5 VOLT SERIES 200 FLASH MEMORY MINIATURE CARD

iFM004G, iFM008G and iFM016G

- Low-Cost Linear Flash Card
 5 Volt Intel[®] StrataFlash[™] Memory Flash Technology
- Fast Read Performance
 150 ns Max Access Time
- High-Performance Writes — 12 µs Typical Byte Write

x16 Data Interface

December 1998

- 32 Byte Write Buffer
 Frees CPU to Perform Other Tasks
- Low Deep Power-Down Current
 145 μA Maximum for 4-MB Card

- Single Supply Operation
 5 V Read/Write
- Automated Write and Erase Algorithms
 CFI and SCS Compliant
- Enhanced Automated Suspend Options
 Block Erase Suspend to Write
 Block Erase Suspend to Read
- Enhanced Data Protection Features
 Flexible Block Locking
- 100,000 Erase Cycles per Block
- 128-Kbyte Erase Blocks

The Intel[®] Series 200 Miniature Cards deliver the benefits of Intel[®] StrataFlash[™] memory to users of portable electronic systems. Capitalizing on two-bit-per-cell technology, Intel StrataFlash memory products provide 2X the bits in 1X the space. Intel StrataFlash memory devices are the first to bring reliable, two-bit-per-cell storage technology to the flash memory market.

Intel StrataFlash memory benefits include: more density in less space, lowest cost-per-bit NOR devices, support for code and data storage, and easy migration to future devices.

Using the same NOR-based ETOX[™] technology as Intel's one-bit-per-cell products, Intel StrataFlash memory devices take advantage of 400 million units of manufacturing experience since 1988. As a result, Intel StrataFlash components are ideal for code or data applications where high density and low cost are required. Examples include networking, telecommunications, audio recording, and digital imaging.

Intel StrataFlash memory components provide a new generation of forward-compatible software support built upon the Intel[®] FlashFile[™] memory architecture. By using the Common Flash Interface (CFI) and the Scaleable Command Set (SCS), customers can take advantage of density upgrades and optimized write capabilities of future Intel StrataFlash memory devices.

Manufactured on the Intel® 0.4 micron ETOX V process technology, Intel StrataFlash memory provides the highest levels of quality and reliability.

The 5 Volt Series 200 Miniature Cards, based on the Miniature Card Implementers Forum (MCIF), employ 5 Volt Intel StrataFlash components to provide the ultimate in convenient, low-cost data storage for users of portable electronics systems. To meet the demanding requirements of diverse portable electronic system, these Miniature Cards are designed as small form factor removable media and are favored for their cost-effectiveness and reliability. Ideal platforms for the 5 Volt Series 200 include digital still cameras, audio recorders, smart cellular phones and hand-held PCs. Such applications require low-cost, consumer-friendly data storage media, as well as a convenient method to transport data to a PC for file manipulation and enhancement.

Host-based filing system software, such as Flash Translation Layer (FTL), eliminates the need for expensive card-based microcontrollers and ASICs. The 5 Volt Series 200 Flash Memory Miniature Cards enable the consumer to enjoy compatibility across a wide range of systems, allowing easy data exchange with MS-DOS* and Windows* 95-based PCs.

NOTE: This document formerly known as Series 200 Flash Memory Miniature Card 4, 8, 16 Mbytes.

Order Number: 290620-005

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The iFM004G, iFM008G and iFM016G may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation P.O. Box 5937 Denver, CO 80217-9808

or call 1-800-879-4725 or visit Intel's Website at http://www.intel.com

COPYRIGHT © INTEL CORPORATION 1998

CG-041493

*Third-party brands and names are the property of their respective owners

int_{el}.

