Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

General Description
The MAX8967 is an μ PMIC with two DC-to-DC stepdown switching converters and six remote capaci-tor-capable LDOs. The step-down converters deliver up to 2A of output current independently. Two of the LDOs deliver a load current up to 300 mA , while the remaining four deliver up to 150 mA . Both step-down converters have remote sense, allowing loads to be placed away from the IC. The IC operates over a 2.6 V to 5.5 V input supply range.

Fixed-frequency 4.4 MHz PWM operation and clocks that are 180° out of phase permit the use of small external components. Under light load conditions, the step-down converters automatically switch to skip mode operation. In skip mode operation, switching occurs only as needed, allowing efficient operation. Placing either of the stepdown converters into green mode reduces the quiescent current consumption of that converter to $5 \mu \mathrm{~A}$ (typ).
The IC supports dynamic adjustment of the output voltage through its ${ }^{12} \mathrm{C}$ interface. Each step-down converter has two register settings for output voltage and a setting for ramp rate. Also, each step-down converter has a dedicated enable pin and a dedicated VID pin to toggle between the two programmed output voltages. Additionally, an interrupt output is provided, allowing the IC to signal its master.

Typical Operating Circuit

Benefits and Features

\author{

- Multi-Output PMIC in a Compact Package
 \diamond Two 2A Step-Down Converters with Remote Output Voltage Sensing
 \diamond Two 300mA LDOs
 \diamond Four 150mA LDOs
 $\diamond<1 \mu \mathrm{~A}$ Shutdown Current
 $\diamond 2.32 \mathrm{~mm} \times 2.44 \mathrm{~mm}$ Package
 - Versatile Step-Down Converters
 \triangleleft Programmable Output Voltage (0.6V to 3.3875V) Through I ${ }^{2}$ C Bus
 \diamond Programmable Output Voltage Slew Rate ($12.5 \mathrm{mV} / \mu \mathrm{s}$ to $50 \mathrm{mV} / \mu \mathrm{s}$)
 \diamond Dynamic Switching Between Two Output Voltages Through VID_Pins
 - Efficient Step-Down Converters
 \diamond Over 95\% Efficiency with Internal Synchronous Rectifier
 \diamond Automatic Skip Mode at Light Loads
 \diamond Low 61رA (typ) Quiescent Current
 $\diamond 5 \mu \mathrm{~A}$ (typ) Green Mode per Step-Down Converter
 - Programmable LDOs
 \diamond Programmable Output Voltage (0.8V to 3.95V in 50mV Steps)
 \diamond Programmable Soft-Start Slew Rate ($5 \mathrm{mV} / \mu \mathrm{s}-100 \mathrm{mV} / \mu \mathrm{s}$)
 - Reduces Component Size and Board Area Solution
 $\diamond 4.4 \mathrm{MHz}$ Step-Down Switching Allows for $1 \mu \mathrm{H}$ Inductors
 \diamond CoUT $=1 \mu \mathrm{~F}$ for All LDOs
 \diamond Reduced Board Space with Remote Capacitor LDOs
 \diamond Internal Feedback for Step-Down Converters and LDOs
}

Applications
Cellular Handsets and Smartphones
Tablets
Portable Devices

Ordering Information appears at end of data sheet.

[^0]For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ABSOLUTE MAXIMUM RATINGS

IN1, IN2, INA, INB, AV, OUT1, OUT2, ,SCL, SDA, SNSP1, SNSN1, SNSP2, SNSN2 to AGND.....................-0.3V to +6.0V	
EN1, EN2, $\mathrm{V}_{\text {ID }}, \mathrm{V}_{\text {IO }}$, IRQB to AGND...... -0.3 V to ($\mathrm{V}_{\text {AV }}+0.3 \mathrm{~V}$)	
LDO1, LDO2, LDO3 to AGN	-0.3V to (VINA +0.3 V)
LDO4, LDO5, LDO6 to AG	. 3 V to (V INB +0.3 V)
PGND1, PGND2 to AGND	-0.3V to +0.3V
X1, LX2 Curre	ARMS

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 30-Bump, $2.32 \mathrm{~mm} \times 2.44 \mathrm{~mm}$ WLP (derate $20.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	. 1632 mW
Operating Temperature.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$\ldots+260^{\circ} \mathrm{C}$

CAUTION! ESD SENSITIVE DEVICE

PACKAGE THERMAL CHARACTERISTICS (Note 1)

WLP
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$) $\ldots \ldots49^{\circ} \mathrm{C} / \mathrm{W} \quad$ Junction-to-Case Thermal Resistance $(\theta \mathrm{JC})$..................... $9^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I \mathrm{O}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Input Voltage Range	$V_{\text {INPUT }}$	$\mathrm{V}_{\mathrm{IN} 1}=\mathrm{V}_{\text {IN2 }}=\mathrm{V}_{\text {AV }}$		2.6		5.5	V
Overvoltage Lockout	OVP	$V_{\text {AV }}$ rising, 100 mV hysteresis		5.70	5.85	6.00	V
AV Undervoltage Lockout (UVLO)	UVLO	$\mathrm{V}_{\text {AV }}$ rising, 55mV hysteresis		2.3	2.4	2.5	V
V_{10} Operating Range	V_{10}			1.65		5.5	V
$\mathrm{V}_{\text {IO }}$ Enable Threshold High				1.4			V
$\mathrm{V}_{1} \mathrm{E}$ Enable Threshold Low						0.4	V
V_{10} Enable Hysteresis					100		mV
V_{A} Shutdown Current		$\begin{aligned} & V_{\mathrm{AV}}>2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}<0.4 \mathrm{~V}, \\ & \mathrm{EN} 1=\mathrm{EN} 2=0 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-5	+0.1	+0.5	A
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1		HA
$\mathrm{V}_{\text {A }}$ Standby Current		$\mathrm{V}_{\mathrm{AV}}>2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}>1.4 \mathrm{~V}, \mathrm{EN} 1=\mathrm{EN} 2=0$			28		$\mu \mathrm{A}$
$\mathrm{V}_{\text {IO }}$ Supply Current		All logic in high or low state			0.1		$\mu \mathrm{A}$
Quiescent Current (Green Mode)		No switching, $\mathrm{V}_{\text {OUT_ }}=1.2 \mathrm{~V}$, step-down converter in green mode, all LDOs off			5		$\mu \mathrm{A}$
Quiescent Current (Step-Down Converters On)		No switching, $\mathrm{V}_{\text {OUT_ }}=1.2 \mathrm{~V}$ remote sense off			61	85	$\mu \mathrm{A}$
Quiescent Current (All On Normal Mode)		No switching, $\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$, remote sense off, both step-down converters in normal mode, all LDOs on			176		$\mu \mathrm{A}$
Quiescent Current (Step-Down Converters On, Normal Mode Remote sense ON)		No switching, $\mathrm{V}_{\text {OUT_ }}=1.2 \mathrm{~V}$, remote sense on, both step-down converters on			75	120	$\mu \mathrm{A}$

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IO }}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Quiescent Current (All On Green Mode)		No switching, $\mathrm{V}_{\text {OUT_ }}=1.2 \mathrm{~V}$, both step-down converters in green mode, all LDOs on		40			$\mu \mathrm{A}$
FPWM Current		Forced PWM, one step-down converter on only, I IUT $=0$ A, Cout1 $=$ CoUT2 $=22 \mu \mathrm{~F}$, $\mathrm{L} 1=\mathrm{L} 2=1 \mu \mathrm{H}, \mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$			9		mA
Thermal Shutdown		T_{A} rising, $20^{\circ} \mathrm{C}$ hysteresis			+160		${ }^{\circ} \mathrm{C}$
STEP-DOWN CONVERTER 1							
Output Current		$\mathrm{L}=1 \mu \mathrm{H}$		2			A
Adjustable Output Voltage Range		12.5 mV steps		0.6000		3.3875	V
Settling Time		FPWM, IOUT $=0.2 \mathrm{~A}$ C $_{\text {OUT }}=22 \mu \mathrm{~F}$, $\mathrm{L}=1 \mu \mathrm{H}$, measure from $\mathrm{V}_{\text {OUT1 }}=1 \mathrm{~V}$ to $\mathrm{V}_{\text {OUT1 }}=1.2 \mathrm{~V}$		20			$\mu \mathrm{s}$
Output Voltage Accuracy (FPWM)		$\mathrm{V}_{\text {OUT1 }}=1.2 \mathrm{~V}, \mathrm{FPWM}, \mathrm{V}_{\text {OUT1 }}<0.95 \times \mathrm{V}_{\text {IN }}$, remote sense disabled (Note 3)		1.176	1.20	1.224	V
Output Voltage Accuracy (Green Mode)		Green mode, ${ }^{\text {l }}$ OUT1 $\leq 5 \mathrm{~mA}$ (Note 3)		1.152	1.200	1.248	V
Line Regulation		$\begin{aligned} & \text { V OUT1 }=1.2 \mathrm{~V}, \text { I IOUT1 }=0.2 \mathrm{~A}, \\ & \text { Cout1 }=22 \mu \mathrm{~F}, \mathrm{~L}=1 \mu \mathrm{H} \end{aligned}$			0.04		\%/V
Load Regulation		$\mathrm{V}_{\text {OUT1 }}=1.2 \mathrm{~V}, 0 \leq \mathrm{l}_{\text {OUT } 1} \leq 2 \mathrm{~A}$			+0.125		\%/A
Switching Frequency				3.96	4.40	4.84	MHz
Peak Current Limit		FPWM mode		2500	3000	3600	mA
Valley Current Limit		FPWM mode			1800		mA
Negative Current limit		FPWM mode			1		A
Zero-Crossing Current Threshold		Used in skip mode and green mode			20		mA
PMOS On-Resistance		$\mathrm{V}_{\text {IN_ }}=3.6 \mathrm{~V}, \mathrm{I}_{\text {OUT1 }}=190 \mathrm{~mA}$			60		$\mathrm{m} \Omega$
NMOS On-Resistance		$\mathrm{V}_{\text {IN_ }}=3.6 \mathrm{~V}, \mathrm{I}_{\text {OUT } 1}=190 \mathrm{~mA}$			50		$\mathrm{m} \Omega$
LX Leakage		$\mathrm{V}_{\mathrm{LX} 1}=\mathrm{V}_{\mathrm{IN}}, 0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.1	+1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		1		
Output Discharge Resistor in Shutdown		Feature must be active, see the Register Definitions section			100		Ω

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Step Ramp Rate		Slew__[7:6] = 00, see Table 15		12.5		$\mathrm{mV} / \mathrm{\mu s}$
		Slew__[7:6] = 01, see Table 15	25			
		Slew_ _[7:6] = 10, see Table 15	50			
Load Transient FPWM		FPWM mode, $\mathrm{V}_{\text {OUT1 }}=1.2 \mathrm{~V}$, load steps between 0.2 to 1.2 A in 30 ns , CoUT1 $=22 \mu \mathrm{~F}, \mathrm{~L}=1 \mu \mathrm{H}$	40			mV
Load Transient (Skip Mode)		Skip mode, $\mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}$, load steps between 0.2 to 1.2A in 30ns, $\mathrm{C}_{\text {OUT1 }}=22 \mu \mathrm{~F}, \mathrm{~L}=1 \mu \mathrm{H}$	40			mV
Line Transient		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=1.2 \mathrm{~V}, \text { I OUT1 }=1.2 \mathrm{~A}, \\ & \text { CoUT1 }=22 \mu \mathrm{~F}, \mathrm{~L}=1 \mu \mathrm{H} . \\ & \hline \end{aligned}$	0.25			\%/V
Overshoot		Transitions between output voltage states 1.0 and 1.4 V , IOUT1 $=400 \mathrm{~mA}$, $\mathrm{C}_{\text {OUT1 }}=22 \mu \mathrm{~F}, \mathrm{~L}=1 \mu \mathrm{H}$	40			mV
Chip Enable Time		From chip standby state until first output voltage ramp starts	250			$\mu \mathrm{s}$
Enable Time		From enabling until voltage ramp starts, the IC is in normal operating state with previous state shut down, IOUT1 $\leq 100 \mathrm{~mA}$, $\mathrm{L}=1 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=22 \mu \mathrm{~F}$	25			$\mu \mathrm{s}$
Output POK Threshold		$\mathrm{V}_{\text {OUT1 }}$ falling, 1.2V nominal setting	86	90	94	\%VOUT1
Output POK Threshold Hysteresis			3			\%
Minimum Output Capacitance			12			$\mu \mathrm{F}$
Minimum Inductance		$1 \mu \mathrm{H}$ inductor with 30% duration	1			$\mu \mathrm{H}$
STEP-DOWN CONVERTER 2						
Output Current		$\mathrm{L}=1 \mu \mathrm{H}$	2			A
Adjustable Output Voltage Range		12.5 mV steps	0.6000		3.3875	V
Settling Time		FPWM, IOUT2 $=0.2 \mathrm{~A}, \mathrm{C}_{\text {OUT2 }}=22 \mu \mathrm{~F}$, $\mathrm{L}=1 \mu \mathrm{H}$, measure from $\mathrm{V}_{\text {OUT2 }}=1 \mathrm{~V}$ to $\mathrm{V}_{\text {OUT2 }}=1.2 \mathrm{~V}$		20		$\mu \mathrm{s}$
Output Voltage Accuracy (FPWM)		$\mathrm{V}_{\text {OUT2 }}=1.2 \mathrm{~V}$, FPWM, $\mathrm{V}_{\text {OUT2 }}<0.95 \times \mathrm{V}_{\text {IN }}$, remote sense disabled (Note 3)	1.176	1.20	1.224	V
Output Voltage Accuracy (Green Mode)		Green mode, IOUT2 $\leq 5 \mathrm{~mA}$ (Note 3)	1.152	1.200	1.248	V
Line Regulation		$\begin{aligned} & \mathrm{V}_{\text {OUT2 }}=1.2 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=0.2 \mathrm{~A}, \\ & \text { CouT2 }=22 \mu \mathrm{~F}, \mathrm{~L}=1 \mu \mathrm{H} \end{aligned}$		0.04		\%/V

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IO }}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I O}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LDO1							
Input Voltage Range	$\mathrm{V}_{\text {IN,LDO1 }}$			1.7		5.5	V
Undervoltage Lockout	VUVLO,LDO1	$\mathrm{V}_{\text {IN,LDO1 }}$ rising, 100 mV hysteresis			1.6	1.7	V
Output Voltage Range	Vout,LDO1	$\mathrm{V}_{\text {INLDO1 }}$ is the maximum of 3.7 V or $\mathrm{V}_{\text {OUT,LDO1 }}+0.3 \mathrm{~V}$		0.8		3.95	V
Maximum Output Current	${ }^{\text {M MAX,LDO1 }}$	Normal mode		150			mA
		Green mode		5			
Minimum Output Capacitance	Cout,LDO1	(Note 4)	Normal mode		0.7		$\mu \mathrm{F}$
			Green mode		0.7		
Bias Enable Time	tLBIAS1	Time to enable LDO bias only, central bias is already enabled			90		$\mu \mathrm{S}$
Bias Enable Currents	${ }^{\text {QBIIAS1 }}$	LDO bias enabled, LDOBIASEN = 1			10		$\mu \mathrm{A}$
AV Supply Current	${ }^{\text {aV,LDO1 }}$	No load	Shutdown, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 5)		0		$\mu \mathrm{A}$
			Normal regulation		3	6	
			Green mode		0.5	3	
INA Input Supply Current	IIN,LDO1	No load	Shutdown, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 6)		0		$\mu \mathrm{A}$
			Normal regulation		15	30	
			Green mode		1	3	
Output Voltage Accuracy		Normal mode	$\mathrm{V}_{\text {IN,LDO1 }}=\mathrm{V}_{\text {NOM }}+$ 0.3 V to 5.5 V with 1.7 V minimum, IOUT,LDO1 $=$ 0.1 mA to $\mathrm{I}_{\mathrm{MAX}, \mathrm{LDO}}$, $\mathrm{V}_{\text {NOM,LDO1 }}$ set to any voltage	-3		+3	\%
		Green mode	$\mathrm{V}_{\mathrm{IN}, \mathrm{LDO}}=\mathrm{V}_{\text {NOM,LDO1 }}$ +0.3 V to 5.5 V with 2.4 V minimum, IOUT,LDO1 $=0.1 \mathrm{~mA}$ to 5 mA , $\mathrm{V}_{\text {NOM,LDO1 }}$ set to any voltage	-5		+5	

