Unit
Supply voltage (Vcc) (note 1)	-0.3	5.0	V
Input voltage range (note 1)	-0.3	VCC	V
Power dissipation		500	mW
LNA input power		+5	dBm
Operating temperature range	-10	70	${ }^{\circ} \mathrm{C}$
Storage temperature	-40	125	${ }^{\circ} \mathrm{C}$
Notes: 1. Voltages are referenced to GND.			

Device Dimensions

RF105 device dimensions are shown below in Figure 7

Figure 7. RF105 Device Dimensions

Information provided by Conexant Systems, Inc. (Conexant) is believed to be accurate and reliable. However, no responsibility is assumed by Conexant for its use, nor any infringement of patents, copyrights, or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights or copyright of Conexant other than for circuitry embodied in Conexant products. Conexant reserves the right to change circuitry at any time without notice. This document is subject to change without notice.

Conexant products are not designed or intended for use in life support appliances, devices, or systems where malfunction of a Conexant product can reasonably be expected to result in personal injury or death. Conexant customers using or selling Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages resulting from such improper use or sale.

Conexant, the Conexant C symbol, and "What's Next in Communications Technologies" are trademarks of Conexant Systems, Inc.
Product names or services listed in this publication are for identification purposes only, and may be trademarks or registered trademarks of third parties. All other marks mentioned herein are the property of their respective owners.
© 1999, Conexant Systems, Inc.
All Rights Reserved

Further Information:

literature@conexant.com
1-800-854-8099 (North America)
33-14-906-3980 (International)
Web Site
www.conexant.com

World Headquarters

Conexant Systems, Inc.
4311 Jamboree Road,
P.O. Box C

Newport Beach, CA 92658-8902
Phone: (949) 483-4600
Fax: (949) 483-6375
U.S. Florida/South America

Phone: (727) 799-8406
Fax: (727) 799-8306
U.S. Los Angeles

Phone: (805) 376-0559
Fax: (805) 376-8180
U.S. Mid-Atlantic

Phone: (215) 244-6784
Fax: (215) 244-9292

U.S. North Central

Phone: (630) 773-3454
Fax: (630) 773-3907

U.S. Northeast

Phone: (978) 692-7660
Fax: (978) 692-8185
U.S. Northwest/Pacific West

Phone: (408) 249-9696
Fax: (408) 249-7113

U.S. South Central

Phone: (972) 733-0723
Fax: (972) 407-0639
U.S. Southeast

Phone: (919) 858-9110
Fax: (919) 858-8669
U.S. Southwest

Phone: (949) 483-9119
Fax: (949) 483-9090
APAC Headquarters
Conexant Systems Singapore,
Pte. Ltd.
1 Kim Seng Promenade
Great World City
\#09-01 East Tower
Singapore 237994
Phone: (65) 7377355
Fax: (65) 7379077

Australia
Phone: (61 2) 98694088
Fax: (61 2) 98694077
China
Phone: (86 2) 63612515
Fax: (86 2) 63612516

Hong Kong

Phone: (852) 28270181
Fax: (852) 28276488

India
Phone: (91 11) 6924780
Fax: $(91$ 11) 6924712

Korea - Seoul Office
Phone: (82 2) 5652880
Fax: (82 2) 5651440

Korea - Taegu Office
Phone: (82 53) 745-2880
Fax: (82 53) 745-1440

Europe Headquarters

Conexant Systems France
Les Taissounieres B1
1681 Route des Dolines
BP 283
06905 Sophia Antipolis Cedex
France
Phone: (33 1) 41443650
Fax: (33 1) 93003303

Europe Central

Phone: (49 89) 8291320
Fax: (49 89) 8342734

Europe Mediterranean

Phone: (39 02) 93179911
Fax (39 02) 93179913

Europe North

Phone: $(44$ 1344) 486444
Fax: (44 1344) 486555

Europe South
Phone: (33 1) 41443650
Fax: (33 1) 41443690

Middle East Headquarters
Conexant Systems Commercial
(Israel) Ltd.
P.O. Box 12660

Herzlia 46733
Israel
Phone: (972 9) 9524064
Fax: (972 9) 9513924

Japan Headquarters
Conexant Systems Japan Co., Ltd.
Shimomoto Building
1-46-3 Hatsudai,
Shibuya-ku
Tokyo, 151-0061
Japan
Phone: (81 3) 53711567
Fax: $\quad(813) 53711501$

Taiwan Headquarters

Conexant Systems, Taiwan Co., Ltd.
Room 2808
International Trade Building
333 Keelung Road, Section 1
Taipei 110
Taiwan, ROC
Phone: (886 2) 27200282
Fax: (886 2) 27576760

[^0]: * DSS telephone channel numbers are applicable when RF105 is used with Conexant's Hummingbird chip set. Channel spacing = 1.2 MHz between adjacent channels from channel 2 through channel 19 ; channel spacing $=600 \mathrm{kHz}$ between channels $1-2$ and between channels 19-20.

