Α0

A1

A2

АЗ

Α4

A5

A6

Α7

8A

A9

Ē

2

3

5

6

8

l 10

11

OCTOBER 1989

Organ	ization .	!	65,	536	X	4
-------	-----------	---	-----	-----	---	---

- Single 5-V Power Supply (10% Tolerance)
- High Density 24-Pin Package
- All Inputs/Outputs Fully TTL Compatible
- Max Access/Min Cycle Time TMS6708-20 . . . 20 ns TMS6708-25 . . . 25 ns
- Power Saving BiCMOS Technology
- 3-State Output Buffers
- Low Power Dissipation (V_{CC} = 5.5 V)
 - Active . . . 550 mW Worst Case
 - Standby . . . 55 mW Worst Case (CMOS Input Levels)
 - Standby . . . 165 mW Worst Case

description

The TMS6708 is a common I/O, 262,144-bit high-speed static random-access memory organized as 65,536 words by 4 bits. The TMS6708 features maximum address access and a minimum cycle times of 20 ns and 25 ns.

(TTL Input Levels)

The TMS6708 is fabricated using BiCMOS technology. Maximum power dissipation is as low as 550 mW active. This reduces to a maximum of 55

mW (CMOS input levels) and 165 mW (TTL input levels) during standby operation.

GND ٦W 12 13 PIN NOMENCLATURE A0-A15 Address Inputs DQ1-DQ4 Data In/Data Out Ē Chip Enable GND Ground 5-V Power Supply Vcc Write Enable

N AND DJ PACKAGES

TOP VIEW

23

21

20

19

17

15

14

24 🗌 VCC

22 | A14

∏ A15

□ A13

□ A12

□ A11

DQ1

DQ2

П DQз

DQ4

18 A10

All inputs and outputs are compatible with Series 54/74 TTL circuits without the use of external pull-up resistors. Each output can drive one Series 54/74 TTL circuit without external resistors. The data outputs are three-state for connecting multiple devices to a common bus.

The TMS6708 is offered in a 300-mil, 24-pin plastic dual-in-line package (N suffix) and a 24-pin plastic small outline J-lead package (DJ suffix). Both are characterized for operation from 0°C to 70°C.

operation

addresses (A0-A15)

The 16 addresses select one of the 65,536 4-bit words in the RAM. The address inputs must be stable for the duration of a read or write cycle. The address inputs can be driven directly from standard Series 54/74 TTL without external pull-up resistors.

chip enable/power down (E)

The chip enable/power down terminal (\overline{E}) can be driven directly by standard TTL circuits, and affects the power down/deselect function of a chip. When \overline{E} is high, the device is put into a reduced power standby mode. Data is retained during the standby mode.

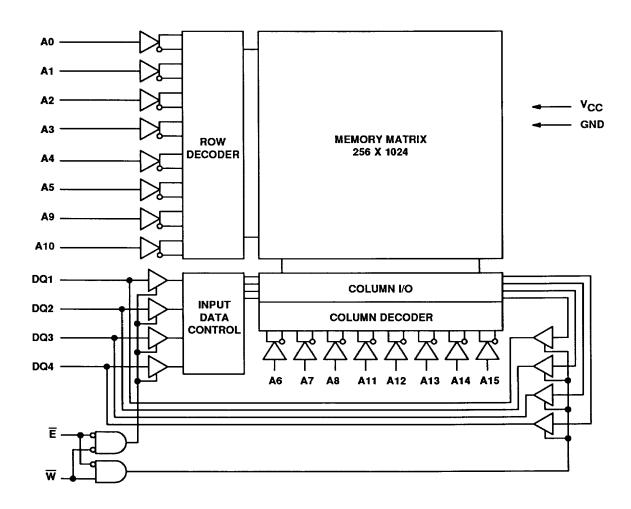
PRODUCTION DATA documents contain information current as of publication data. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include teating of all parameters.