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Load Regulation (Note 7)		Normal mode	IOUT,LDO1 $=0.1 \mathrm{~mA}$ to ${ }^{\text {IMAX,LDO1, }}$, ${ }_{\text {IN,LDO1 }}$ $=\mathrm{V}_{\text {NOM,LDO1 }}+0.3 \mathrm{~V}$ with 1.7 V minimum, $\mathrm{V}_{\text {NOM,LDO1 }}$ set to any voltage			0.1		\%
		Green mode	$\mathrm{I}_{\text {OUT,LDO1 }}=0.1 \mathrm{~mA}$ to $5 \mathrm{~mA}, \mathrm{~V}_{\text {IN,LDO1 }}=$ $\mathrm{V}_{\text {NOM,LDO1 }}+0.3 \mathrm{~V}$ with 2.4 V minimum, $\mathrm{V}_{\text {NOM,LDO1 }}$ set to any voltage			0.2		
Line Regulation (Note 7)		Normal mode	$\mathrm{V}_{\text {IN,LDO1 }}=\mathrm{V}_{\text {NOM,LDO1 }}$ +0.3 V to 5.5 V with 1.7 V minimum, IOUT,LDO1 = $0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NOM}, \mathrm{LDO}}$ set to any voltage			0.03		\%/V
		Green mode	$\mathrm{V}_{\text {IN,LDO1 }}=\mathrm{V}_{\text {NOM,LDO1 }}$ +0.3 V to 5.5 V with 2.4 V minimum, IOUT,LDO1 = $0.1 \mathrm{~mA}, \mathrm{~V}_{\text {NOM,LDO1 }}$ set to any voltage			0.1		
Dropout Voltage	VDO,LDO1	Normal mode	IOUT,LDO1 = IMAX,LDO1	$\begin{aligned} & \mathrm{V}_{\text {IN,LDO1 }} \\ & =3.7 \mathrm{~V} \end{aligned}$		60	120	mV
				$\begin{aligned} & \text { VIN,LDO1 } \\ & =1.7 \mathrm{~V} \end{aligned}$		150	300	
		Green mode	$\begin{aligned} & \mathrm{I}_{\text {OUT }, \text { LDO1 }}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {IN }, \text { LDO1 }}=3.7 \mathrm{~V} \\ & \hline \end{aligned}$			50	100	
Output Current Limit	ILIM,LDO1	$\mathrm{V}_{\text {OUT,LDO1 }}=0 \mathrm{~V}$			150	225	375	mA
Output Load Transient (LDO1OVCLMP_EN = 1) (Notes 4, 7)		Normal mode, $\mathrm{V}_{\text {IN,LDO1 }}=\mathrm{V}_{\text {NOM,LDO1 }}+$ 0.3 V to 5.5 V with 1.7 V absolute minimum, IOUT,LDO1 $=1 \%$ to 100% to 1% of $I_{\text {MAX,LDO1 }} \mathrm{V}_{\text {NOM,LDO1 }}$ set to any voltage, $\mathrm{t}_{\mathrm{R} 1}=\mathrm{t}_{\mathrm{F} 1}=1 \mu \mathrm{~s}, \operatorname{LDO1COMP}[5: 4]=01$				66		mV
		Green mode, $\mathrm{V}_{\text {IN,LDO1 }}=\mathrm{V}_{\text {NOM,LDO1 }}+$ 0.3 V to 5.5 V with 2.4 V absolute minimum, IOUT,LDO1 $=0.05 \mathrm{~mA}$ to 5 mA to 0.05 mA , $\mathrm{V}_{\text {NOM,LDO1 }}$ set to any voltage, $t_{R 1}=t_{F 1}=1 \mu \mathrm{~s}$				25		

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Output Line Transient (Notes 3, 6)		Normal mode, $\mathrm{V}_{\text {IN,LDO1 }}=\mathrm{V}_{\text {NOM,LDO1 }}+$ 0.3 V to $\mathrm{V}_{\text {NOM,LDO1 }}+0.8 \mathrm{~V}$ to $\mathrm{V}_{\text {NOM,LDO1 }}+$ 0.3 V with 1.7 V absolute minimum, $\mathrm{t}_{\mathrm{R} 1}=\mathrm{t}_{\mathrm{F} 1}$ $=1 \mu \mathrm{~s}, \mathrm{I}_{\mathrm{OUT}, \mathrm{LDO1}}=\mathrm{I}_{\mathrm{MAX}, \mathrm{LDO}}, \mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}$ set to any voltage				5		mV
		Green mode, $\mathrm{V}_{\text {IN,LDO1 }}=\mathrm{V}_{\text {NOM,LDO1 }}+$ 0.3 V to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO} 1}+0.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO} 1}+$ 0.3 V with 2.4 V absolute minimum, $\mathrm{t}_{\mathrm{R} 1}=\mathrm{t}_{\mathrm{F} 1}$ $=1 \mu \mathrm{~s}, \mathrm{I}_{\text {OUT,LDO1 }}=5 \mathrm{~mA}, \mathrm{~V}_{\text {NOM, LDO1 }}$ set to any voltage				5		
Power-Supply Rejection	PSRRLDO1	Rejection from $\mathrm{V}_{\mathrm{IN}, \mathrm{LDO}} 1$ to Vout,LDO1 lout,LDO1 = 10\% of IMAX,LDO1	VINLDO1DC $=\mathrm{V}_{\mathrm{NOM}}$, LDO1 + 0.3 V $V_{\text {INLDO1AC }}$ $=50 \mathrm{mV}$	$\mathrm{f}=1 \mathrm{kHz}$		63		dB
				$\mathrm{f}=10 \mathrm{kHz}$		51		
				$\mathrm{f}=100 \mathrm{kHz}$		44		
				$f=1000 \mathrm{kHz}$		57		
				$\mathrm{f}=4450 \mathrm{kHz}$		33		
		Green mode, IOUT,LDO1 $=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$, rejection from $\mathrm{V}_{\text {IN,LDO1 }}$ to $\mathrm{V}_{\text {OUT,LDO1 }}$				50		
Output Noise		$\mathrm{f}=10 \mathrm{~Hz}$ to 100 kHz , IOUT,LDO1 $=10 \%$ of ${ }^{\text {I MAX,LDO1 }}$		$\mathrm{V}_{\text {OUT,LDO1 }}=0.8 \mathrm{~V}$		45		$\mu \mathrm{V}_{\text {RMS }}$
				$\mathrm{V}_{\text {OUT,LDO1 }}=1.8 \mathrm{~V}$		45		
				$\mathrm{V}_{\text {OUT,LDO1 }}=3.7 \mathrm{~V}$		60		
Startup Ramp Rate	tsS,LDO1	After enabling		LDO1SS = 0		100		$\mathrm{mV} / \mathrm{\mu s}$
				LD01SS = 1		5		
Active-Discharge Resistance		$\mathrm{V}_{\text {OUT,LDO1 }}=1 \mathrm{~V}$, output disabled		Active discharge enabled, LDO1ADE = 1		0.16	0.3	$\mathrm{k} \Omega$
				Active discharge disabled, $\text { LDO1ADE }=0$	1000			

MAX8967

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I \mathrm{~N}_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IO }}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Clamp Active Regulation Voltage		Clamp active (LDO1OVCLMP_EN = 1), LDO output sinking 0.1 mA		$\mathrm{V}_{\text {NOM, }}$ LDO1			V
Clamp Disabled Overvoltage Sink Current		$\mathrm{V}_{\text {OUT,LDO1 }}=\mathrm{V}_{\text {NOM,LDO1 }} \times 110 \%$			2.2		$\mu \mathrm{A}$
Enable Delay (Note 4)	tLON,LDO1	Time from LDO enable command received to the output starting to slew	$\begin{aligned} & \text { Ramp rate = } \\ & 100 \mathrm{mV} / \mu \mathrm{s} \end{aligned}$		10		$\mu \mathrm{s}$
			$\text { Ramp rate }=5 \mathrm{mV} /$ $\mu \mathrm{s}$		60		
Disable Delay (Note 4)		After LDO is disabled; the LDO output voltage discharges based on load and COUT; to ensure fast discharge times, enable the active discharge resistor		0.1			$\mu \mathrm{s}$
Transition Time from Green Mode to Normal Mode					10		$\mu \mathrm{s}$
Thermal Shutdown		Output disabled or enabled	T_{j} rising		165		${ }^{\circ} \mathrm{C}$
			T_{J} falling		150		
Power-OK Threshold	VPOKTHL1	$V_{\text {OUT,LDO1 }}$ when VPOK switches	VOUT,LDO1 rising		92	95	\%
			V OUT,LDO1 falling	84	87		
Power-OK Noise Pulse Immunity	VPOKNF1	VOUT,LDO1 pulsed from 100% to 80% of regulation		25			$\mu \mathrm{s}$
LDO2							
Input Voltage Range	VIN,LDO2			1.7		5.5	V
Undervoltage Lockout	VUVLO, LDO2	VIN,LDO2 rising, 100mV hysteresis			1.6	1.7	V
Output Voltage Range	VOUT, LDO2	$\mathrm{V}_{\text {IN,LDO2 }}$ is the maximum of 3.7 V or $\mathrm{V}_{\text {OUT,LDO2 }}+0.3 \mathrm{~V}$		0.8		3.95	V
Maximum Output Current	${ }^{\text {M MAX,LDO2 }}$	Normal mode		300			mA
		Green mode		5			
Minimum Output Capacitance	Cout, LDO2	(Note 3)	Normal mode		0.7		$\mu \mathrm{F}$
			Green mode		0.7		
Bias Enable Time	tLBIAS2	Time to enable LDO bias only, central bias is already enabled			90		$\mu \mathrm{s}$
Bias Enable Current	l LBIAS2	LDO bias enabled			10		$\mu \mathrm{A}$

MAX8967

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IO }}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2$)$

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
AV Supply Current	${ }^{\text {I }}$ AV,LDO2	No load	Shutdown, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 5)		0		$\mu \mathrm{A}$
			Normal regulation		3	6	
			Green mode		0.5	3	
INA Supply Current	IIN,LDO2	No load	Shutdown, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 5)		0		$\mu \mathrm{A}$
			Normal regulation		17	30	
			Green mode		1	3	
Output Voltage Accuracy		Normal mode	$\mathrm{V}_{\text {IN,LDO2 }}=\mathrm{V}_{\text {NOM,LDO2 }}$ +0.3 V to 5.5 V with 1.7 V minimum, IOUT,LDO2 = 0.1 mA to $\mathrm{I}_{\mathrm{MAX}, \mathrm{LDO} 2,}$ $V_{\text {NOM,LDO2 }}$ set to any voltage	-3		+3	\%
		Green mode	$\mathrm{V}_{\text {IN,LDO2 }}=\mathrm{V}_{\text {NOM,LDO2 }}$ +0.3 V to 5.5 V with 2.4 V minimum, IOUT,LDO2 = 0.1 mA to $5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NOM}, \mathrm{LDO}}$ set to any voltage	-5		+5	
Load Regulation (Note 6)		Normal mode	IOUT,LDO2 $=0.1 \mathrm{~mA}$ to ${ }^{\text {MAX,LDO2, }} \mathrm{V}_{\text {IN,LDO2 }}=$ $\mathrm{V}_{\text {NOM,LDO2 }}+0.3 \mathrm{~V}$ with 1.7 V minimum, $\mathrm{V}_{\text {NOM,LDO2 }}$ set to any voltage		0.1		\%
		Green mode	IOUT,LDO2 $=0.1 \mathrm{~mA}$ to 5 mA , $\mathrm{V}_{\text {IN,LDO2 }}=\mathrm{V}_{\text {NOM,LDO2 }}+$ 0.3 V with 2.4 V minimum, $\mathrm{V}_{\text {NOM,LDO2 }}$ set to any voltage		0.2		
Line Regulation (Note 6)		Normal mode	$\mathrm{V}_{\text {IN,LDO2 }}=\mathrm{V}_{\text {NOM,LDO2 }}$ +0.3 V to 5.5 V with 1.7 V minimum; IOUT,LDO2 = $0.1 \mathrm{~mA}, \mathrm{~V}_{\text {NOM, LDO2 }}$ set to any voltage		0.03		\%/V
		Green mode	$\mathrm{V}_{\text {IN,LDO2 }}=\mathrm{V}_{\text {NOM,LDO2 }}$ +0.3 V to 5.5 V with 2.4 V minimum; IOUT,LDO2 = $0.1 \mathrm{~mA}, \mathrm{~V}_{\text {NOM,LDO2 }}$ set to any voltage		0.1		

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I \mathrm{O}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Dropout Voltage	VDO,LDO2	Normal mode	$\begin{aligned} & \text { IOUT,LDO2 = } \\ & \text { IMAX,LDO2 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {IN,LDO2 }}= \\ & 3.7 \mathrm{~V} \end{aligned}$		50	100	mV
				$\begin{aligned} & \mathrm{V}_{\mathrm{IN}, \mathrm{LDO2}}= \\ & 1.7 \mathrm{~V} \end{aligned}$		150	450	
		Green mode	$\begin{aligned} & \text { IOUT,LDO2 }=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}, \mathrm{LDO}} \\ & =3.7 \mathrm{~V} \end{aligned}$			150	300	
Output Current Limit	ILIM,LDO2	$\mathrm{V}_{\text {OUT,LDO2 }}=0 \mathrm{~V}$			300	450	750	mA
Output Load Transient (LDO2OVCLMP_EN = 1) (Notes 3, 6)		Normal mode, $\mathrm{V}_{\text {IN,LDO2 }}=\mathrm{V}_{\text {NOM,LDO2 }}+$ 0.3 V to 5.5 V with 1.7 V absolute minimum; IOUT,LDO2 $=1 \%$ to 100% to 1% of $I_{\text {MAX,LDO2 }}, \mathrm{V}_{\text {NOM,LDO2 }}$ set to any voltage, $\mathrm{t}_{\mathrm{R} 2}=\mathrm{t}_{\mathrm{F} 2}=1 \mu \mathrm{~s}, \mathrm{LDO2COMP}[5: 4]=01$				66		mV
		Green mode, $\mathrm{V}_{\text {IN,LDO2 }}=\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+$ 0.3 V to 5.5 V with 2.4 V absolute minimum; ${ }^{\text {OUT,LDO2 }}=0.05 \mathrm{~mA}$ to 5 mA to 0.05 mA , $\mathrm{V}_{\text {NOM,LDO2 }}$ set to any voltage, $t_{R 2}=t_{\text {F2 }}=1 \mu \mathrm{~s}$				25		
Output Line Transient (Notes 3, 6)		Normal mode, $\mathrm{V}_{\text {IN,LDO2 }}=\mathrm{V}_{\text {NOM,LDO2 }}+$ 0.3 V to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO} 2}+0.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+$ 0.3 V with 1.7 V absolute minimum; $\mathrm{t}_{\mathrm{R} 2}=\mathrm{t}_{\mathrm{F} 2}=1 \mu \mathrm{~s}, \mathrm{I}_{\mathrm{OUT}, \mathrm{LDO2}}=\mathrm{I}_{\mathrm{MAX}, \mathrm{LDO2}}$, $\mathrm{V}_{\text {NOM,LDO2 }}$ set to any voltage				5		mV
		Green mode, $\mathrm{V}_{\text {IN,LDO2 }}=\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO2}}+$ 0.3 V to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO} 2}+0.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+$ 0.3 V with 2.4 V absolute minimum; $\mathrm{t}_{\mathrm{R} 2}=\mathrm{t}_{\mathrm{F} 2}=1 \mu \mathrm{~s}, \mathrm{I}_{\text {OUT }, \text { LDO2 }}=5 \mathrm{~mA}$, $\mathrm{V}_{\text {NOM,LDO2 }}$ set to any voltage				5		