CONTENTS

F	Þ۵	(3	F
	'	"	-	_

Р	A	G	٦F
•		-	·

TAGE
1.0 SCOPE OF DOCUMENT5
2.0 PRODUCT OVERVIEW5
3.0 CARD ARCHITECTURE
4.0 MEMORY CONTROL LOGIC 10 4.1 Bus Operations 10 4.1.1 Read Array 10 4.1.2 Output Disable 10 4.1.3 Standby 11 4.1.4 Reset/Power-Down 11 4.1.5 Read Identifier Codes 12 4.1.6 Write 12 4.2 Decode Logic 12
5.0 COMMAND DEFINITION13
5.1 Basic Command Set13
5.1.1 Read Array Command13
5.1.2 Read Identifier Codes Command15
5.1.3 Read Status Register Command15
5.1.4 Clear Status Register Command15
5.1.5 Block Erase Command
5.1.6 Block Erase Suspend Command
5.1.8 Set Block Lock-Bit Command
5.1.6 Oct Diock Eock Dit Command
5 1 9 Clear Block Lock-Bits Command 18
5.1.9 Clear Block Lock-Bits Command
5.2 Scaleable Command Set18
5.2 Scaleable Command Set

6.0 CARD ATTRIBUTE INFORMATION	21
6.1 Card Information Structure	21
6.2 Attribute Information Structure	21
6.3 CIS Data	22
7.0 ELECTRICAL SPECIFICATIONS	26
7.1 Absolute Maximum Ratings	26
7.2 Operating Conditions	26
7.3 Capacitance	26
7.4 DC Characteristics	27
7.5 AC Characteristics	28
7.5.1 Read Operations	29
7.5.2 Write Operations	30
7.5.3 Power-Up Timing	31
7.6 Block Erase, Write, and Lock-Bit	
Configuration Performance	33
8.0 PACKAGING	34
9.0 ORDERING INFORMATION	35
10.0 ADDITIONAL INFORMATION	35

REVISION HISTORY

Date of Revision	Version	Description
12/01/97	-001	Original version
03/16/98	-002	Updated front cover sheet highlights: write speed changed to 7 $\mu s,$ erase cycles per block changed to 100,000
		In Table 5, <i>Card Signal Values for the Card's Bus Operations and Modes</i> , changed conditions for Word Read, Word Write and Standby operations
		In first sentence of paragraph 4.1.3, <i>Standby</i> , re-defined standby mode entry conditions
		In Table 11, <i>CIS Memory Map</i> , removed CISTPL_DEVICE_OC row entry, "bumped-up" the address locations for the final 2 row entries of the table
		In paragraph 6.3, <i>CIS Data</i> , eliminated all references to 4 MB–200 ns, 8 MB– 150 ns and 16 MB–150 ns card density-speed combinations and changed description entry for addresses 05H – 0DH from null to CISTPL_NULL (in bold font)
		In the last row (for I_{CCES}) of the DC Characteristics table of paragraph 7.4 changed CE_1# to CEL# and CE_2# to CEH#
		In note 1 of paragraph 7.5.2, <i>Write Operations</i> , restated the "CE# deasserted" conditions to be both CE#s (CEL# and CEH#) instead of either one of the CEs (CEL# or CEH#)
		In paragraph 7.6, <i>Block Erase, Write, and Lock-Bit Configuration Performance,</i> changed the "Typ" entries for first 3 parameters (pertaining to write time) to increase write times by 16.67%; added note 6 to describe expected write time performance relative to the specified maximum and typical values, and to suggest use of BUSY# to maximize system performance.
05/01/98	-003	Updated front cover sheet highlights: changed write speed to $6.3 \mu s$
06/05/98	-004	Updated front cover sheet highlights: changed write speed to 12 μs
		In Paragraph 7.6 <i>Block Erase, Write, and Lock-Bit Configuration Performance,</i> changed typical values for the following parameters: Write Buffer Word Write Time, Word Write Time (Using Word Write Command), and Block Write Time (Using Write to Buffer Command)
12/21/98	-005	All densities of the 5 Volt Series 200 Miniature Card are now based on the 28F320J5. Specifications were changed accordingly.
		Name of document changed from <i>Series 200 Flash Memory Miniature Card 4, 8, 16, Mbyte.</i>

PRELIMINARY

1.0 SCOPE OF DOCUMENT

This datasheet describes a 5 Volt Intel[®] StrataFlash[™] memory card architecture, AC and DC characteristics and command definitions. Refer to Intel order number 290606 when ordering the datasheet.

