

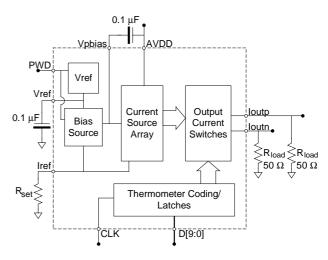
10-Bit 125MSPS Sampling Digital-to-Analog Converter

nDA10125-18

FEATURES

- 1.8V power supply
- SFDR > 60dB for $(f_{in} = 5MHz)$
- Low power (63mW@1.8V)
- Update rate: 125MSPS
- Differential output (2 15mA)
- Internal voltage reference
- Edge-triggered input latches

APPLICATIONS


- Communications
- Basestations
- Digital Radio Link
- Set top boxes
- Instrumentation
- Digital video systems

GENERAL DESCRIPTION

The nDA10125-18 is a compact, high-speed, low power 10-bit digital-to-analog converter, implemented in a 0.18µm pure digital CMOS process. The power consumption is only 63mW from a 1.8V supply operating at 125MHz update rate. The nDA10125-18 offer good AC and DC performance at update rates up to 125MHz.

The DAC has differential current outputs with a nominal full-scale output current of 15mA. The full-scale output range is adjustable between 2mA and 15mA using the external R_{set} resistor. It operates from

Functional block diagram

a single 1.8V power supply, and despite this low supply voltage the output compliance voltage range is as large as 0.75V.

QUICK REFERENCE DATA

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$V_{ m DD}$	Supply Voltage		1.6	1.8	2.0	V
I_{DD}	Supply Current	125 MSPS			35	mA
P_{D}	Power Dissipation	125 MSPS, 1.8V			63	mW
DNL	Differential nonlinearity				±0.5	LSB
INL	Integral nonlinearity				±1	LSB
$f_{clk,max}$	Maximum update rate		125			MHz
SFDR	Spurious free dynamic	125 MSPS,	60			dB
	range	f _{OUT} =5MHz				
N	Resolution				10	bit

nDA10125-18 10 Bit 125 MSPS DAC

ELECTRICAL SPECIFICATIONS

DC SPECIFICATIONS ($T_A = 25$ °C, $V_{DD} = 1.8V$, Update Rate = 125MHz, Full scale range = 15mA)

Symbol	Parameter (condition)	Min.	Тур.	Max.	Units
	DC Accuracy				
DNL	Differential Nonlinearity			±0.5	LSB
INL	Integral Nonlinearity			±1.0	LSB
	Monotonicity	Guaranteed		•	
	Analog Output	•			
I_{FSR}	Full-scale Output Current (differential)	2		15	mA
V_{FSR}	Output compliance range (differential)	0		±0.75	V
R _{OUT}	Output resistance		TBD		kΩ
C_{OUT}	Output capacitance		TBD		pF
$\epsilon_{ m offset}$	Offset error	-0.03		0.03	% FSR
ϵ_{gain}	Gain error	-10		10	% FSR
	Reference Voltage				
V_{ref}	Reference Voltage	0.92	1.0	1.08	V
	Reference Voltage Drift			100	ppm/°C
	Power Supply				
V_{DD}	Positive supply voltage	1.6	1.8	2.0	V
I_{DD}	Supply current			40	mA
V_{SS}	Negative supply voltage		GND		
P_{D}	Power dissipation(@1.8V)			72	mW
T	Ambient operating temperature	-40		+85	°C

AC SPECIFICATIONS (T_A = 25°C, V_{DD} = 1.8V, Update Rate = 125MHz, Full scale range = 15mA, R_{load} =50 Ω)

Symbol	Parameter (condition)	Min.	Typ.	Max.	Units	
	Dynamic Performance					
f_{max}	Maximum output update rate	125			MSPS	
t_{ST}	Output Settling time		35		ns	
$t_{ m PD}$	Output Propagation Delay		TBD		ns	
E_{glitch}	Glitch impulse energy		TBD		pV-s	
t _{rise}	Output Rise time		2.5		ns	
t_{fall}	Output Fall time		2.5		ns	
onoise	Output noise(I _{FSR} =15mA)		50		pA/Hz ^{1/2}	
onoise	Output noise(I _{FSR} =2mA)		30		pA/Hz ^{1/2}	
	AC Linearity					
SFDR	Spurious Free Dynamic Range					
	$f_{OUT} = 5 \text{ MHz}$	60			dB	
	$f_{OUT} = 20 \text{ MHz}$	55			dB	

ABSOLUTE MAXIMUM RATINGS

$\label{eq:supply voltages} \begin{split} AV_{DD} & \dots & -0.2V \text{ to } +2.2V \\ DV_{DD1} & \dots & -0.2V \text{ to } V_{DD} +0.2V \\ OV_{DD} & \dots & -0.2V \text{ to } V_{DD} +0.2V \end{split}$	Temperatures Operating Temperature40 to +85°C Storage Temperature 65 to +125°C
Input voltages Digital In $0.2V$ to $V_{DD} + 0.2V$ CLOCK $0.2V$ to $V_{DD} + 0.2V$	

Note: Stress above one or more of the limiting values may cause permanent damage to the device.

TIMING DIAGRAM

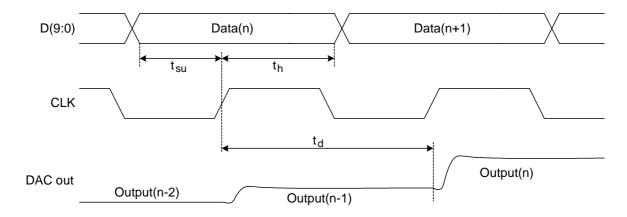


Figure 1: Timing Diagram

DEFINITIONS

Data sheet status	
Objective product specification	This datasheet contains target specifications for product development.
Preliminary product specification	This datasheet contains preliminary data; supplementary data may be published from Nordic VLSI ASA later.
Product specification	This datasheet contains final product specifications.
Limiting values	
ratings only and operation of the	limiting values may cause permanent damage to the device. These are stress device at these or at any other conditions above those given in the ecification is not implied. Exposure to limiting values for extended periods may
Application information	
Where application information is	s given, it is advisory and does not form part of the specification.

Table 3. Definitions

OBJECTIVE PRODUCT SPECIFICATION

nDA10125-18 10 Bit 125 MSPS DAC

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Nordic VLSI ASA customers using or selling these products for use in such applications do so at their own risk and agree fully indemnify Nordic VLSI ASA for any damages resulting from such improper use or sale.

OBJECTIVE PRODUCT SPECIFICATION

nDA10125-18 10 Bit 125 MSPS DAC

DESIGN CENTER

Nordic VLSI ASA Vestre Rosten 81 N-7075 TILLER NORWAY

Telephone: +47 72898900 Telefax: +47 72898989

E-mail: For further information regarding our state of the art data converters, please e-mail us at datacon@nvlsi.no.

World Wide Web/Internet: Visit our site at http://www.nvlsi.no.

ORDERING INFORMATION

Type number	Description	Price	Available
nDA10125-18-IC	nDA10125-18 sample in SSOP28	USD 50	February 15 th ,
	package (limited availability)		2002
nDA10125-18-EVB	nDA10125-18 evaluation board	USD 300	February 15 th ,
	including characterisation report and		2002
	user guide		

Table 4. Ordering information

Preliminary Product Specification. Revision Date: September 5th, 2001

All rights reserved ®. Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder. Company and product names referred to in this datasheet belong to their respective copyright/trademark holders.