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2$)$

PARAMETER	SYMBOL	CONDITIONS				MIN	TYP	MAX	UNITS
Power-Supply Rejection	PSRRLDO2	Rejection from $\mathrm{V}_{\text {IN,LDO2 }}$ to VOUT,LDO2 IOUT,LDO2 $=10 \%$ of IMAX,LDO2	$V_{\text {INLDO2DC }}=$ $\mathrm{V}_{\text {NOM,LDO2 }}$ $+0.3 \mathrm{~V}$ $\mathrm{V}_{\text {INLDO2AC }}=$ 50 mV		$\mathrm{f}=1 \mathrm{kHz}$	63			dB
					$\mathrm{f}=10 \mathrm{kHz}$	51			
					$f=100 \mathrm{kHz}$	44			
					$\mathrm{f}=1000 \mathrm{kHz}$	57			
					$\mathrm{f}=4450 \mathrm{kHz}$	33			
		Green mode, $\mathrm{I}_{\text {OUT,LDO2 }}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$, rejection from $\mathrm{V}_{\text {IN,LDO2 }}$ to $\mathrm{V}_{\text {OUT,LDO2 }}$				50			
Output Noise		$\begin{aligned} & f=10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \\ & \text { lout,LDO2 }=10 \% \text { of } \\ & \text { l }_{\text {MAX,LDO2 }} \end{aligned}$		V OUT,LDO2 $=0.8 \mathrm{~V}$		45			$\mu \mathrm{V}_{\text {RMS }}$
				V OUT,L	O22 $=1.8 \mathrm{~V}$		45		
				VOUT,L	O2 $=3.7 \mathrm{~V}$		60		
Startup Ramp Rate		After enabling		LDO2S	S $=0$		100		
Startup Ramp Rate	tSS22	After enabling		LDO2S	= 1		5		/
		$\mathrm{V}_{\text {OUT,LDO2 }}=$		Active enable LDO2	discharge d, $D E=1$		0.16	0.3	
		output disa		Active disab $=0$	discharge d, LDO2ADE	1000			
Clamp Active Regulation Voltage		Clamp active (L output sinking	$\begin{aligned} & \mathrm{DO} 2 \mathrm{OV} \\ & 1 \mathrm{~mA} \end{aligned}$	CLMP_I	$N=1), \operatorname{LDO}$		$V_{\text {NOM, }}$ LDO2		V
Clamp Disabled Overvoltage Sink Current		$\mathrm{V}_{\text {OUT,LDO2 }}=\mathrm{V}^{\prime}$	NOM,LD	2×110			2.2		$\mu \mathrm{A}$
Enable Delay (Note 3)		Time from LDO command rece	enable ved to	$\begin{aligned} & \text { Ram } \\ & 100 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { rate }= \\ & \mathrm{V} / \mathrm{us} \end{aligned}$		10		
		the output startin slew	ng to	Ram us	$\text { rate }=5 \mathrm{mV} /$		60		
Disable Delay (Note 3)		After LDO is dis voltage dischar Cout; to ensur the active disch	abled; ges bas fast d arge re	he LDO d on charge istor	output ad and times, enable		0.1		$\mu \mathrm{S}$

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I O}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Transition Time from Green Mode to Normal Mode					10		$\mu \mathrm{s}$
Thermal Shutdown		Output disabled or enabled	T_{J} rising		165		${ }^{\circ} \mathrm{C}$
			T_{j} falling		150		
Power-OK Threshold	VPOKTHL2	VOUT,LDO2 when VPOK switches	VOUT,LDO2 rising		92	95	\%
			V ${ }_{\text {OUT,LDO2 }}$ falling	84	87		
Power-OK Noise Pulse Immunity	VPOKNF2	$V_{\text {OUT,LDO2 }}$ pulsed from 100% to 80% of regulation			25		$\mu \mathrm{s}$
LDO3							
Input Voltage Range	$\mathrm{V}_{\text {IN,LDO3 }}$			1.7		5.5	V
Undervoltage Lockout	VUVLO, LDO3	VIN,LDO3 rising, 100 mV hysteresis			1.6	1.7	V
Output Voltage Range	VOUT, LDO3	$\mathrm{V}_{\mathrm{IN}, \mathrm{LDO}}$ is the maximum of 3.7 V or $\mathrm{V}_{\text {OUT,LDO3 }}+0.3 \mathrm{~V}$		0.8		3.95	V
Maximum Output Current	${ }^{\text {IMAX,LDO3 }}$	Normal mode		150			mA
		Green mode		5			
Minimum Output Capacitance	$\begin{aligned} & \text { COUT, } \\ & \text { LDO3 } \end{aligned}$	(Note 3)	Normal mode		0.7		$\mu \mathrm{F}$
			Green mode		0.7		
Bias Enable Time	tLBIAS3	Time to enable LDO bias only, central bias is already enabled			90		$\mu \mathrm{s}$
Bias Enable Currents	IQBIAS3	LDO bias enabled			10		$\mu \mathrm{A}$
AV Supply Current	$\mathrm{I}_{\text {AV,LDO3 }}$	No load	$\begin{aligned} & \text { Shutdown, } \mathrm{T}_{\mathrm{A}}= \\ & +25^{\circ} \mathrm{C}(\text { Note } 4) \end{aligned}$		0		$\mu \mathrm{A}$
			Normal regulation		3	6	
			Green mode		0.5	3	
INA Supply Current	IIN,LDO3	No load	Shutdown, $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$ (Note 5)		0		$\mu \mathrm{A}$
			Normal regulation		15	30	
			Green mode		1	3	

MAX8967

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I \mathrm{O}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2$)$

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Output Voltage Accuracy		Normal mode	$\mathrm{V}_{\text {IN,LDO3 }}=\mathrm{V}_{\text {NOM,LDO3 }}$ +0.3 V to 5.5 V with 1.7 V minimum, IOUT,LDO3 $=$ 0.1 mA to $\mathrm{I}_{\mathrm{MAX}, \mathrm{LDO}}$, $\mathrm{V}_{\text {NOM,LDO3 }}$ set to any voltage		-3		+3	\%
		Green mode	$\mathrm{V}_{\text {IN,LDO3 }}=V$ +0.3 V to 5.5 minimum, IOU 0.1 mA to 5 m $\mathrm{V}_{\text {NOM,LDO3 }}$ any voltage	NOM,LDO3 with 2.4 V T.LDO3 = to	-5		+5	
Load Regulation (Note 6)		Normal mode	IOUT,LDO3 = IMAX,LDO3, V $\mathrm{V}_{\text {NOM,LDO3 }}$ 1.7 V minimum set to any vo	.1mA to N,LDO3 = 0.3 V with , $\mathrm{V}_{\text {NOM,LDO3 }}$ age		0.1		\%
		Green mode	IOUT,LDO3 = to $5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}$, $\mathrm{V}_{\text {NOM,LDO3 }}$ 2.4 V minimum set to any vo	$\begin{aligned} & .1 \mathrm{~mA} \\ & 003= \\ & 0.3 \mathrm{~V} \text { with } \\ & , V_{\text {NOM,LDO3 }} \\ & \text { age } \end{aligned}$		0.2		
Line Regulation (Note 6)		Normal mode	$\begin{aligned} & \mathrm{V}_{\text {IN, LDO3 }}=\mathrm{V} \\ & +0.3 \mathrm{~V} \text { to } 5.5 \\ & \text { minimum, } \mathrm{I} \\ & 0.1 \mathrm{~mA}, \mathrm{~V}_{\text {NOM }} \\ & \text { any voltage } \end{aligned}$	NOM,LDO3 with 1.7 V T,LDO3 = LDO3 set to		0.03		\%/V
		Green mode	$\mathrm{V}_{\mathrm{IN}, \mathrm{LDO3}}=\mathrm{V}$ +0.3 V to 5.5 minimum, IOU $0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NON}}$ any voltage	NOM.LDO3 with 2.4 V T,LDO3 = LDO3 set to		0.1		
Dropout Voltage	VDO,LDO3	Normal Mode	$\begin{aligned} & \text { IOUT,LDO3 = } \\ & \text { IMAX,LDO3 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {IN,LDO3 }}= \\ & 3.7 \mathrm{~V} \end{aligned}$		60	120	mV
				$\begin{aligned} & \mathrm{V}_{\text {IN,LDO3 }}= \\ & 1.7 \mathrm{~V} \end{aligned}$		150	300	
		Green Mode	$\begin{aligned} & \text { IOUT,LDO3 }=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {IN }, \text { LDO3 }}=3.7 \mathrm{~V} \end{aligned}$			50	100	
Output Current Limit	ILIM,LDO3	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			150	225	375	mA

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I O}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Output Load Transient (LDO3OVCLMP_EN = 1) (Notes 3, 6)		Normal mode, $\mathrm{V}_{\text {IN,LDO3 }}=\mathrm{V}_{\text {NOM,LDO3 }}+$ 0.3 V to 5.5 V with 1.7 V absolute minimum, IOUT,LDO3 $=1 \%$ to 100% to 1% of ${ }^{\text {IMAX,LDO3 }}, \mathrm{V}_{\text {NOM,LDO3 }}$ set to any voltage, $\mathrm{t}_{\mathrm{R} 3}=\mathrm{t}_{\mathrm{F} 3}=1 \mu \mathrm{~s}, \operatorname{LDO3COMP}[5: 4]=01$				66		mV
		Green mode, $\mathrm{V}_{\text {IN,LDO3 }}=\mathrm{V}_{\text {NOM,LDO3 }}+$ 0.3 V to 5.5 V with 2.4 V absolute minimum, $\mathrm{I}_{\text {OUT,LDO3 }}=0.05 \mathrm{~mA}$ to 5 mA to 0.05 mA , $\mathrm{V}_{\text {NOM,LDO3 }}$ set to any voltage, $t_{\text {R3 }}=t_{\text {F3 }}=1 \mu \mathrm{~s}$				25		
Output Line Transient (Notes 3, 6)		Normal mode, $\mathrm{V}_{\text {IN,LDO3 }}=\mathrm{V}_{\text {NOM,LOD3 }}+$ 0.3 V to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+0.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+$ 0.3 V with 1.7 V absolute minimum, $\mathrm{t}_{\text {R3 }}=\mathrm{t}_{\mathrm{F} 3}=1 \mu \mathrm{~s}, \mathrm{I}_{\text {OUT,LOD3 }}=I_{\text {MAX,LDO3 }}$, $\mathrm{V}_{\text {NOM, LOD3 }}$ set to any voltage				5		mV
		Green mode, $\mathrm{V}_{\text {IN,LDO3 }}=\mathrm{V}_{\text {NOM,LOD3 }}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+0.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+0.3 \mathrm{~V}$ with 2.4 V absolute minimum, $\mathrm{t}_{\mathrm{R} 3}=\mathrm{t}_{\mathrm{F} 3}=1 \mu \mathrm{~s}$, $I_{\text {OUT,LOD3 }}=5 \mathrm{~mA}, \mathrm{~V}_{\text {NOM, LOD3 }}$ set to any voltage				5		
Power-Supply Rejection	PSRR ${ }_{\text {LDO3 }}$	Rejection from $\mathrm{V}_{\text {IN,LDO3 }}$ to VOUT,IDO3 IOUT,LDO3 $=10 \% \text { of }$ ${ }^{\text {I MAX,LDO3 }}$	$\begin{aligned} & V_{\text {INLDO3DC }} \\ & = \\ & V_{\text {NOM,LDO3 }} \\ & +0.3 \mathrm{~V} \\ & V_{\text {INLDO3AC }} \\ & =50 \mathrm{mV} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$		63		dB
				$\mathrm{f}=10 \mathrm{kHz}$		51		
				$\mathrm{f}=100 \mathrm{kHz}$		44		
				$\mathrm{f}=1000 \mathrm{kHz}$		57		
				$\mathrm{f}=4450 \mathrm{kHz}$		33		
		Green mode, IOUT,LDO3 $=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$, rejection from $\mathrm{V}_{\text {IN,LDO3 }}$ to $\mathrm{V}_{\text {OUT,LDO3 }}$				50		

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I O}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Bias Enable Time	tLBIAS4	Time to enable LDO bias only, central bias is already enabled			90		$\mu \mathrm{S}$
Bias Enable Currents	IQBIAS4	LDO bias enabled			10		$\mu \mathrm{A}$
AV Supply Current	${ }^{\text {I AV,LDO4 }}$	No load	Shutdown, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 4)		0		$\mu \mathrm{A}$
			Normal regulation		3	6	
			Green mode		0.5	3	
INB Supply Current	IIN,LDO4	No load	Shutdown, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 5)		0		$\mu \mathrm{A}$
			Normal regulation		15	30	
			Green mode		1	3	
Output Voltage Accuracy		Normal mode	$\mathrm{V}_{\text {IN,LDO4 }}=\mathrm{V}_{\text {NOM,LDO4 }}$ +0.3 V to 5.5 V with 1.7 V minimum, IOUT,LDO4 $=0.1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{MAX}, \mathrm{LD} 04}$, $\mathrm{V}_{\text {NOM,LDO4 }}$ set to any voltage	-3		+3	\%
		Green mode	$\mathrm{V}_{\text {IN,LDO4 }}=\mathrm{V}_{\text {NOM,LDO4 }}$ +0.3 V to 5.5 V with 2.4 V minimum, IOUT,LDO4 = 0.1 mA to $5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NOM}, \mathrm{LDO}}$ set to any voltage	-5		+5	
Load Regulation (Note 6)		Normal mode	${ }^{\text {OUT,LDO4 }}=0.1 \mathrm{~mA}$ to IMAX,LD04, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {NOM,LDO4 }}+$ 0.3 V with 1.7 V minimum, $\mathrm{V}_{\text {NOM,LDO4 }}$ set to any voltage		0.1		\%
		Green mode	$\mathrm{I}_{\text {OUT,LDO }}=0.1 \mathrm{~mA}$ to $5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\text {NOM,LDO4 }}+$ 0.3 V with 2.4 V minimum, $\mathrm{V}_{\text {NOM,LDO4 }}$ set to any voltage		0.2		