2.0 PRODUCT OVERVIEW

The 4-, 8- and 16-Mbyte flash memory cards each contain a flash memory array made up of 5 Volt Intel StrataFlash memory components. The 4-Mbyte card consists of a single 4-Mbyte component (product number 28F320J5) configured for x 16 operation. Similarly, the 8-Mbyte card consists of two 4-Mbyte components (Intel® 28F320J5) configured for x16 operation. The 16-Mbyte card consists of four 4-Mbyte components which are configured for x16 operation. Intel StrataFlash memory card store more than one bit per flash memory card store more than one bit per flash memory arrays. Figure 1 provides a generic block diagram which illustrates the card's functional layout and user interface.

A Command User Interface (CUI) serves as the interface between the system processor and internal operation of the card's memory device(s). A

valid command sequence written to the CUI initiates device automation. An internal Write State Machine (WSM) automatically executes the algorithms and timings necessary for block erase, write, and lock-bit configuration operations.

Each Intel StrataFlash memory device incorporates a 16 word (32 byte) write buffer. This dramatically improves write performance by optimizing a flash memory device's programming algorithm, thereby freeing the CPU from writing data and polling status on a word-by-word basis. The 32-byte buffer can be loaded at full bus speed; then a single command can be issued to transfer the buffer into the flash memory array. While the Write State Machine (WSM) is handling all of the flash memory programming details for a memory write operation, the host CPU is free to perform other tasks.

The 4-, 8-, and 16-Mbyte cards contain, respectively, 32, 64, and 128 separate 128-Kbyte erase blocks. A block erase operation erases one of the 128-Kbyte blocks typically within one second—independent of other blocks. Each block can be independently erased 100,000 times. Block erase suspend mode allows system software to suspend block erase to read data from or write data to any other block.

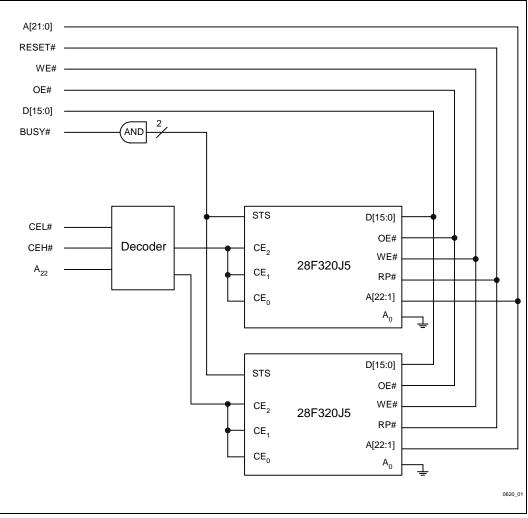


Figure 1. 8-Mbyte Flash Memory Card Block Diagram Showing Major Functional Elements

3.0 CARD ARCHITECTURE

The 5 Volt Series 200 Miniature Card implements the functionality of the Miniature Card Specification with X16 (word-wide) data transfers. The card does not support individual 8-bit (byte)—wide memory data transfers as the card's memory devices(s) and data bus interface are structured word-wide. The card ignores the Miniature Card interface signal BS#8 (for selecting between byte and word host data transfers) and assumes the BS#8 signal to be HIGH (for word access between the host and card).

Various information about the card is contained in an Attribute Information Structure (AIS) as defined in the PCMCIA Miniature Card Specification. The AIS is stored in Block 0 of the card's memory array. The high byte of the AIS is always FFH, the low byte contains the actual AIS data.