Copyright @ 1989, Texas Instruments Incorporated

write enable (W)

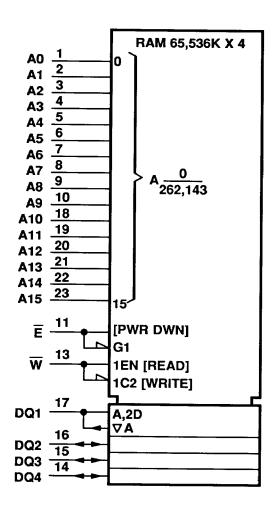
The read or write mode is selected through the write enable terminal (\overline{W}) . A logic high selects the read mode; a logic low selects the write mode. \overline{W} or \overline{E} must be high when changing addresses to prevent inadvertently writing data into a memory location. The \overline{W} input can be driven directly from standard TTL circuits.

data in /data out (DQ1-DQ4)


Data can be written into a selected device when write enable (\overline{W}) is low and chip enable (\overline{E}) is low. Data can be read when write enable (\overline{W}) is high as chip enable (\overline{E}) is low. The DQ terminals can be driven directly from standard TTL circuits. The three-state output buffers provide direct TTL compatibility.

function table

FUNCTION	MODE					
FUNCTION	Deselect	Read	Write			
W	Х	Н	L			
Ē	Н	L	L			
DQ1-DQ4	HI-Z	DOUT	D _{IN}			


X = Don't Care

functional block diagram

logic symbol[†]

[†]Symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless other wise noted)[†]

Supply voltage range (see Note 1) .	 – 0.5 V to 7 V
Power dissipation	 1 W
Operating free-air temperature range	 0°C to 70°C
Temperature range powered down .	 . – 10°C to 85°C
Storage temperature range	 55°C to 125°C

^{*}Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the *Recommended Operating Conditions* section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND terminal.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5.0	5.5	V
VIH	High-level input voltage	2.2		6	٧
VIL	Low-level input voltage (see Note 2)	- 0.5		0.8	٧
TA	Operating free-air temperature	0		70	°C

NOTE 2: The input voltage may go down to - 3 V for a maximum time interval of 20 ns.

electrical characteristics over full ranges of recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	High level output voltage	I _{OH} = - 4 mA	2.4			V
VOL	Low level output voltage	I _{OL} = 8 mA			0.4	V
· I _I	Input current (leakage)	V _{CC} = 5.5 V, V _{IN} = GND to V _{CC}			2	μА
<u> </u>	Output current (leakage)	E = V _{IH} , V _{i/o} = GND to V _{CC}			10	μА
lCC1	Operating power supply current	Ē = V _{IL} , I _{i/o} = 0 mA			100	mA
lCC2	Average operating current	Minimum cycle, Duty 100%, I _{I/O} = 0 mA			120	mA
ICC(SB1)	Standby supply current (TTL levels)	E = V _{IH} , V _{in} = V _{IH} or V _{IL}			30	mA
CC(SB2)	Standby supply current (low-power CMOS levels)	$E \ge V_{CC} - 0.2 \text{ V},$ $V_{in} \le 0.2 \text{ V or } V_{in} \ge V_{CC} - 0.2 \text{ V}$			10	mA

capacitance, $T_A = 25^{\circ}C$, $f = 1 \text{ MHz}^{\ddagger}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _i	Input capacitance	V _{in} = 0 V			6	pF
C _{i/o}	Output capacitance	V _{VO} = 0 V			10	pF

[‡]Capacitance measurements are made on a sample basis only.

timing requirements over recommended supply voltage range and operating temperature range (read cycle) (see Note 3)

		ALTERNATE	TMS6	708-20	TMS6	708-25	UNIT
		SYMBOL	MIN	MAX	MIN	MAX	
^t c(rd)	Read cycle time	^t RC	20		25		ns

switching characteristics over full ranges of recommended operating conditions (read cycle) (see Note 3)

	DADAMETED	ALTERNATE	TMS6	708-20	TMS6	708-25	
	PARAMETER		MIN	MAX	MIN	MAX	UNIT
^t a(A)	Access time from address	^t AA		20		25	ns
t _{a(E)}	Access time from E	t _{ACS}		20		25	ns
t _{en(E)}	Output enable time from $\overline{\overline{E}}$ (see Note 4)	tLZ	0		0		ns
^t dis(E)	Output disable time from E (see Note 4)	t _{HZ}	0	8	0	10	ns
t √(A)	Output data valid time after address change	tон	5		5		ns