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Line Regulation (Note 6)		Normal mode	$\mathrm{V}_{\text {IN,LDO4 }}=\mathrm{V}_{\text {NOM,LDO4 }}$ +0.3 V to 5.5 V with 1.7 V minimum, $\mathrm{I}_{\text {OUT,LDO4 }}=$ $0.1 \mathrm{~mA}, \mathrm{~V}_{\text {NOM,LDO4 }}$ set to any voltage		0.03			\%/V
		Green mode	$\mathrm{V}_{\text {IN,LDO4 }}=\mathrm{V}_{\text {NOM,LDO4 }}$ +0.3 V to 5.5 V with 2.4 V minimum, IOUT,LDO4 = $0.1 \mathrm{~mA}, \mathrm{~V}_{\text {NOM,LDO4 }}$ set to any voltage		0.1			
Dropout Voltage	V ${ }_{\text {DO,LDO4 }}$	Normal mode	$\begin{aligned} & \text { IOUT,LDO4 }= \\ & \text { IMAX,LD04 } \end{aligned}$	$\begin{aligned} & V_{\text {IN,LDO4 }}= \\ & 3.7 \mathrm{~V} \end{aligned}$		60	120	mV
				$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN,LDO}}= \\ & 1.7 \mathrm{~V} \end{aligned}$		150	300	
		Green mode	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}, \mathrm{LDO4}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {IN,LDO4 }}=3.7 \mathrm{~V} \end{aligned}$			50	100	
Output Current Limit	ILIM,LDO4	$\mathrm{V}_{\text {OUT,LDO4 }}=0 \mathrm{~V}$			150	225	375	mA
Output Load Transient (LDO4OVCLMP_EN = 1) (Notes 3, 6)		Normal mode, $\mathrm{V}_{\text {IN,LDO4 }}=\mathrm{V}_{\text {NOM,LDO4 }}+$ 0.3 V to 5.5 V with 1.7 V absolute minimum. IOUT,LDO4 $=1 \%$ to 100% to 1% of ${ }^{\text {I MAX,LDO4, }} \mathrm{V}_{\text {NOM,LD04 }}$ set to any voltage, $\mathrm{t}_{\mathrm{R} 4}=\mathrm{t}_{\mathrm{F} 4}=1 \mu \mathrm{~s}, \operatorname{LDO} 4 C O M P[5: 4]=01$				66		mV
		Green mode, $\mathrm{V}_{\text {IN,LDO4 }}=\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+$ 0.3 V to 5.5 V with 2.4 V absolute minimum, $\mathrm{I}_{\text {OUT,LDO4 }}=0.05 \mathrm{~mA}$ to 5 mA to 0.05 mA , $\mathrm{V}_{\text {NOM,LDO4 }}$ set to any voltage, $t_{\text {R4 }}=t_{\text {F4 }}=1 \mu \mathrm{~s}$				25		
Output Line Transient (Notes 3, 6)		Normal mode, $\mathrm{V}_{\text {IN,LDO4 }}=\mathrm{V}_{\text {NOM,LDO4 }}+$ 0.3 V to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+0.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+$ 0.3 V with 1.7 V absolute minimum, $\mathrm{t}_{\mathrm{R} 4}=\mathrm{t}_{\mathrm{F} 4}=1 \mu \mathrm{~s}, \mathrm{I}_{\mathrm{OUT}, \mathrm{LDO4}}=\mathrm{I}_{\mathrm{MAX}, \mathrm{LDO}}$, $\mathrm{V}_{\text {NOM,LDO4 }}$ set to any voltage				5		mV
		Green mode, $\mathrm{V}_{\mathrm{IN}, \mathrm{LDO}}=\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO4}}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO} 4}+0.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+0.3 \mathrm{~V}$ with 2.4 V absolute minimum, $\mathrm{t}_{\mathrm{R} 4}=\mathrm{t}_{\mathrm{F} 4}=1 \mu \mathrm{~s}$, $\mathrm{I}_{\mathrm{OUT}, \mathrm{LDO}}=5 \mathrm{~mA}, \mathrm{~V}_{\text {NOM,LDO4 }}$ set to any voltage				5		

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I O}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS				MIN	TYP	MAX	UNITS
Power-Supply Rejection	PSRRLDO4	Rejection from $\mathrm{V}_{\text {IN,LDo4 }}$ to VOUT,LDO4 IOUT,LDO4 $=10 \%$ of IMAX,LDO4	$\mathrm{V}_{\text {INDO4DC }}=$ $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO}}+$ 0.3 V , VINLDO4AC $=$ 50 mV		$\mathrm{f}=1 \mathrm{kHz}$		63		dB
					$\mathrm{f}=10 \mathrm{kHz}$		51		
					$f=100 \mathrm{kHz}$		44		
					$\mathrm{f}=1000 \mathrm{kHz}$		57		
					$\mathrm{f}=4450 \mathrm{kHz}$		33		
		Green mode, IOUT,LDO4 $=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$, rejection from $\mathrm{V}_{\text {IN,LDO4 }}$ to $\mathrm{V}_{\text {OUT,LDO4 }}$					50		
Output Noise		$\begin{aligned} & f=10 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{kHz}, \text { IOUT }= \\ & 10 \% \text { of } \mathrm{I}_{\mathrm{MAX}} \end{aligned}$	$\mathrm{V}_{\text {OUT }}=0.8 \mathrm{~V}$				45		$\mu \mathrm{V}_{\text {RMS }}$
			$\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$				45		
			VOUT $=3.7 \mathrm{~V}$				60		
Startup Ramp Rate	tss4	After enabling	LDO4SS = 0				100		$\mathrm{mV} / \mathrm{\mu s}$
			LDO4SS = 1				5		
Active-Discharge Resistance		VOUT,LDO4 = 1V, output disabled	Active discharge enabled,$\text { LDO4ADE }=1$				0.16	0.3	k Ω
			Active discharge disabled,$\text { LDO4ADE }=0$			1000			
Clamp Active Regulation Voltage		Clamp active (LDO4OVCLMP_EN = 1), LDO output sinking 0.1 mA					$\mathrm{V}_{\mathrm{NOM}},$ LDO4		V
Clamp Disabled Overvoltage Sink Current		$\mathrm{V}_{\text {OUT,LDO4 }}=\mathrm{V}_{\text {NOM,LDO4 }} \times 110 \%$					2.2		$\mu \mathrm{A}$
Enable Delay (Note 3)	toon4	Time from LDO enable command received to the output starting to slew		Ramp $\mu \mathrm{S}$	$\mathrm{te}=100 \mathrm{mv} /$		10		$\mu \mathrm{s}$
				Ramp	te $=5 \mathrm{mv} / \mu \mathrm{s}$		60		
Disable Delay (Note 3)		After LDO is disabled; the LDO output voltage discharges based on load and COUT,LDO4; to ensure fast discharge times enable the active discharge resistor					0.1		$\mu \mathrm{s}$
Transition time from Green Mode to Normal Mode							10		$\mu \mathrm{s}$
Thermal Shutdown		Output disabled or enabled	TJ rising				165		${ }^{\circ} \mathrm{C}$
			T_{j} falling				150		

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I O}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Power-OK Threshold	VPOKTHL4	VOUT,LDO4 when VPOK switches	V ${ }_{\text {OUT,LDO4 }}$ rising		92	95	\%
			V ${ }_{\text {OUT,LDO4 }}$ falling	84	87		
Power-OK Noise Pulse Immunity	VPOKNF4	VOUT,LDO4 pulsed from 100% to 80% of regulation			25		$\mu \mathrm{s}$
LDO5							
Input Voltage Range	VIN,LDO5			1.7		5.5	V
Undervoltage Lockout	VUVLO, LDO5	VIN,LDO5 rising, 100 mV hysteresis			1.6	1.7	V
Output Voltage Range	VOUT, LDO5	$\mathrm{V}_{\text {IN,LDO5 }}$ is the maximum of 3.7 V or $\mathrm{V}_{\text {OUT,LDO5 }}+0.3 \mathrm{~V}$		0.8		3.95	V
Maximum Output Current	$I_{\text {MAX,LDO5 }}$	Normal mode		300			mA
		Green mode		5			
Minimum Output Capacitance	Cout,LDO5	(Note 3)	Normal mode		0.7		$\mu \mathrm{F}$
			Green mode		0.7		
Bias Enable Time	tLBIAS5	Time to enable LDO bias only, central bias is already enabled			90		$\mu \mathrm{s}$
Bias Enable Currents	$\mathrm{I}_{\text {QBIAS5 }}$	LDO bias enabled			10		$\mu \mathrm{A}$
AV Supply Current	${ }^{\text {I AV,LDO5 }}$	No load	Shutdown, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 4)	0			$\mu \mathrm{A}$
			Normal regulation		3	6	
			Green mode		0.5	3	
INB Supply Current	IIN,LDO5	No load	Shutdown, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 5)		0		$\mu \mathrm{A}$
			Normal regulation		17	30	
			Green mode		1	3	
Output Voltage Accuracy		Normal mode	$\mathrm{V}_{\text {IN,LDO5 }}=\mathrm{V}_{\text {NOM,LDO5 }}$ +0.3 V to 5.5 V with 1.7 V minimum, IOUT,LDO5 = 0.1 mA to $\mathrm{I}_{\mathrm{MAX}, \mathrm{LDO}}$, $V_{\text {NOM,LDO5 }}$ set to any voltage	-3		+3	\%
		Green mode	$\mathrm{V}_{\text {IN,LDO5 }}=\mathrm{V}_{\text {NOM,LDO5 }}$ +0.3 V to 5.5 V with 2.4 V minimum, IOUT,LDO5 = 0.1 mA to $5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NOM}, \mathrm{LDO}}$ set to any voltage	-5		+5	

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I \mathrm{O}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IO }}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Output Line Transient (Notes 3, 6)		Normal mode, $\mathrm{V}_{\text {IN,LOD5 }}=\mathrm{V}_{\text {NOM,LDO5 }}+$ 0.3 V to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO5}}+0.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO5}}+$ 0.3 V with 1.7 V absolute minimum, $\mathrm{t}_{\text {R5 }}=\mathrm{t}_{\text {F5 }}=1 \mu \mathrm{~s}$, I $_{\text {OUT,LDO5 }}=I_{\text {MAX,LDO5 }}$, $\mathrm{V}_{\text {NOM,LDO5 }}$ set to any voltage				5		mV
		Green mode, $\mathrm{V}_{\text {IN,LDO5 }}=\mathrm{V}_{\text {NOM,LDO5 }}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO5}}+0.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NOM}, \mathrm{LDO5}}+0.3 \mathrm{~V}$ with 2.4 V absolute minimum, $\mathrm{t}_{\mathrm{R} 5}=\mathrm{t}_{\mathrm{F} 5}=1 \mu \mathrm{~s}, \mathrm{I}_{\mathrm{OUT}, \mathrm{LDO5}}=5 \mathrm{~mA}$, $\mathrm{V}_{\text {NOM,LDO5 }}$ set to any voltage				5		
Power-Supply Rejection	PSRR ${ }_{\text {LDO5 }}$	Rejection from $\mathrm{V}_{\text {IN,LDO5 }}$ to VOUT,LDO5 IOUT,LDO5 = 10% of IMAX,LDO5	$V_{\text {INLDO5DC }}=$ V $_{\text {NOM,LDO5 }}+$ 0.3 V $\mathrm{V}_{\text {INLDO5AC }}=$ 50 mV	$\mathrm{f}=1 \mathrm{kHz}$		63		dB
				$\mathrm{f}=10 \mathrm{kHz}$		51		
				$f=100 \mathrm{kHz}$		44		
				$\mathrm{f}=1000 \mathrm{kHz}$		57		
				$\mathrm{f}=4450 \mathrm{kHz}$		33		
		Green mode, IOUT $=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$, rejection from $\mathrm{V}_{\text {IN,LDO5 }}$ to $\mathrm{V}_{\text {OUT,LDO5 }}$				50		
Output Noise		$\begin{aligned} & f=10 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{kHz}, \\ & \text { lout }=10 \% \text { of } \\ & \text { lmAX,LDO5 } \end{aligned}$	VOUT,LDO5 $=0.8 \mathrm{~V}$			45		$\mu \mathrm{V}_{\text {RMS }}$
			$\mathrm{V}_{\text {OUT,LDO5 }}=1.8 \mathrm{~V}$			45		
			VOUT,LDO5 $=3.7 \mathrm{~V}$			60		
Startup Ramp Rate	tss5	After enabling	LDO5SS = 0			100		$\mathrm{mV} / \mathrm{\mu s}$
			LDO5SS = 1			5		
Active-Discharge Resistance		VOUT,LDO5 $=1 \mathrm{~V}$, output disabled	Active discharge enabled,$\text { LDO5ADE = } 1$			0.16	0.3	$k \Omega$
			Active discharge disabled,$\text { LDO5ADE }=0$		1000			
Clamp Active Regulation Voltage		Clamp active (LDO5OVCLMP_EN = 1), LDO output sinking 0.1 mA				$\begin{aligned} & \mathrm{V}_{\text {NOM }}, \\ & \text { LDO5 } \end{aligned}$		V

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I O}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

MAX8967

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I \mathrm{O}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2$)$

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IO}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Output Load Transient (LDO6OVCLMP_EN = 1) (Notes 3, 6)		Normal mode, $\mathrm{V}_{\text {IN,LDO6 }}=\mathrm{V}_{\text {NOM,LDO6 }}+$ 0.3 V to 5.5 V with 1.7 V absolute minimum, IOUT,LDO6 $=1 \%$ to 100% to 1% of ${ }^{\text {MAX,LDO6, }} \mathrm{V}_{\text {NOM,LDO6 }}$ set to any voltage, $\mathrm{t}_{\mathrm{R} 6}=\mathrm{t}_{\mathrm{F} 6}=1 \mu \mathrm{~s}, \operatorname{LDO6COMP}[5: 4]=01$				66		mV
		Green mode, $\mathrm{V}_{\text {IN,LDO6 }}=\mathrm{V}_{\text {NOM,LDO6 }}$ +0.3 V to 5.5 V with 2.4 V absolute minimum, IOUT,LDO6 $=0.05 \mathrm{~mA}$ to 5 mA to 0.05 mA , $\mathrm{V}_{\text {NOM,LDO6 }}$ set to any voltage, $t_{R 6}=t_{F 6}=1 \mu \mathrm{~s}$				25		
Output Line Transient (Notes 3, 6)		Normal mode, $\mathrm{V}_{\text {IN,LDO6 }}=\mathrm{V}_{\text {NOM,LDO6 }}+$ 0.3 V to $\mathrm{V}_{\text {NOM, }}$ DLo6 +0.8 V to $\mathrm{V}_{\text {NOM,LDO6 }}+$ 0.3 V with 1.7 V absolute minimum, $t_{\text {R6 }}=t_{\text {F6 }}=1 \mu \mathrm{~s}, I_{\text {OUT,LDO6 }}=I_{\text {MAX,LDO6 }}$, $\mathrm{V}_{\text {NOM,LDO6 }}$ set to any voltage				5		mV
		Normal mode, $\mathrm{V}_{\text {IN,LDO6 }}=\mathrm{V}_{\text {NOM,LDO6 }}+$ 0.3 V to $\mathrm{V}_{\text {NOM, DLo6 }}+0.8 \mathrm{~V}$ to $\mathrm{V}_{\text {NOM,LDO6 }}+$ 0.3 V with 2.4 V absolute minimum, $\mathrm{t}_{\mathrm{R} 6}=\mathrm{t}_{\mathrm{F} 6}=1 \mu \mathrm{~s}, \mathrm{I}_{\text {OUT,LDO6 }}=5 \mathrm{~mA}$, $\mathrm{V}_{\text {NOM,LDO6 }}$ set to any voltage				5		
Power-Supply Rejection	PSRR ${ }_{\text {LDO6 }}$	Rejection from VIN,LDO6 to VOUT,LDOO6 IOUT,LDO6 = 10% of IMAX,LDO6	$\mathrm{V}_{\text {INLOD6DC }}=$ V $_{\text {NOM,LDO6 }}+$ 0.3 V , $\mathrm{V}_{\text {INLDOGAC }}=$ 50 mV	$\mathrm{f}=1 \mathrm{kHz}$		63		dB
				$\mathrm{f}=10 \mathrm{kHz}$		51		
				$\mathrm{f}=100 \mathrm{kHz}$		44		
				$\mathrm{f}=1000 \mathrm{kHz}$		57		
				$\mathrm{f}=4450 \mathrm{kHz}$		33		
		Green mode, IOUT,LDO6 $=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$, rejection from $\mathrm{V}_{\text {IN,LDO6 }}$ to $\mathrm{V}_{\text {OUT,LDO6 }}$				50		