3.1 Card Signal Description

The signals for the 5 Volt Series 200 Miniature Card are listed in Table 1 and Table 2. They comply with the Miniature Card Specification. Table 3 and Table 4 describes the signals.

Signal Name	Pad #	Pad # Signal Name		Signal Name
A ₁₈	21	D ₁₂	41	A ₄
A ₁₆	22	D ₁₀	42	CEL#
A ₁₄	23	D ₉	43	A ₁
V _{CCR} ⁽¹⁾	24	D ₀	44	CASL#(1)
CEH#	25	D ₂	45	CASH#(1)
A ₁₁	26	D ₄	46	CD#
A9	27	RFU	47	A ₂₁ ⁽⁴⁾
A ₈	28	D ₇	48	BUSY#
A ₆	29	SDA ⁽¹⁾	49	WE#
A ₅	30	SCL ⁽¹⁾	50	D ₁₄
A ₃	31	A ₁₉	51	RFU(1,2)
A ₂	32	A ₁₇	52	D ₁₁
A ₀	33	A ₁₅	53	VS2#(1)
RAS#(1)	34	A ₁₃	54	D ₈
A ₂₄ ⁽¹⁾	35	A ₁₂	55	D ₁
A ₂₃ ⁽¹⁾	36	RESET#	56	D ₃
A ₂₂ (1)	37	A ₁₀	57	D5
OE#	38	VS1#	58	D ₆
D ₁₅	39	A ₇	59	RFU(1,2)
D ₁₃	40	BS8# ⁽¹⁾	60	A ₂₀ ⁽³⁾
	A ₁₈ A ₁₆ A ₁₄ V _{CCR} ⁽¹⁾ CEH# A ₁₁ A ₉ A ₈ A ₆ A ₅ A ₃ A ₂ A ₀ RAS#(1) A ₂₂ (1) A ₂₂ (1) A ₂₂ (1) D ₁₅	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_{18} 21 D_{12} A_{16} 22 D_{10} A_{14} 23 D_9 $V_{CCR}^{(1)}$ 24 D_0 $CEH#$ 25 D_2 A_{11} 26 D_4 A_9 27 RFU A_8 28 D_7 A_6 29 $SDA^{(1)}$ A_5 30 $SCL^{(1)}$ A_3 31 A_{19} A_2 32 A_{17} A_0 33 A_{15} $RAS#^{(1)}$ 34 A_{13} $A_{24}^{(1)}$ 35 A_{12} $A_{22}^{(1)}$ 37 A_{10} $OE#$ 38 $VS1#$	A_{18} 21 D_{12} 41 A_{16} 22 D_{10} 42 A_{14} 23 D_9 43 $V_{CCR}^{(1)}$ 24 D_0 44 CEH# 25 D_2 45 A_{11} 26 D_4 46 A_9 27 RFU 47 A_8 28 D_7 48 A_6 29 $SDA^{(1)}$ 49 A_5 30 $SCL^{(1)}$ 50 A_3 31 A_{19} 51 A_2 32 A_{17} 52 A_0 33 A_{15} 53 $RAS#^{(1)}$ 36 RESET# 56 $A_{22}^{(1)}$ 37 A_{10} 57 $OE#$ 39 $A7$ 59

Table 1. 5 Volt Series 200 Flash Memory Miniature Card Interface Signals

NOTES:

1. These signals make no internal connection into the card.

2. Reserved pins must not be driven by the host. They should be left floating.

3. A₂₁ and A₂₂ are not decoded on the 4-Mbyte card.

4. A₂₂ is not decoded on the 8-Mbyte card.

Signal #	Signal Name
61	GND
62	CINS#
63	V _{CC}

Table 3. 5 Volt Series 200 Flash Memory Miniature Card Interface Signal Description