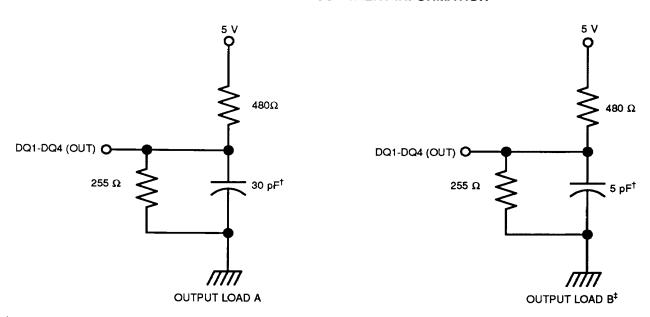
NOTES: 3	3.	3. Timing requirements and switching characteristics are defined under the following conditions:			
			Input pulse levels	3.0	٧
			Input rise and fall time	.4 r	ns
			Input timing reference level	1.5	٧
			Output timing reference level	1.5	٧
			Output load (including scope and jig)see Fig	ure	1
				-	

 Transition is measured ± 200 mV from steady state voltage with specifed loading in Figure 1 Load B. This parameter is sampled and not 100% tested.

Texas Instruments

POST OFFICE BOX 1443 . HOUSTON, TEXAS 77001

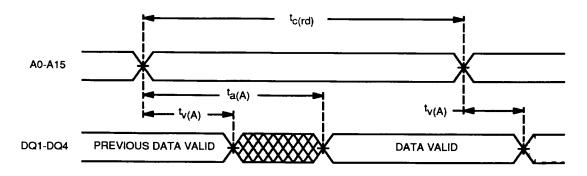
timing requirements over recommended supply voltage range and operating temperature range (write cycle) (see Note 3)


		ALTERNATE	TMS6708-20	TMS6708-25	UNIT
		SYMBOL	MIN MAX	MIN MAX	ONT
t _{c(W)}	Write cycle time (see Note 5)	twc	20	25	ns
t _{su(E)}	Chip enable setup time	tcw	15	20	ns
^t su(A)	Address setup time	t _{AS}	0	0	ns
^t AVWH	Address valid time to write high	t _{AW}	15	20	ns
^t w(W)	Write pulse duration	t _{WP}	15	20	ns
t _{rec(W)}	Write recovery time	twR	3	3	ns
t _{su(D)}	Data setup time before write high	t _{DW}	12	15	กร
[‡] h(D)	Data hold time after write high	t _{DH}	0	0	ns
^t v(W)	Output data valid time after write high (see Note 4)	vov	0	0	ns

switching characteristics over full ranges of recommended operating conditions (write cycle) (see Note 3)

PARAMETER	ALTERNATE	TMS6	708-20	TMS6	708-25	UNIT
FARAMETER	SYMBOL	MIN	MAX	MIN	MAX	ONIT
t _{dis(W)} Output disable time from ₩ (see Note 4)	^t WZ	0	8	0	10	ns

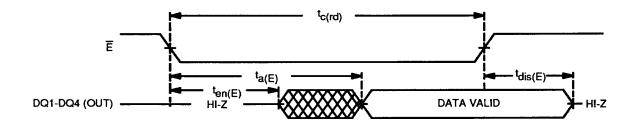
NOTES:	3.	Timing requirements and switching characteristics are defined under the following conditions:
		Input pulse levels
		Input rise and fall time
		Input timing reference level
		Output tirning reference level
		Output load (including scope and jig)
	4.	Transition is measured ± 200 mV from steady state voltage with specifed loading in Figure 1 Load B. This parameter is sampled and not 100% tested.
	5.	All write cycle timings are referenced from the last valid address to the first transitioning address.


PARAMETER MEASUREMENT INFORMATION

[†]This value includes scope and jig capacitance.

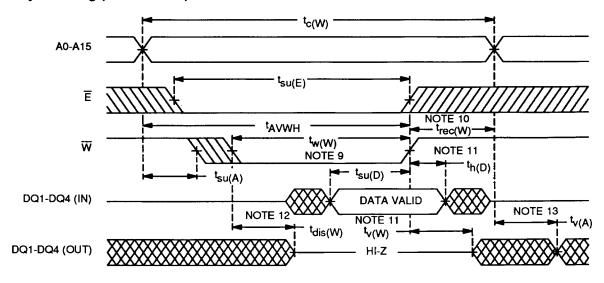
FIGURE 1. OUTPUT LOAD CIRCUIT

read cycle timing (type A)



NOTES: 6. \overline{W} is high for the read cycle. 7. Device is continuously selected when $\overline{E} = V_{||L|}$.