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IO }}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I O}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Logic Input Current (SDA, SCL)		$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IH}}=3.6 \mathrm{~V}, \\ & E N_{-}=A G N D \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	0.1			
Logic Input Current ($\mathrm{V}_{1 \mathrm{I}_{-}, \mathrm{EN}}$)		$\begin{aligned} & V_{\mathrm{IL}}=0 V, \\ & E N_{-}=A G N D \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	0.1			
V_{ID}, EN_ Logic Input Pulldown Resistor				400			$\mathrm{k} \Omega$
${ }^{2}$ ² INTERFACE							
SDA Output Low Voltage		$\mathrm{I}_{\text {SDA }}=3 \mathrm{~mA}$				0.1	V
${ }^{12} \mathrm{C}$ Clock Frequency						400	kHz
Bus-Free Time Between START and STOP	${ }^{\text {t }}$ BUF	See Figure 7 in the Digital I/O section		1.3			$\mu \mathrm{s}$
Hold Time Repeated START Condition	thD_STA	See Figure 7 in the Digital I/O section		0.6	0.1		$\mu \mathrm{s}$
SCL Low Period	tLow	See Figure 7 in the Digital I/O section		1.3	0.2		$\mu \mathrm{s}$
SCL High Period	$\mathrm{t}_{\mathrm{HIGH}}$	See Figure 7 in the Digital I/O section		0.6	0.1		$\mu \mathrm{S}$
Setup Time Repeated START Condition	tsu_STA	See Figure 7 in the Digital I/O section		0.6	0.1		$\mu \mathrm{s}$
SDA Hold Time	thD_DAT	See Figure 7 in the Digital I/O section		0	-0.01		$\mu \mathrm{s}$
SDA Setup Time	tSU_DAT	See Figure 7 in the Digital I/O section		0.1	0.05		$\mu \mathrm{s}$
Glitch Filter		Maximum pulse width of spikes that must be suppressed by the input filter of both the DATA and CLK pins			50		ns
Setup Time for STOP Condition	tSU_STO	See Figure 7 in the Digital I/O section		0.6	0.1		$\mu \mathrm{s}$

Note 2: Specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization. LDO_COMP = 01 (default).
Note 3: $V_{\text {OUT }}$ is limited to approximately: $\mathrm{V}_{\text {IN }}$ - (inductor $\operatorname{DCR}+$ output trace resistance $+100 \mathrm{~m} \Omega$) \times IOUT.
Note 4: Values are based on simulations and bench testing; they are not production tested.
Note 5: System shutdown current is guaranteed by testing the combined current part in shutdown in the main bias section.
Note 6: IN shutdown current is guaranteed by testing the combined current of all IN_ and LDO_ pins in shutdown to a $5 \mu \mathrm{~A}$ (max).
Note 7: Does not include ESR of the capacitance or trace resistance of the module/PCB.

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Typical Operating Characteristics

$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I \mathrm{O}}=1.8 \mathrm{~V}\right.$, Typical Application Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Typical Operating Characteristics (continued)

MAX8967

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I \mathrm{O}}=1.8 \mathrm{~V}\right.$, Typical Application Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Typical Operating Characteristics (continued)

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{I N_{-}}=\mathrm{V}_{\mathrm{AV}}=3.6 \mathrm{~V}, \mathrm{~V}_{I \mathrm{O}}=1.8 \mathrm{~V}\right.$, Typical Application Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

STEP-DOWN SWITCHING FREQUENCY

LIGHT LOAD WAVEFORMS

MAX8967
Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Typical Applications Circuit

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Pin Description

PIN	NAME	FUNCTION
A1	PGND2	Step-Down Converter 2 Power Ground. Bypass IN2 to PGND2 with a 10 possible to the IC.
A2	LX2	Step-Down Converter 2 Inductor Switching Node. Connect a 1 $\mu \mathrm{H}$ inductor from LX2 to OUT2. LX2 is high impedance when disabled.
A3	OUT2	Step-Down Converter 2 Output Sense and Discharge Connection. Bypass OUT2 to PGND2 with a 22 $\mu \mathrm{F}$ ceramic capacitor. OUT2 can also be connected to ground through an internal 100 Ω resistor using an I2C command when disabled.
A4	AGND	Analog Ground. Connect AGND to PGND_.
A5	EN2	Enable Logic Input for Step-Down Converter 2. Step-down converter 2 can also be enabled through I2C. EN2 has an internal 800k Ω pulldown resistor.
A6	EN1	Enable Logic Input for Step-Down Converter 1. Step-down converter 1 can also be enabled through I2C. EN1 has an internal 800k Ω pulldown resistor.
B1	IN2	Step-Down Converter 2 Input Supply. Bypass IN2 to PGND2 with a 10رF ceramic capacitor as close as possible to the IC. Connect IN2 to both IN1 and AV.
B2	SNSP2	Step-Down Converter 2 Positive Remote Voltage Sense. Connect SNSP2 to the positive terminal of the OUT2 bypass capacitor.

MAX8967

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Pin Description (continued)

PIN	NAME	FUNCTION
B3	SNSN2	Step-Down Converter 2 Negative Remote Voltage Sense. Connect SNSN2 to the negative terminal of the OUT2 bypass capacitor.
B4	VID2 $^{\prime}$	Voltage Identification Digital 2. To toggle between two step-down converter 2 output voltages, toggle VID2 logic-high and logic-low. VID2 has an internal 800k pulldown resistor.
B5	LDO1	LDO1 Output. Bypass LDO1 to AGND with a 1 $\mu \mathrm{F}$ ceramic capacitor.

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

General Description

The MAX8967's two ultra-low IQ step-down converters are ideal for powering modems, applications processor cores, memory, system I/O, and portable devices. In normal operation, these step-down converters consume only $16 \mu \mathrm{~A}$ (typ) of quiescent current. In green mode, the quiescent current is reduced to $5 \mu \mathrm{~A}$ (typ) per converter with reduced load capability. Each step-down converter can be independently put into green mode by writing a bit in its control register.

Step-Down Converters

Each step-down converter provides internal feedback, minimizing external component count. Both step-down converter output voltages are programmed through the IC's serial interface. A 4.4 MHz switching frequency minimizes external component size. Dynamic voltage scaling is available to reduce power consumption. Both step-down converters feature automatic transition from skip mode to FPWM operation. Forced PWM operation can be enabled by writing a bit in a control register.

Interleaved Switching
The step-down converter's high-side switches turn on during opposite clock edges of the oscillator. This helps minimize input current ripple, thus reducing the input capacitance required to reduce input voltage ripple.

Skip Mode/FPWM Operation
In the normal operating state, both step-down converters automatically transition from skip mode to fixed-frequency operation as load current increases. For operating modes where lowest output ripple is required, forced PWM switching behavior can be enabled by writing a bit in the appropriate FPWM_ register. See Table 3 and Table 15.

Voltage Control Using VID Both step-down converters feature VID control to reduce power consumption in the loads such as modem and applications processor cores. Each VID control allows the converter to transition between two states setup in advance using ${ }^{12} \mathrm{C}$. Essentially two voltage states are accessible without the overhead associated with $I^{2} \mathrm{C}$ control. VID control allows the core voltages to be reduced when the processor clock is throttled back. When exiting sleep mode (by changing the state of VID), the normal
core voltages are restored, providing the optimal operating condition for best system performance.

Remote Output Voltage Sensing
Each step-down converter's output features remote output voltage sensing for improved output voltage accuracy. The remote sense accommodates a distance that incures up to a 200 mV correction in the output voltage. The SNSP_ and SNSN_ inputs connect directly across the load, with the SNSN_ connected to a quiet analog ground near the load, and SNSP_ connected directly to the output bypass capacitor.
The remote sense feature requires a 1 V or greater difference between AV and OUT_ for best performance. The remote sense feature can be disabled through registers to reduce quiescent current consumption. In addition, this feature is disabled during green mode operation.

Output Voltage Slew Rate

Both step-down converters feature an adjustable slew rate when increasing or decreasing output voltage. The nominal slew rate is $12.5 \mathrm{mV} / \mu \mathrm{s}$. Two additional slew rates are provided ($25 \mathrm{mV} / \mu \mathrm{s}$ and $50 \mathrm{mV} / \mu \mathrm{s}$), so that faster and slower slew rates can be programmed. An option for fastest possible ramp rate is also provided to allow the converter to operate at current limit for the fastest possible slew rate.
When decreasing the output voltage, two settings are provided with a single register bit. When this control bit is set, the converter operates in forced PWM (FPWM) mode with negative inductor current so that the output voltage can be decreased in finite steps at the selected slew rate. When this control bit is reset, the converter operates in skip mode, and the actual slew rate of the output is dependent on the external load, and might not necessarily track the slew rate set for falling output voltages.

Output Ripple
For normal operation (not in green mode), output ripple should be < 20mVP-p for an output current $<50 \mathrm{~mA}$. Ripple can be further reduced by increasing output capacitance above the minimum for stable operation. Transition from skip to PWM operation should occur at current levels below 50 mA . In green mode, the output ripple can increase to $40 \mathrm{mVP}-\mathrm{P}(\max)$ for Vout_ $=0.7 \mathrm{~V}$. This value can be decreased by adding additional output capacitance.

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Green Mode Operation
In green mode, the quiescent current of each of the step-down converters are reduced from $16 \mu \mathrm{~A}$ (typ) to $5 \mu \mathrm{~A}$ (typ). If the output voltages are adjusted during green mode slew rate is very slow. Also, output current is limited to 5 mA . Green mode is enabled by setting bits PWR_[5:4] = 10 in the appropriate converter's control register. See Table 3. Each converter can be individually selected to enter green mode.

Discharge Resistance
The IC provides an internal 100Ω discharge resistor for each disabled step-down converter. The discharge resistor connection can be enabled and disabled through the nADEN_ register bit for maximum flexibility. See Table 3.

LDO Detailed Description

The IC provides six LDOs with adjustable outputs as shown in Table 1.

Shutdown, Standby, and Reset

Figure 1. Power Mode State Diagram
Table 1. LDO Description

LDO	$\mathbf{V}_{\text {IN_ }}$ RANGE (V)	INPUT SUPPLY	$\mathbf{V}_{\text {OUT RANGE (V) }}$	MAXIMUM OUTPUT CURRENT (mA)	COUT ($\mu \mathbf{F}$)
LDO1	1.7 to 5.5	INA	0.8 to 3.95	150	1
LDO2	1.7 to 5.5	INA	0.8 to 3.95	300	1
LDO3	1.7 to 5.5	INA	0.8 to 3.95	150	1
LDO4	1.7 to 5.5	INB	0.8 to 3.95	150	1
LDO5	1.7 to 5.5	INB	0.8 to 3.95	300	1
LDO6	1.7 to 5.5	INB	0.8 to 3.95	150	1

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

LDO Power Modes

All LDO regulators have independent enable and disable control through their LDO_PWR[7:6] bits. In addition, each LDO has a special green mode that reduces the quiescent current to $1.5 \mu \mathrm{~A}$ (typ). In green mode, each regulator supports a load of up to 10 mA . The load regulation performance degrades proportionally with the reduced load current.
Several usage options are available for green mode. To force individual regulators to green mode set LDO_ $\operatorname{PWR}[7: 6]=10$.

Soft-Start and Dynamic Voltage Change
The LDO regulators have a programmable soft-start rate. When an LDO is enabled, the output voltage ramps to its final voltage at a slew rate of either $5 \mathrm{mV} / \mathrm{Fs}$ or $100 \mathrm{mV} / \mathrm{Fs}$, depending on the state of the LDO_SS bit. See Table 3 and Table 20.
The $5 \mathrm{mV} / \mu \mathrm{s}$ ramp rate limits the input inrush current to around 5 mA on a 300 mA regulator with a $1 \mu \mathrm{~F}$ output capacitor and no load. The $100 \mathrm{mV} / \mu \mathrm{s}$ ramp rate results in a 100 mA inrush current with a $1 \mu \mathrm{~F}$ output capacitor and no load, but achieves regulation within $50 \mu \mathrm{~s}$. The softstart ramp rate is also the rate of change at the output when switching dynamically between two output voltages without disabling.
The soft-start circuitry of the LDOs supports starting into a prebiased output.

Power-OK Comparator Each regulator includes a power-OK (POK) comparator. The POK comparator signals (LDO_POK) indicate when each output has lost regulation (i.e., the output voltage is below VPOKTHL). The POK signal has a $25 \mu \mathrm{~s}$ noise immunity filter (VPOKNF_). The POK comparator is disabled in green mode to save power. When any of the POK signals (LDO_POK) go low, then an interrupt is generated.
Note that the LDOs implement a proprietary POK scheme that allows the POK comparator to operate correctly even while the LDO is in its soft-start period. If the LDO is overloaded when it is in its soft-start period, POK is low. If it is not overloaded during its soft-start period, POK is high.

Active Discharge Each linear regulator has an active-discharge resistor feature that can be enabled/disabled with the LDO_ADE bit. See Table 3 and Table 20. Enabling the active discharge feature helps ensure a complete and timely power-down of all system peripherals. The default condition of the active-discharge resistor feature is enabled so that whenever VUVLO,LDO_ is below its UVLO threshold, all regulators are disabled with their active discharge resistors turned on. When VUVLO,LDO_ is less than 1.0 V , the NMOS transistors that control the active discharge resistors lose their gate drive and become open.
When the regulator is disabled while the active discharge is disabled, the internal active-discharge resistor is not connected to its output and the output voltage decays at a rate that is determined by the output capacitance and the external load.
When the regulator is enabled, the internal activedischarge resistor is not connected to its output. When the regulator is disabled while the active discharge is enabled, an internal active-discharge resistor is connected to its output which discharges the energy stored in the output capacitance.

Adjustable Compensation
All six LDOs have adjustable compensation to facilitate remote capacitor capability. This feature can be used to adjust the compensation of the LDO based on the resistance and inductance to the remote capacitor. This ability allows each LDO to be programmed for optimal load transient performance based on the location of its remote capacitor. See Table 20 for more details. The LDO compensation should be switched only when that LDO is off. If the compensation switches when the LDO is enabled, it causes unknown output glitches, due to switching in uncharged capacitors as compensation changes.

Overvoltage Clamp

Each LDO has an overvoltage clamp that allows it to sink current when the output voltage is above its target voltage. This overvoltage clamp is default enabled but can be disabled with LDO_OVCLMP_EN. See Table 3 and Table 15. The following list briefly describes three typical applications scenarios that pertain to the overvoltage clamp.

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

- LDO's Load Leaking Current into the LDO's Output: Some LDO loads leak current into an LDO output during certain operating modes. This is typically seen with microprocessor loads. For example, a microprocessor with $3.3 \mathrm{~V}, 2.5 \mathrm{~V}$, 1.8 V , and 1.0 V supply rails is running in standby mode. In this mode, the higher voltage rails can leak currents of several mA into the lower voltage rails. If the 1.0 V rail is supplied by an LDO, the LDO output voltage rises based on the amount of leakage current. With the LDO overvoltage clamp enable, when the output voltage rises above its target regulation voltage, the overvoltage clamp sinks current from the output capacitor to bring the output voltage back within regulation.
- Negative Load Transient to OA: When the LDO load current quickly ramps to 0 A (i.e., 300 mA to OA load transient with 1μ s transition time), the output voltage can overshoot (i.e., soar). Since the LDO cannot turn off its pass device immediately, the LDO output voltage overshoots. In this instance, when the output voltage sores above target regulation voltage, the overvoltage clamp sinks current from the output capacitor to bring the output voltage back within regulation.
- Negative Dynamic Voltage Transition: When the LDO output target voltage is decreased (i.e., 1.2 V to 0.8 V) when the system loading is light, the energy in the output capacitor tends to hold the output voltage up. When the output voltage is above its target regulation voltage, the overvoltage clamp sinks current from the output capacitor to bring the output voltage back within regulation.