Symbol	Туре	Name and Function
A ₀ -A ₂₄	INPUT	ADDRESS INPUTS: Addresses A_0 through A_{24} enable direct addressing of up to 64 MB of memory on the card. The memory will wrap at the card density boundary. The system should NOT try to access memory beyond the card's density, since the upper addresses are not decoded.
D ₀ D ₁₅	INPUT/ OUTPUT	DATA INPUT/OUTPUT: D_0 through D_{15} constitute the bi-directional data bus. D_{15} is the most significant bit.
CEL#, CEH#	INPUT	CARD ENABLE LOW & HIGH: CEL# enables accesses on the low byte of the data bus D_{0-7} . CEH# enables accesses on the high byte of the data bus D_{8-15} . Both CEL# and CEH# are active low signals. A host is expected to assert both CEL# and CEH# as the card's memory provides for word-wide data transfers but not byte-wide data transfers.
OE#	INPUT	OUTPUT ENABLE: Active low signal, enables read data from the memory card.
WE#	INPUT	WRITE ENABLE: Active low signal, enables write data to the memory card.
BUSY#	OUTPUT	BUSY: Active low signal, indicates the status of internally timed erase or write activities. A high output indicates the memory card is ready to accept another command.
CD#	OUTPUT	CARD DETECT: Active low signal, provides for card insertion detection. CD# connects to ground internally on the memory card, and will be forced low when the CD# interface signal connects to the host.
RESET#	INPUT	RESET: Active low input signal, resets the device's command user interface and places the card into a deep power-down mode. The host must drive this signal.
BS8#	INPUT	8-BIT BUS WIDTH: This signal is not connected on the 5 Volt Series 200 Miniature Card. The card assumes the Miniature Card Implementers Forum Specification's HIGH state definition of this signal to provide for only 16-bit data transfers between the host and card.
VS1#, VS2#	OUTPUT	VOLTAGE SENSE: Notifies the host socket of the card's V_{CC} requirements. VS_1 and VS_2 are both left open to indicate that the card only operates at 5 V.
RFU		RESERVED FOR FUTURE USE

PRELIMINARY

Table 4. 5 Volt Series 200 Flash Memory Miniature Card Power/Insertion Signal Description

Symbol	Туре	Name and Function
CINS#	OUTPUT	CARD INSERTION DETECT: This signal provides for early card insertion detection. CINS# connects to ground internally on the memory card, and will be forced low when the power/insertion signals connect to the host.
V _{CC}	-	CARD POWER SUPPLY: 5 V
GND	-	GROUND

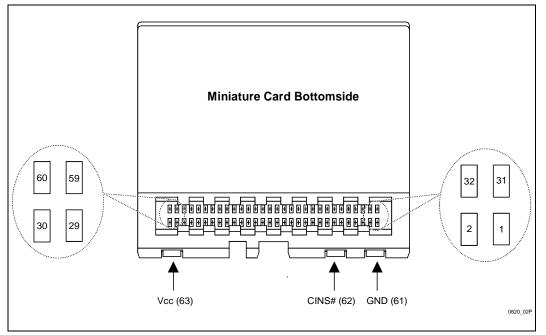


Figure 2. Card Interface Signal Assignment

4.0 MEMORY CONTROL LOGIC

4.1 Bus Operations

The host executes memory read, write and erase operations by issuing the appropriate command to the flash memory's Command User Interface (CUI). The CUI, which supports the command set of the card's memory devices, serves as the interface between the host processor and internal operation of a flash device. Commands can be issued to the CUI using standard microprocessor bus cycles.

Table 5 lists the Miniature Card's bus operations and modes. For each listed bus operation or mode the table defines the value of the card's relevant bus and control signals.

4.1.1 READ ARRAY

The host enables reads from the card by writing the appropriate read command to the CUI. The memory devices automatically reset to read array mode upon initial card power-up or after card reset. CEL#, CEH#, and OE# must be logically active to obtain 16 data bits at the outputs. The Card Enable (CEL# and CEH#) inputs together with the card's address inputs are used to select the addressed devices. Output Enable (OE#) is the data input/output (Do-D_{15}) direction control, and when active, drives data from the selected memory onto the data bus. WE# must be driven to $V_{\rm IH}$ (inactive) during a read access.