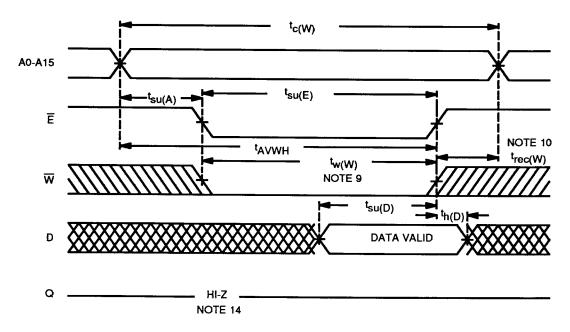
[‡]This output load applies for $t_{dis(E)}$, $t_{en(E)}$, $t_{dis(W)}$, and $t_{v(W)}$.


read cycle timing (type B)

NOTES: 6. \overline{W} is high for the read cycle.

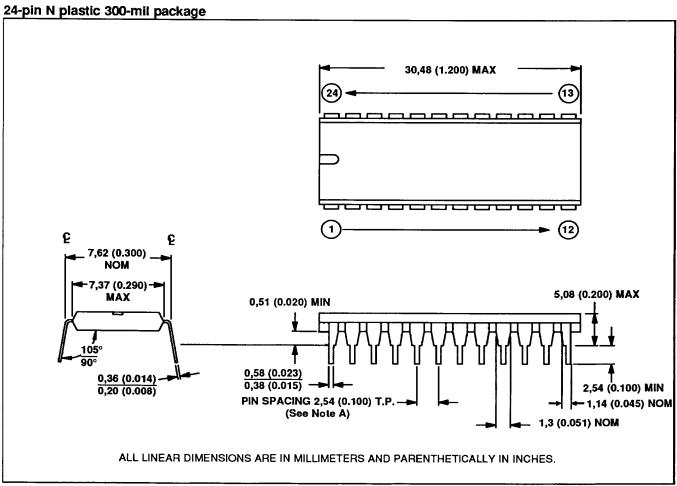
8. Address is valid prior to or at the same time E goes low.

write cycle timing (W controlled)



NOTES: 9. A write occurs during the overlap of a low \overline{E} and a low \overline{W} ($t_{W(W)}$).

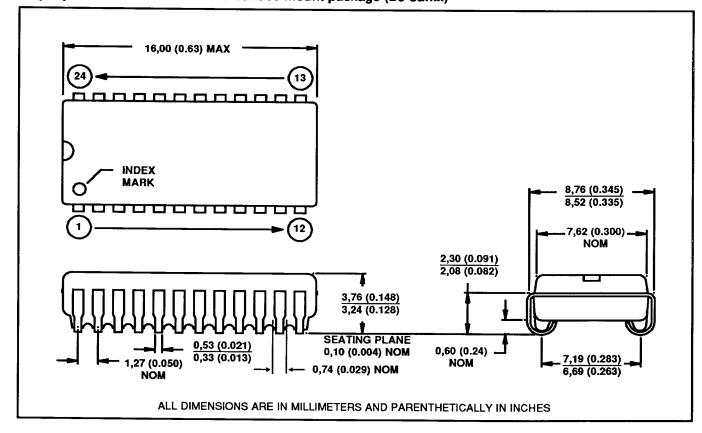
- 10. $t_{rec(W)}$ is measured from the earlier of \overline{E} or \overline{W} going high to the end of write cycle.
- 11. If E is low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied.
- 12. During this period, I/O pins are in the output state. The input signals out of phase must not be applied.
- 13. DQ1-DQ4 (OUT) is in the same phase as write data in this write cycle.


write cycle timing (E controlled)

NOTES: 9. A write occurs during the overlap of a low \overline{E} and a low \overline{W} ($t_{W(W)}$).

- 10. $t_{rec(W)}$ is measured from the earlier of \overline{E} or \overline{W} going high to the end of write cycle.
- 14. If \overline{E} goes low simultaneously with \overline{W} going low or after \overline{W} goes low, the output buffers remain in high-impedance state.

MECHANICAL DATA



NOTE A: Each pin centerline is located within 0.010 (0.25) of its true longitudinal position.

MECHANICAL DATA

24-pin plastic small outline J-lead surface mount package (DJ suffix)

016542 /_ 6