LDO Interrupt

The power-OK comparators outputs drive a set of interrupts. Each regulator is capable of generating an interrupt, when the output goes out of regulation in normal operation. In green mode, the POK comparators are disabled and the regulators do not generate interrupts.

Thermal Considerations

In most applications, the IC does not dissipate much heat due to its high efficiency. But in applications where the IC runs at high ambient temperature with heavy loads, the
heat dissipated can exceed the maximum junction temperature of the part. If the junction temperature reaches approximately $+165^{\circ} \mathrm{C}$, the thermal overload protection is activated.
The IC maximum power dissipation depends on the thermal resistance of the IC package and circuit board. The power dissipated in the device is:

$$
\text { PD }=P_{\text {OUT1 }} \times(1 / \eta 1-1)+P_{\text {OUT2 }} \times(1 / \eta 2-1)
$$

where $\eta 1$ and $\eta 2$ are the efficiencies of each converter while POUT1 and POUT2 are the output power of each converter.
The maximum allowed power dissipation is:

$$
P_{\mathrm{MAX}}=\left(\mathrm{T}_{\mathrm{JMAX}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}
$$

TJMAX - TA is the temperature difference between the IC's maximum rated junction temperature and the surrounding air, OJA is the thermal resistance of the junction through the PCB, copper traces, and other materials to the surrounding air.

Digital Interface
The IC has four types of digital interface:

- Two enable pins (EN_), one for each step-down converter
- Two VID pins (VID_), one for each step-down converter
- An interrupt pin, IRQB
- A two-wire $\mathrm{I}^{2} \mathrm{C}$ interface

The ${ }^{2}{ }^{2} \mathrm{C}$ interface is use to set the state of the IC while the two enable and two VID pins, one set for each step-down converter, are used to rapidly transition between on/off and two voltage and mode states previously defined using $I^{2} \mathrm{C}$ communication.

Enable (EN_)
Two enable logic input pins are provided to allow rapid transitions between on and off for each step-down converter. The enable pins work in conjunction with the ${ }^{12} \mathrm{C}$ step-down converter PWR MD (mode) bits to control on/off, normal or green mode, and enabling/disabling of remote sense per step-down converter. Each converter can be enabled through the dedicated enable pin or through the $I^{2} \mathrm{C}$ with a logical OR function.

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Voltage Identification Digital (VID)
Two VID_ pins are provided to allow rapid transitions between two previously configured states for each stepdown converter. There are multiple registers for output voltage and mode of operation for each converter as well.

IRQB
The IRQB is an active-low, open-drain output that signals a fault on any one or more of the step-down converters or LDOs. Each converter and LDO is individually monitored for its POK status, and thermal shutdown for the entire MAX8967 is monitored.

Table 2. Step-Down Converter Modes

EN_	$\mathbf{I}^{2} \mathbf{C}$ MD BITS		MODE
0	0	0	Off
0	0	1	On, green
0	1	0	On, normal, remote sense on
0	1	1	On, normal, remote sense off
1	0	0	On, normal, remote sense on
1	0	1	On, green
1	1	0	On, normal, remote sense on
1	1	1	On, normal, remote sense off

${ }^{12} \mathrm{C}$ Interface
An I2C-compatible, 2-wire serial interface controls the step-down converter output voltage, ramp rate, operating mode, and synchronization. The serial bus consists of a bidirectional serial-data line (SDA) and a serial-clock input (SCL). The master initiates data transfer on the bus and generates SCL to permit data transfer.
I2C is an active-low open-drain bus. SDA and SCL require pullup resistors (500Ω or greater). Optional resistors (24Ω) in series with SDA and SCL can protect the device inputs from high-voltage spikes on bus lines. Series resistors also minimize crosstalk and undershoot on bus signals.

Bit Transfer
One data bit is transferred during each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. See Figure 2. Changes in SDA while SCL is high are control signals. See the START and STOP Conditions section for more information.
Each transmit sequence is framed by a START (S) condition and a STOP (P) condition. Each data packet is 9 bits long, 8 bits of data followed by the acknowledge bit. The IC supports data transfer rates with SCL frequencies up to 400 kHz .

Figure 2. ${ }^{12}$ C Bit Transfer

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

START and STOP Conditions
When the serial interface is inactive, SDA and SCL idle high. A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA, while SCL is high. See Figure 3.
A START condition from the master signals the beginning of a transmission to the IC. The master terminates transmission by issuing a not-acknowledge (nACK) followed by a STOP condition. See the Acknowledge section for more information. The STOP condition frees the bus. To issue a series of commands to the slave, the master can issue REPEATED START (Sr) commands instead of a STOP command to maintain control of the bus. In general, a REPEATED START command is functionally equivalent to a regular START command.
When a STOP condition or incorrect address is detected, the IC internally disconnects SCL from the serial interface until the next START condition, minimizing digital noise and feedthrough.

System Configuration
A device on the ${ }^{12} \mathrm{C}$ bus that generates a message is called a transmitter and a device that receives the message is a receiver. The device that controls the message is the master and the devices that are controlled by the master are called slaves.

Figure 3. ${ }^{2}$ C START and STOP Conditions

Acknowledge
The number of data bytes between the START and STOP conditions for the transmitter and receiver are unlimited. Each 8-bit byte is followed by an acknowledge bit. The acknowledge bit is a high-level signal put on SDA by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver that is addressed must generate an acknowledge after each byte it receives. Also, a master receiver must generate an acknowledge after each byte it receives that has been clocked out of the slave transmitter.
The device that acknowledges must pull down the DATA line during the acknowledge clock pulse, so that the DATA line is stable low during the high period of the acknowledge clock pulse (setup and hold times must also be met). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case, the transmitter must leave SDA high to enable the master to generate a STOP condition.

Update of Output Operation Mode If updating the output voltage or operation mode register for the mode that the is currently operating in, the output voltage/operation mode is updated at the same time the IC sends the acknowledge for the $I^{2} \mathrm{C}$ data byte.

Figure 4. ${ }^{2}$ C Acknowledge

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Slave Address

A bus master initiates communication IC by issuing a START condition followed by the slave address. The slave address byte consists of 7 address bits (1100011x) and a read/write bit (R / W). After receiving the proper address, the IC issues an acknowledge by pulling SDA low during the ninth clock cycle.
The IC uses a default I2C slave address of C6h. There are two other slave addresses (C8h and CAh) that can be assigned. Contact the factory for details. See the Selector Guide.

Write Operations

The IC recognizes the write byte protocol as defined in the SMBus specification. The write byte protocol allows the ${ }^{2} \mathrm{C}$ master device to send 1 byte of data to the slave device. The write byte protocol requires a register pointer address for the subsequent write. The IC acknowledges
any register pointer even though only a subset of those registers actually exists in the device. The write byte protocol is as follows:

1) The master sends a START command.
2) The master sends the 7-bit slave address followed by a write bit.
3) The addressed slave asserts an acknowledge by pulling SDA low.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a data byte.
7) The slave acknowledges the data byte.
8) The slave updates with the new data.
9) The master sends a STOP condition.

a) WRITING TO A SINGLE REGISTER WITH THE WRITE BYTE PROTOCOL

b) WRITING TO MULTIPLE REGISTERS

Figure 5. $1^{2} \mathrm{C}$ Write Operation

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

In addition to the write-byte protocol, the IC can write to multiple registers as shown in Figure 5. This protocol allows the ${ }^{2}{ }^{2} \mathrm{C}$ master device to address the slave only once and then send data to a sequential block of registers starting at the specified register pointer.
Use the following procedure to write to a sequential block of registers:

1) The master sends a START command.
2) The master sends the 7-bit slave address followed by a write bit.
3) The addressed slave asserts an acknowledge by pulling SDA low.
4) The master sends the 8-bit register pointer of the first register to write.
5) The slave acknowledges the register pointer.
6) The master sends a data byte.
7) The slave acknowledges the data byte.
8) The slave updates with the new data.
9) Steps 6 to 8 are repeated for as many registers in the block, with the register pointer automatically incremented each time.
10) The master sends a STOP condition.

Read Operations
The method for reading a single register (byte) is shown below. To read a single register:

1) The master sends a START command.
2) The master sends the 7-bit slave address followed by a write bit.
3) The addressed slave asserts an acknowledge by pulling SDA low.
4) The master sends an 8-bit register pointer.
5) The slave acknowledges the register pointer.
6) The master sends a repeated START condition.
7) The master sends the 7-bit slave address followed by a read bit.
8) The slave assets an acknowledge by pulling SDA low.
9) The slave sends the 8-bit data (contents of the register).
10) The master assets a not acknowledge by keeping SDA high.
11) The master sends a STOP condition.

Figure 6. ${ }^{12}$ C Read Operation

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

In addition, the IC can read a block of multiple sequential registers as shown in section B of Figure 6. Use the following procedure to read a sequential block of registers:

1) The master sends a START command.
2) The master sends the 7-bit slave address followed by a write bit.
3) The addressed slave asserts an acknowledge by pulling SDA low.
4) The master sends an 8-bit register pointer of the first register in the block.
5) The slave acknowledges the register pointer.
6) The master sends a repeated START condition.
7) The master sends the 7-bit slave address followed by a read bit.
8) The slave assets an acknowledge by pulling SDA low.
9) The slave sends the 8-bit data (contents of the register).
10) The master assets an acknowledge by pulling SDA low when there is more data to read, or a not acknowledge by keeping SDA high when all data has been read.
11) Steps 9 and 10 are repeated for as many registers in the block, with the register pointer automatically incremented each time.
12) The master sends a STOP condition.

Figure 7. 1^{2} C Timing Diagram

MAX8967

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

I2C Commands
Register Reset
All resisters associated with the IC's I2C interface are reset to their default values when the voltage applied to VIO drops below the 0.4 V threshold. See the Electrical Characteristics table. The slave address of the IC is $0 \times C 6$.
${ }^{12}$ C High Level Register Map
Table 3. I2C High Level Register Map

REGISTER	DESCRIPTION	BIT							
		$\begin{gathered} 7 \\ \text { MSB } \end{gathered}$	6	5	4	3	2	1	$\begin{gathered} 0 \\ \text { LSB } \end{gathered}$
0×00	ID	ID[7:0]							
0x01	Chip Configuration	FREQ[2:0]			RSVD	RSVD	RSVD	RSVD	RSVD
0×02	Step-Down 1 Voltage VID High	VOUT_B1_VIDH[7:0]							
0×03	Step-Down 1 Voltage VID Low	VOUT_B1_VIDL[7:0]							
0x04	Step-Down 1 Configuration VID High	SLEW1H[7:6]		PWR1H[5:4]		nADEN1H	FPWM1H	RSVD	FALL SLEW1H
0×05	Step-Down 1 Configuration VID Low	SLEW1L[7:6]		PWR1L[5:4]		nADEN1L	FPWM1L	RSVD	FALL SLEW1L
0x06	Step-Down 2 Voltage VID High	VOUT_B2_VIDH[7:0]							
0×07	Step-Down 2 Voltage VID Low	VOUT_B2_VIDL[7:0]							
0x08	Step-Down 2 Configuration VID High	SLEW2H[7:6]		PWR2H[5:4]		nADEN2H	FPWM2H	RSVD	FALL SLEW2H
0x09	Step-Down 2 Configuration VID Low	SLEW2L[7:6]		PWR2L[5:4]		nADEN2L	FPWM2L	RSVD	FALL SLEW2L
0x0B	Status	PNOK1	PNOK2	TH	$\begin{aligned} & \text { LDO_- } \\ & \text { PNOK } \end{aligned}$	RSVD	RSVD	RSVD	RSVD
0x0C	Interrupt	$\begin{aligned} & \text { PNOK1_ } \\ & \text { INT } \end{aligned}$	PNOK2_ INT	TH_INT	$\begin{aligned} & \text { LDO_- }^{\text {PNOK_ }} \\ & \text { INT } \end{aligned}$	RSVD	RSVD	RSVD	RSVD
0x0D	Interrupt Mask	PNOK1M	PNOK2M	THM	$\begin{gathered} \text { LDO_- }_{\text {PNOKM }} \end{gathered}$	RSVD	RSVD	RSVD	RSVD
0x0E	LDO 1 Configuration 1	LDO1PWR[7:6]		LDO1TV[5:0]					
0xOF	LDO 1 Configuration 2	$\begin{array}{\|l\|} \hline \text { LDO1OV } \\ \text { CLMP_EN } \\ \hline \end{array}$	RSVD	LDO1C	MP[5:4]	LD01POK	RSVD	$\begin{aligned} & \text { LDO1 } \\ & \text { ADE } \end{aligned}$	LDO1SS
0×10	LDO 2 Configuration 1	LDO2PWR[7:6]		LDO2TV[5:0]					
0×11	LDO 2 Configuration 2	$\begin{array}{\|l\|} \hline \text { LDO2OV } \\ \text { CLMP_EN } \\ \hline \end{array}$	RSVD	LDO2C	MP[5:4]	LDO2POK	RSVD	$\begin{aligned} & \mathrm{LDO} 2 \\ & \mathrm{ADE} \\ & \hline \end{aligned}$	LDO2SS
0×12	LDO 3 Configuration 1	LDO3PWR[7:6]		LDO3TV[5:0]					
0×13	LDO 3 Configuration 2	$\begin{aligned} & \text { LDO3OV } \\ & \text { CLMP_EN } \end{aligned}$	RSVD	LDO3C	MP[5:4]	LDO3POK	RSVD	$\begin{aligned} & \text { LDO3 } \\ & \text { ADE } \end{aligned}$	LDO3SS

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 3. I2C High Level Register Map (continued)

REGISTER	DESCRIPTION	BIT							
		$\begin{gathered} 7 \\ \text { MSB } \end{gathered}$	6	5	4	3	2	1	$\begin{gathered} 0 \\ \text { LSB } \end{gathered}$
0×14	LDO 4 Configuration 1	LDO4PWR[7:6]		LDO4TV[5:0]					
0×15	LDO 4 Configuration 2	$\begin{array}{\|l\|} \hline \text { LDO4OV } \\ \text { CLMP_EN } \end{array}$	RSVD	LDO4C	MP[5:4]	LDO4POK	RSVD	$\begin{aligned} & \text { LDO4 } \\ & \text { ADE } \end{aligned}$	LDO4SS
0x16	LDO 5 Configuration 1	LDO5PWR[7:6]		LDO5TV[5:0]					
0×17	LDO 5 Configuration 2	$\begin{array}{\|l\|} \hline \text { LDO5OV } \\ \text { CLMP_EN } \end{array}$	RSVD	LDO5CO	MP[5:4]	LDO5POK	RSVD	$\begin{gathered} \text { LDO5 } \\ \text { ADE } \end{gathered}$	LDO5SS
0×18	LDO 6 Configuration 1	LDO6PWR[7:6]		LDO6TV[5:0]					
0x19	LDO 6 Configuration 2	$\begin{array}{\|l\|} \hline \text { LDO6OV } \\ \text { CLMP_EN } \end{array}$	RSVD	LDO6COMP[5:4]		LDO6POK	RSVD	$\begin{aligned} & \text { LDO6 } \\ & \text { ADE } \end{aligned}$	LDO6SS
0x1B	LDO INT	RSVD		L06_INT	L05_INT	L04_INT	L03_INT	L02_INT	L01_INT
$0 \times 1 \mathrm{C}$	LDO INTM	RSVD		L06_INTM	L05_INTM	L04_INTM	L03_INTM	L02_INTM	L01_INTM