4.1.2 OUTPUT DISABLE

With OE# at a logic-high level (V_{IH}), the device outputs are disabled. Outputs (D_0-D_{15}) are placed in a high-impedance state.

Bus Operation/Mode	RESET#	CEL#	CEH#	OE#	WE#	A 1	BS8#	D ₈₋₁₅	D ₀₋₇	Notes
Word Read	VIH	VIL	VIL	VIL	VIH	Х	Х	High	Low	1, 2, 4,
	VIH	VIH	VIL	VIL	VIH	Х	Х	High	Low	1, 2, 4, 5
	VIH	VIL	VIH	VIL	VIH	Х	Х	High	Low	1, 2, 4, 5
Word Write	VIH	VIL	VIL	VIH	VIL	Х	Х	High	Low	1, 2, 4
	VIH	VIH	VIL	VIH	VIL	Х	Х	High	Low	1, 2, 4, 6
	VIH	VIL	VIH	VIH	VIL	Х	Х	High	Low	1, 2, 4, 6
Manufacturer ID	VIH	VIL	VIL	VIL	VIH	V_{IL}	Х	00H	89H	
Device ID	VIH	VIL	VIL	VIL	VIH	VIH	Х	00H	ID	3
Standby	Vih	Х	VIH	Х	Х	Х	Х	High-Z	High-Z	
	Vih	VIH	Х	Х	Х	Х	Х	High-Z	High-Z	
Output Disable	Vih	Х	Х	VIH	VIH	Х	Х	High-Z	High-Z	
Reset/Power-Down	VIL	Х	Х	Х	Х	Х	Х	High-Z	High-Z	

Table 5. Card Signal Values for the Card's Bus Operations and Modes

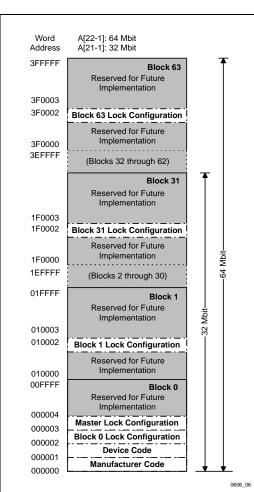
NOTES:

- 1. X can be V_{IL} or V_{IH} for control signals and address.
- 2. BUSY# is V_{OL} when the WSM is executing internal write or block erase algorithms. It is V_{OH} when the WSM is not busy, in erase suspend mode, or deep power-down mode.
- 3. The device code can be 14H, or 15H. Software should check for both cases for compatibility with future cards.
- 4. High indicates high byte data, low indicates low byte data.
- 5. Both memory bytes will be read from memory as the card's memory component data bus is word-wide and does not provide for individual byte access. The bus operation is non-compliant with the *PCMCIA PC Card Standard* as the *PC Card Standard* specifies a byte read operation instead of a word read operation for the listed signal conditions.
- 6. Both memory bytes will be written to memory as the card's memory component data bus is word-wide and does not provide for individual byte access. The bus operation is non-compliant with the *PCMCIA PC Card Standard* as the *PC Card Standard* specifies a byte write operation instead of a word write operation for the listed signal conditions. If a host system desires a byte write operation instead of a word write operation, then the host system must write V_H to the unwanted active byte (which should be inactive according the *PC Card Standard*) in order to prevent the unwanted active byte from being written to card memory.

4.1.3 STANDBY

If both CEL# and CEH# are at a logic-high level (V_{IH}) , the card enters standby mode. Standby operation disables much of the card's circuitry and substantially reduces device power consumption. The outputs (D_0-D_{15}) are placed in a high-impedance state independent of the status of OE#. If the host deselects the card during a write or erase, the card continues to function and consume normal active power until the operation completes.

4.1.4 RESET/POWER-DOWN


RESET# at V_{IL} initiates the reset/power-down mode.