Table 4. ID Register

COMMAND NAME	
$\mathrm{I}^{2} \mathrm{C}$ address	MAX8967 $\mathrm{I}^{2} \mathrm{C}$ address
Command code	0×00
Access type	Read only
Reset condition	Hard wired, not reset

BIT	NAME	DESCRIPTION	DEFAULT
$7-0$	$I D[7: 0]$	Code is a unique chip version identifier	0×66

Table 5. Chip Configuration Register

COMMAND NAME	CHIP CONFIGURATION
${ }^{2} \mathrm{C}$ address	MAX8967 ${ }^{2} \mathrm{C}$ address
Command code	0x01
Access type	Read/write
Reset condition	Power-up/chip reset

BIT	NAME	DESCRIPTION	DEFAULT
		Switching frequency selection bits	
$7,6,5$		$000=4.4 \mathrm{MHz} \quad 100=4.2 \mathrm{MHz}$	
		FREQ[2:0]	$001=4.8 \mathrm{MHz} \quad 101=\mathrm{RSVD}$
		$010=4.0 \mathrm{MHz} \quad 110=4.6 \mathrm{MHz}$	0 b 000
		$011=\mathrm{RSVD} \quad 111=\mathrm{RSVD}$	
$4-0$	Reserved	-	0 l

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 6. Step-Down 1 Output Voltage VID High

Table 7. Step-Down 1 Output Voltage VID Low

COMMAND NAME	STEP-DOWN CONVERTER 1 VOLTAGE VID LOW
${ }^{2} \mathrm{C}$ address	MAX8967 ${ }^{2} \mathrm{C}$ address
Command code	$\mathbf{0 x 0 3}$
Access type	Read/write
Reset condition	Power-up/chip reset

BIT	NAME	DESCRIPTION	DEFAULT
$7-0$	VOUT_B1_VIDL [7:0]	See Table 14	0×30

Table 8. Step-Down 1 Configuration Register VID High

COMMAND NAME	STEP-DOWN CONVERTER 1 CONFIGURATION VID HIGH
$1^{2} \mathrm{C}$ address	MAX8967 $I^{2} \mathrm{C}$ address
Command code	$\mathbf{0 x 0 4}$
Access type	Read/write
Reset condition	Power-up/chip reset

BIT	NAME	DESCRIPTION	DEFAULT
7-0	See Table 15	See Table 15	0x00

Table 9. Step-Down 1 Configuration Register VID Low

COMMAND NAME			STEP-DOWN CONVERTER 1 CONFIGURATION VID LOW	
${ }^{12} \mathrm{C}$ address			MAX8967 ${ }^{12} \mathrm{C}$ address	
Command code			0x05	
Access type			Read/write	
Reset condition			Power-up/chip reset	
BIT	NAME		DESCRIPTION	DEFAULT
7-0	See Table 15	See Table 15		0x00

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 10. Step-Down 2 Voltage Register VID High

COMMAND NAME			STEP-DOWN 2 VOLTAGE VID HIGH	
$1^{2} \mathrm{C}$ address			MAX8967 ${ }^{2} \mathrm{C}$ C address	
Command code			0x06	
Access type			Read/write	
Reset condition			Power-up/chip reset	
BIT	NAME		DESCRIPTION	DEFAULT
7-0	VOUT_B2_VIDH[7:0]	See Table 14		0x00

Table 11. Step-Down 2 Output Voltage VID Low

COMMAND NAME	STEP-DOWN 2 VOLTAGE VID LOW
${ }^{2} \mathrm{C}$ address	MAX8967 $\mathrm{I}^{2} \mathrm{C}$ address
Command code	$\mathbf{0 x 0 7}$
Access type	Read/write
Reset condition	Power-up/chip reset

BIT	NAME	DESCRIPTION	DEFAULT
$7-0$	VOUT_B2_VIDL[7:0]	See Table 14	0×30

Table 12. Step-Down 2 Configuration Register VID High

COMMAND NAME	STEP-DOWN 2 CONFIGURATION VID HIGH
$I^{2} \mathrm{C}$ address	MAX8967 $I^{2} \mathrm{C}$ address
Command code	$\mathbf{0 x 0 8}$
Access type	Read/write
Reset condition	Power-up/chip reset

BIT	NAME	DESCRIPTION	DEFAULT
$7-0$	See Table 15	See Table 15	0×00

Table 13. Step-Down 2 Configuration Register VID Low

COMMAND NAME			STEP-DOWN 2 CONFIGURATION VID LOW	
${ }^{12} \mathrm{C}$ address			MAX8967 ${ }^{12} \mathrm{C}$ address	
Command code			0x09	
Access type			Read/write	
Reset condition			Power-up/chip reset	
BIT	NAME		DESCRIPTION	DEFAULT
7-0	See Table 15	See Table 15		0×00

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 14. Step-Down Output Voltage Table

BIT	DESCRIPTION							DEFAULT
$\begin{aligned} & \text { VOUT_B_ } \\ & \text { VID_[7:0] } \end{aligned}$	$\begin{aligned} & \hline 0 \times 00= \\ & 0.6000 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 20= \\ 1.0000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 40= \\ 1.4000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 60= \\ 1.8000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 80= \\ 2.2000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 0 \times A 0= \\ & 2.6000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times C 0= \\ & 3.0000 \mathrm{~V} \end{aligned}$	See the Electrical Characteristics table.
	$\begin{gathered} 0 \times 01= \\ 0.6125 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 0 \times 21= \\ & 1.0125 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 41= \\ 1.4125 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline 0 \times 61= \\ 1.8125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 81= \\ 2.2125 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times A 1= \\ & 2.6125 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times \mathrm{C} 1= \\ 3.0125 \mathrm{~V} \end{gathered}$	
	$\begin{gathered} 0 \times 02= \\ 0.6250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 22= \\ 1.0250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 42= \\ 1.4250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 62= \\ 1.8250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 82= \\ 2.2250 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times A 2= \\ & 2.6250 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times C 2= \\ 3.0250 \mathrm{~V} \end{gathered}$	
	$\begin{gathered} 0 \times 03= \\ 0.6375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 23= \\ 1.0375 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 43= \\ & 1.4375 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 63= \\ 1.8375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 83= \\ 2.2375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A 3= \\ 2.6375 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times C 3= \\ & 3.0375 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 04= \\ 0.6500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 24= \\ 1.0500 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 44= \\ & 1.4500 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 64= \\ 1.8500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 84= \\ 2.2500 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times A 4= \\ & 2.6500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times C 4= \\ & 3.0500 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 05= \\ 0.6625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 25= \\ 1.0625 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 45= \\ & 1.4625 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 65= \\ 1.8625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 85= \\ 2.2625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A 5= \\ 2.6625 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times C 5= \\ & 3.0625 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 06= \\ 0.6750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 26= \\ 1.0750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 46= \\ 1.4750 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline 0 \times 66= \\ 1.8750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 86= \\ 2.2750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times A 6= \\ 2.6750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times C 6= \\ 3.0750 \mathrm{~V} \end{gathered}$	
	$\begin{gathered} 0 \times 07= \\ 0.6875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 27= \\ 1.0875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 47= \\ 1.4875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 67= \\ 1.8875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 87= \\ 2.2875 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times A 7= \\ & 2.6875 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times C 7= \\ 3.0875 \mathrm{~V} \end{gathered}$	
	$\begin{gathered} 0 \times 08= \\ 0.7000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 28= \\ 1.1000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 48= \\ 1.5000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 68= \\ & 1.9000 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 88= \\ 2.3000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times A 8= \\ & 2.7000 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times C 8= \\ 3.1000 \mathrm{~V} \end{gathered}$	
	$\begin{gathered} 0 \times 09= \\ 0.7125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 29= \\ 1.1125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 49= \\ 1.5125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 69= \\ 1.9125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 89= \\ 2.3125 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times A 9= \\ & 2.7125 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times C 9= \\ & 3.1125 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 0 \mathrm{~A}= \\ 0.7250 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 2 \mathrm{~A}= \\ & 1.1250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 4 \mathrm{~A}= \\ & 1.5250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 6 \mathrm{~A}= \\ & 1.9250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 8 \mathrm{~A}= \\ & 2.3250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times A A= \\ & 2.7250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times C A= \\ & 3.1250 V \end{aligned}$	
	$\begin{gathered} 0 \times 0 \mathrm{~B}= \\ 0.7375 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 2 \mathrm{~B}= \\ & 1.1375 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \times 4 \mathrm{~B}= \\ & 1.5375 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 6 \mathrm{~B}= \\ & 1.9375 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 8 \mathrm{~B}= \\ & 2.3375 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times A B= \\ & 2.7375 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times C B= \\ & 3.1375 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 0 \mathrm{C}= \\ 0.7500 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 2 \mathrm{C}= \\ & 1.1500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 4 \mathrm{C}= \\ & 1.5500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 6 \mathrm{C}= \\ & 1.9500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 8 \mathrm{C}= \\ & 2.3500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times A C= \\ & 2.7500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times C C= \\ & 3.1500 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 0 \mathrm{D}= \\ 0.7625 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 0 \times 2 \mathrm{D}= \\ & 1.1625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 4 \mathrm{D}= \\ & 1.5625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \times 6 \mathrm{D}= \\ & 1.9625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 8 \mathrm{D}= \\ & 2.3625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times A D= \\ & 2.7625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times C D= \\ & 3.1625 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 0 E= \\ 0.7750 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 0 \times 2 \mathrm{E}= \\ & 1.1750 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 4 \mathrm{E}= \\ 1.5750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 6 \mathrm{E}= \\ 1.9750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 8 \mathrm{E}= \\ 2.3750 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times A E= \\ & 2.7750 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times C E= \\ & 3.1750 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 0 F= \\ 0.7875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 2 F= \\ 1.1875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 4 \mathrm{~F}= \\ 1.5875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 6 \mathrm{~F}= \\ 1.9875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 8 \mathrm{~F}= \\ 2.3875 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times A F= \\ & 2.7875 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times C F= \\ & 3.1875 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 10= \\ 0.8000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 30= \\ 1.2000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 50= \\ 1.6000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 70= \\ 2.0000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 90= \\ 2.4000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times B 0= \\ & 2.8000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times D 0= \\ & 3.2000 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 11= \\ 0.8125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 31= \\ 1.2125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 51= \\ 1.6125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 71= \\ 2.0125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 91= \\ 2.4125 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times B 1= \\ & 2.8125 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times D 1= \\ 3.2125 \mathrm{~V} \end{gathered}$	
	$\begin{gathered} 0 \times 12= \\ 0.8250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 32= \\ 1.2250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 52= \\ 1.6250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 72= \\ 2.0250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 92= \\ 2.4250 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 2= \\ 2.8250 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times D 2= \\ & 3.2250 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 13= \\ 0.8375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 33= \\ 1.2375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 53= \\ 1.6375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 73= \\ 2.0375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 93= \\ 2.4375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 3= \\ 2.8375 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times D 3= \\ & 3.2375 \mathrm{~V} \end{aligned}$	

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 14. Step-Down Output Voltage Table (continued)

BIT	DESCRIPTION							DEFAULT
$\begin{aligned} & \text { VOUT_B_ } \\ & \text { VID_[7:0] } \end{aligned}$	$\begin{aligned} & 0 \times 14= \\ & 0.8500 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 34= \\ 1.2500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 54= \\ 1.6500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 74= \\ 2.0500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 94= \\ 2.4500 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times B 4= \\ & 2.8500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \times D 4= \\ & 3.2500 \mathrm{~V} \end{aligned}$	See the Electrical Characteristics table.
	$\begin{aligned} & 0 \times 15= \\ & 0.8625 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 35= \\ 1.2625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 55= \\ 1.6625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 75= \\ 2.0625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 95= \\ 2.4625 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 5= \\ 2.8625 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times D 5= \\ & 3.2625 \mathrm{~V} \end{aligned}$	
	$\begin{aligned} & 0 \times 16= \\ & 0.8750 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 36= \\ 1.2750 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 0 \times 56= \\ & 1.6750 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 76= \\ 2.0750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 96= \\ 2.4750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 6= \\ 2.8750 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 0 \times D 6= \\ & 3.2750 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 17= \\ 0.8875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 37= \\ 1.2875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 57= \\ 1.6875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 77= \\ 2.0875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 97= \\ 2.4875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times B 7= \\ 2.8875 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline 0 \times D 7= \\ 3.2875 \mathrm{~V} \end{gathered}$	
	$\begin{aligned} & 0 \times 18= \\ & 0.9000 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 38= \\ 1.3000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 58= \\ 1.7000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 78= \\ 2.1000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 98= \\ 2.5000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times B 8= \\ & 2.9000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \times D 8= \\ & 3.3000 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 19= \\ 0.9125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 39= \\ 1.3125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 59= \\ 1.7125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 79= \\ 2.1125 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 99= \\ 2.5125 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times B 9= \\ & 2.9125 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \times D 9= \\ & 3.3125 \mathrm{~V} \end{aligned}$	
	$\begin{aligned} & 0 \times 1 \mathrm{~A}= \\ & 0.9250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 3 A= \\ & 1.3250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 5 \mathrm{~A}= \\ & 1.7250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 7 \mathrm{~A}= \\ & 2.1250 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 9 \mathrm{~A}= \\ 2.5250 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times B A= \\ & 2.9250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times \mathrm{DA}= \\ & 3.3250 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 1 \mathrm{~B}= \\ 0.9375 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 3 \mathrm{~B}= \\ & 1.3375 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 5 \mathrm{~B}= \\ 1.7375 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 7 \mathrm{~B}= \\ 2.1375 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 9 \mathrm{~B}= \\ & 2.5375 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times B B= \\ & 2.9375 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times D B= \\ & 3.3375 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 1 \mathrm{C}= \\ 0.9500 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 3 \mathrm{C}= \\ & 1.3500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 5 \mathrm{C}= \\ & 1.7500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 7 \mathrm{C}= \\ & 2.1500 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 9 \mathrm{C}= \\ 2.5500 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times B C= \\ & 2.9500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times D C= \\ & 3.3500 \mathrm{~V} \end{aligned}$	
	$\begin{aligned} & 0 \times 1 \mathrm{D}= \\ & 0.9625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 3 \mathrm{D}= \\ & 1.3625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 5 \mathrm{D}= \\ & 1.7625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 7 \mathrm{D}= \\ & 2.1625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 9 \mathrm{D}= \\ & 2.5625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times B D= \\ & 2.9625 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times D D= \\ & 3.3625 \mathrm{~V} \end{aligned}$	
	$\begin{aligned} & 0 \times 1 E= \\ & 0.9750 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 3 \mathrm{E}= \\ 13750 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 5 \mathrm{E}= \\ 1.7750 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 7 E= \\ & 2.1750 V \end{aligned}$	$\begin{gathered} 0 \times 9 \mathrm{E}= \\ 2.5750 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times B E= \\ & 2.9750 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times D E= \\ & 3.3750 \mathrm{~V} \end{aligned}$	
	$\begin{gathered} 0 \times 1 F= \\ 0.9875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 F= \\ 1.3875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 5 F= \\ 1.7875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 7 \mathrm{~F}= \\ 2.1875 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 9 \mathrm{~F}= \\ 2.5875 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \times B F= \\ 2.9875 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 0 \times D F= \\ 3.3875 \mathrm{~V} \end{gathered}$	

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 15. Step-Down Configuration Table

BIT	NAME	DESCRIPTION	DEFAULT
0	FALLSLEW_	Active-Low Step-Down Converter Falling Slew Rate Enable $0=$ The slew rate control circuit is active when the output voltage is decreased. The desired regulation voltage is decreased in 12.5 mV steps, and forced PWM mode is enabled so that negative inductor current can be used to pull energy out of the output capacitor. $1=$ The slew rate control circuit is disabled when the output voltage is decreased. The desired regulation voltage is decreased in 12.5 mV steps, but it is up to the external load to drain energy from the output capacitor in order to pull down on the output voltage.	0b0
1	RSVD	Reserved	Ob0
2	FPWM_	Step-Down Forced PWM Mode Enable 0 = Step-Down Converter automatically skips pulses under light load conditions, and transfers to fixed frequency operation as the load current increases. 1 = Step-Down Converter operates with fixed frequency under all load conditions.	0b0
3	nADEN_	Active-Low Buck Converter Active Discharge Enable $0=$ The active discharge function is enabled. When the buck converter is disabled, an internal 100Ω discharge resistor is connected to the output to discharge the energy stored in the output capacitor. When the buck converter is enabled, the discharge resistor is disconnected from the output. $1=$ The active discharge function is disabled. When the buck converter is disabled, the internal 100Ω discharge resistor is not connected to the output, and the discharge rate is dependent on the output capacitance and the load present. When the buck converter is enabled, the discharge resistor is disconnected from the output.	0b0
5:4	PWR_[5:4]	Step-Down Power Mode Configuration. These bits determine the mode of operation for this converter. $00=$ Disabled 01 = Normal operation mode with remote sense disabled $10=$ Green mode 11 = Normal operation mode with remote sense enabled	0b00
7:6	SLEW_[7:6]	Step-Down Rising Slew Rate $00=12.5 \mathrm{mV} / \mu \mathrm{s}$ ramp rate $01=25 \mathrm{mV} / \mathrm{\mu s}$ ramp rate $10=50 \mathrm{mV} /$ /us ramp rate 11 = No slew rate control. Output voltage increases as fast as the current limit allows.	Ob00

MAX8967

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 16. Status

COMMAND NAME	
$\mathrm{I}^{2} \mathrm{C}$ address	MAX8967 $\mathrm{I}^{2} \mathrm{C}$ address
Command code	0x0B
Access type	Read only. Status is masked by the interrupt mask register and is cleared by reading related interrupt register bits.
Reset condition	Power-up/chip reset/Ob1 written to bit

BIT	NAME	DESCRIPTION	DEFAULT
7	PNOK1	$0=$ Step-down converter 1 is on. $1=$ Step-down converter 1 is off or faulted.	0b1
6	PNOK2	$0=$ Step-down converter 2 is on. $1=$ Step-down converter 2 is off or faulted.	$0 b 1$
5	TH	$0=$ Temperature is below the thermal shutdown threshold. $1=$ Temperature exceeds the thermal shutdown threshold.	$0 b 0$
4	LDO_PNOK	$0=$ One or more LDOs are off or above the POK threshold. $0=$ One or more LDOs are on and below the POK threshold.	0 0b0
3	RSVD	Reserved	0b1
2	RSVD	Reserved	0b1
1	RSVD	Reserved	0b1
0	RSVD	Reserved	0b1

Table 17. Interrupt

COMMAND NAME	INTERRUPT
$I^{2} \mathrm{C}$ address	MAX8967 $\mathrm{I}^{2} \mathrm{C}$ address
Command code	$\mathbf{0 x 0 \mathrm { C }}$
Access type	Read-clear on read
Reset condition	Power-up/chip reset/0b1 written to bit

BIT	NAME	DESCRIPTION	DEFAULT
7	PNOK1_INT	Step-Down 1 Interrupt Bit $0=$ Output is normal $1=$ Output has fallen below the power-OK threshold.	0b0
6	PNOK2_INT	Step-Down 2 Interrupt Bit $0=$ Output is normal $1=$ Output has fallen below the power-OK threshold.	0.
5	TH_INT	Thermal Interrupt Bit $0=$ Die temperature is normal $1=$ Die temperature has exceeded thermal shutdown threshold	0b0
4	LDO_PNOK_INT	One or more LDO power-OK levels have not been maintained.	0b0
3	RSVD	Reserved	Ob0
2	RSVD	Reserved	0b0
1	RSVD	Reserved	0b0
0	RSVD	Reserved	0b0

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 18. Interrupt Mask

COMMAND NAME	INTERRUPT MASK
$\mathrm{I}^{2} \mathrm{C}$ address	MAX8967 $\mathrm{I}^{2} \mathrm{C}$ address
Command code	0x0D
Access type	Read-clear on read
Reset condition	Power-up/chip reset/0b1 written to bit

BIT	NAME	DESCRIPTION	DEFAULT
7	PNOK1M	Step-Down 1 Interrupt Mask Bit $0=$ Interrupt is unmasked. 1 = Interrupt is masked.	Ob1
6	PNOK2M	Step-Down 2 Interrupt Mask Bit $0=$ Interrupt is unmasked. 1 = Interrupt is masked.	Ob1
5	THM	Thermal Interrupt Mask Bit $0=$ Interrupt is unmasked. 1 = Interrupt is masked.	Ob1
4	LDO_PNOKM	LDO Interrupt Mask Bit $0=$ Interrupt is unmasked. 1 = Interrupt is masked.	Ob1
3	RSVD	Reserved	0b1
2	RSVD	Reserved	Ob0
1	RSVD	Reserved	Ob0
0	RSVD	Reserved	0b0

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 19. LDO_Configuration 1 Register

REGISTER NAME	LDO_CONFIGURATION 1
Register address	See Table 3
Access type	Read/write
Reset condition	Power-up/chip reset

BIT	NAME	DESCRIPTION							DEFAULT
7, 6	LDO_PWR [7:6]	LDO Power Mode Configuration $00=$ Output disabled $01=$ Output disabled $10=$ Green mode 11 = Normal mode							Ob00
5-0	LDO_TV[5:0]	Sets the Target Voltage of the LDO. Programmed in 0.05 V steps.							
		$\begin{gathered} 0 \times 00= \\ 0.80 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 0 \mathrm{~A}= \\ 1.30 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 14= \\ 1.80 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 1 \mathrm{E}= \\ & 2.30 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 28= \\ 2.80 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 32= \\ 3.30 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 \mathrm{C}= \\ 3.80 \mathrm{~V} \end{gathered}$	
		$\begin{gathered} 0 \times 01= \\ 0.85 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 0 \mathrm{~B}= \\ 1.35 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 15= \\ 1.85 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 1 \mathrm{~F}= \\ & 2.35 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 29= \\ & 2.85 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 33= \\ 3.35 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 \mathrm{D}= \\ 3.85 \mathrm{~V} \end{gathered}$	
		$\begin{gathered} 0 \times 02= \\ 0.90 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 0 \mathrm{C}= \\ 1.40 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 16= \\ 1.90 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 20= \\ 2.40 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 2 \mathrm{~A}= \\ 2.90 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 34= \\ 3.40 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 E= \\ 3.90 \mathrm{~V} \end{gathered}$	
		$\begin{gathered} 0 \times 03= \\ 0.95 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 0 \mathrm{D}= \\ 1.45 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 17= \\ 1.95 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 21= \\ & 2.45 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 2 \mathrm{~B}= \\ 2.95 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 35= \\ 3.45 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 \mathrm{~F}= \\ 3.95 \mathrm{~V} \end{gathered}$	
		$\begin{gathered} 0 \times 04= \\ 1.00 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 0 \mathrm{E}= \\ 1.50 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 18= \\ & 2.00 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 22= \\ 2.50 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 2 \mathrm{C}= \\ 3.00 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 36= \\ 3.50 \mathrm{~V} \end{gathered}$		Ob00
		$\begin{gathered} 0 \times 05= \\ 1.05 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 0 \mathrm{~F}= \\ 1.55 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 19= \\ & 2.05 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 23= \\ & 2.55 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 2 \mathrm{D}= \\ 3.05 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 37= \\ & 3.55 \mathrm{~V} \end{aligned}$		
		$\begin{gathered} 0 \times 06= \\ 1.10 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 10= \\ 1.60 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 1 \mathrm{~A}= \\ 2.10 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 24= \\ 2.60 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 2 \mathrm{E}= \\ & 3.10 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 38= \\ 3.60 \mathrm{~V} \end{gathered}$		
		$\begin{gathered} 0 \times 07= \\ 1.15 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 11= \\ 1.65 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 1 \mathrm{~B}= \\ 2.15 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 25= \\ 2.65 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 2 \mathrm{~F}= \\ & 3.15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 39= \\ 3.65 \mathrm{~V} \end{gathered}$		
		$\begin{gathered} 0 \times 08= \\ 1.20 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 12= \\ 1.70 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 1 \mathrm{C}= \\ & 2.20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \times 26= \\ & 2.70 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 30= \\ 3.20 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 \mathrm{~A}= \\ 3.70 \mathrm{~V} \end{gathered}$		
		$\begin{gathered} 0 \times 09= \\ 1.25 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 13= \\ 1.75 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 1 \mathrm{D}= \\ 2.25 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 27= \\ & 2.75 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \times 31= \\ 3.25 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \times 3 \mathrm{~B}= \\ 3.75 \mathrm{~V} \end{gathered}$		

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 20. LDO_ Configuration 2 Register

REGISTER NAME	LDO_CONFIGURATION 2
Register address	See Table 3.
Access type	Read only for bit 3, and read/write for the rest
Reset condition	Power-up/chip reset

BIT	NAME	DESCRIPTION	DEFAULT
7	LDO_OVCLMP_EN	Overvoltage Clamp Enable 0 = Overvoltage clamp disabled. 1 = Overvoltage clamp enabled.	0b1
6	RSVD	Reserved	0b0
5, 4	LDO_COMP	LDO Compensation $00=$ Assume $50 \mathrm{~m} \Omega / 5 \mathrm{nH}$ trace impedance to remote capacitor. 01 = Assume $100 \mathrm{~m} \Omega / 10 \mathrm{nH}$ trace impedance to remote capacitor. $10=$ Assume $50 \mathrm{~m} \Omega$ to $200 \mathrm{~m} \Omega / 5 \mathrm{nH}$ to 20 nH trace impedance to remote capacitor. 11 = Assume $100 \mathrm{~m} \Omega$ to $400 \mathrm{~m} \Omega / 10 \mathrm{nH}$ to 40 nH trace impedance to remote capacitor. Note: The LDO_COMP bits should only be changed with the LDO is disabled. If the compensation bits are changed when the LDO is enabled, the output voltage glitches as the compensation changes.	0b01
3	LDO_POK	Voltage OK Status Bit $0=$ The voltage is less than the POK threshold and the device is in normal mode. $1=$ The voltage is above the POK threshold or the LDO is operating in its green mode or the LDO is disabled.	0b0
2	RSVD	Reserved	-
1	LDO_ADE	Active Discharge Enable $0=$ The active discharge function is disabled. $1=$ The active discharge function is enabled.	0b1
0	LDO_SS	Sets the LDO Soft-Start Slew Rate (Applies to both startup and output voltage setting changes) $0=$ Fast Startup and Dynamic Voltage Change-100mV/us. 1 = Slow Startup and Dynamic Voltage Change-5mV/us.	Ob1

MAX8967

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 21. LDO_INT Register

REGISTER NAME	
Register address	$\mathbf{0 x 1 B}$
Access type_INT	Read-clear on read
Reset condition	Power-up/chip reset

BIT	NAME	DESCRIPTION	DEFAULT
7, 6	RSVD	Reserved	
5	L06_INT	LDO6 Interrupt Bit $\begin{aligned} & 0=\text { LDO output is normal. } \\ & 1=\text { LDO output has fallen below the power-OK threshold. } \end{aligned}$	0b0
4	L05_INT	LDO5 Interrupt Bit $\begin{aligned} & 0=\text { LDO output is normal. } \\ & 1=\text { LDO output has fallen below the power-OK threshold. } \end{aligned}$	0b0
3	LO4_INT	LDO4 Interrupt Bit $0=$ LDO output is normal. 1 = LDO output has fallen below the power-OK threshold.	0b0
2	L03_INT	LDO3 Interrupt Bit $0=$ LDO output is normal. 1 = LDO output has fallen below the power-OK threshold.	0b0
1	L02_INT	LDO2 Interrupt Bit $0=$ LDO output is normal. 1 = LDO output has fallen below the power-OK threshold.	0b0
0	L01_INT	LDO1 Interrupt Bit $0=$ LDO output is normal. 1 = LDO output has fallen below the power-OK threshold.	0b0

MAX8967

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Table 22. LDO_INTM Register

REGISTER NAME	LDO_INTM
Register address	0x1C
Access type	Read-clear on read
Reset condition	Power-up/chip reset

BIT	NAME	DESCRIPTION	DEFAULT
7, 6	RSVD	Reserved	Ob11
5	L06_INTM	LDO6 Interrupt Mask Bit $0=$ Interrupt is unmasked. 1 = Interrupt is masked.	0b1
4	L05_INTM	LDO5 Interrupt Mask Bit $0=$ Interrupt is unmasked. 1 = Interrupt is masked.	Ob1
3	L04_INTM	LDO4 Interrupt Mask Bit $0=$ Interrupt is unmasked. $1=$ Interrupt is masked.	Ob1
2	L03_INTM	LDO3 Interrupt Mask Bit $0=$ Interrupt is unmasked. 1 = Interrupt is masked.	Ob1
1	L02_INTM	LDO2 Interrupt Mask Bit $0=$ Interrupt is unmasked. 1 = Interrupt is masked.	0b1
0	L01_INTM	LDO1 Interrupt Mask Bit $0=$ Interrupt is unmasked. $1=$ Interrupt is masked.	Ob1

Applications Information

Inductor Selection
Each step-down converter operates with a $1 \mu \mathrm{H}$ nominal inductance. It is recommended to use an inductor with a DCR less than $50 \mathrm{~m} \Omega$ to reduce $12 R$ losses.

Output Capacitor Selection

The IC is designed to operate with at least a $22 \mu \mathrm{~F}$ ceramic capacitor (X5R rated) connected to each stepdown converter output. Note that a significant share of each output's capacitance can be placed as bypassing at the load.
A $1 \mu \mathrm{~F}$ (X5R rated ceramic capacitor is required for each LDO output. The capacitor can be remotely placed away from the IC and the appropriate compensation can be selected through an I2C command. See Table 20.

Input Capacitor Selection

Since ripple cancelation is used, the worst case condition is if one supply is operating at near its 2 A maximum while the other supply is providing very little current. Since the IC can normally be connected to a node with significant capacitance, only $4.7 \mu \mathrm{~F}$ need be applied locally. A $10 \mu \mathrm{~F}$ ceramic capacitor with X 5 R rating is recommended.

PCB Layout
Nearly all noise generated by the IC is found across IN1, IN2, and PGND_ pins. The bypass capacitors for these pins should be placed closest to the IC. PGND_ and AGND should be connected only after the PGND_ pins connect to its corresponding step-down converter's input capacitor. Both step-down converters have remote sensing which accommodates a distance that incurs up to a 200 mV correction in the output voltage. Refer to the MAX8967 EV kit for more details.

Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Ordering Information

PART	PIN-PACKAGE	TEMP RANGE	BUCK OUT1 (V)	BUCK OUT2 (V)
MAX8967EWV +T	30 WLP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.20	1.20
MAX8967AEWV +T	30 WLP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.20	1.80
MAX8967BEWV +T	30 WLP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.20	2.80
MAX8967CEWV +T	30 WLP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.20	3.20

+Denotes a lead (Pb)-free/RoHS-compliant package.

Chip Information
PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
30 WLP	W302B2+2	$\underline{21-0548}$	Refer to Application Note 1891

MAX8967
Dual 2A Step-Down Converters with 6 LDOs for Baseband and Applications Processor

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$12 / 12$	Initial release	-

maxim
integrated

[^0]: Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, go to: www.maximintegrated.com/errata.