In read modes, RESET#-low deselects the card's memory, places output drivers in a high-impedance state, and turns off numerous internal memory circuits. RESET# must be held low for a minimum of t_w . Time t_{su} is required after return from reset mode until initial memory access outputs are valid. After this wake-up interval, normal operation is restored. The CUI is reset to read array mode and all memory device status registers are set to 80H.

During block erase, write, or lock-bit configuration modes, RESET#-low will abort the operation BUSY# transitions low and remains low for a maximum time of $t_w + t_{su}$ until the reset operation is complete. Memory contents being altered are no longer valid; the data may be partially corrupted after a write operation or partially altered after an erase or lock-bit configuration operation. Time t_{su} is required after RESET# goes to logic-high (V_{IH}) before another command can be written.

As with any automated device, it is important to assert RESET# during system reset. When the system comes out of reset, it expects to read data from the flash memory. Automated flash memories provide status information when accessed during block erase, write, or lock-bit configuration modes. If a CPU reset occurs with no flash memory reset, proper initialization may not occur because the flash memory may be providing status information instead of array data. Intel® Flash memories allow proper initialization following a system reset through the use of the RESET# input. In this application, RESET# is controlled by the same signal that resets the system CPU.

NOTES:

- 1. Data is always given on the low byte (upper byte contains 00h).
- Memory shown is accessed by the Read Identifier Codes command only and is physically distinct from the card's flash memory array.
- 3. Master Lock function of the card's underlying memory devices is not a card function. The Master Lock Configuration information identified in the above memory map is shown only for the sake of consistency between the illustrated memory map and a corresponding memory map shown in the datasheet for the memory devices.

Figure 3. Device Identifier Code Memory Map

4.1.5 READ IDENTIFIER CODES

The read identifier codes operation outputs the manufacturer code, device code, block lock configuration codes for each block, and the master lock configuration code (see Figure 3) Using the manufacturer and device codes, the system CPU can automatically match the device with its proper algorithms. The block lock and master lock configuration codes identify locked and unlocked blocks and master lock-bit setting.

4.1.6 WRITE

Writing commands to the CUI enables reading of device data, query, identifier codes, inspection and clearing of the status register, as well as block erasure, writing of data and lock-bit configuration.

The Block Erase command requires appropriate command data and an address within the block to be erased. The Word Write command requires the command and address of the location to be written. The Write to Buffer command requires the command, starting address of the memory region to be written and the number of words to be written to the write buffer. Set Master and Block Lock-Bit commands require the command and address within the device (Master Lock) or block within the device (Block Lock) to be locked. The Clear Block Lock-Bits command requires the command and address within the device.

The CUI does not occupy an addressable memory location. It is part of each memory device and is written when the device is enabled and WE# is active. The address and data needed to execute a command are latched on the rising edge of WE# or the first edge of CEL# or CEH# that disables the device. Write cycle timing is specified in Section 9.2 (*Write Operations*).

4.2 Decode Logic

The card's decode logic enables the appropriate memory component during a read or write access of card memory. Unused upper addresses for the 5 Volt Series 200 Miniature Card will not be decoded. The address decoding will wrap around at the card's density.

PRELIMINARY

5.0 COMMAND DEFINITION

The operations of the card's memory device(s) are selected by the writing of specific commands into the CUI. The 5 Volt Series 200 Miniature Card implements two command sets: the basic command set and the scaleable command set. The Basic Command Set is backward compatible with the Series 100 Miniature Card with the exception that write (program) suspend is not supported in the 5 Volt Series 200. The Scaleable Command Set adds three capabilities to the Miniature Card in addition to the Basic Command Set:

- 1. Common Flash Interface (CFI)
- 2. Buffered writes which employ a 32-byte write buffer to allow higher performance writes than available with the Basic Command Set; and
- 3. A configurable BUSY# output.

5.1 Basic Command Set

Table 6 presents the 5 Volt Series 200 Miniature Card's Basic Command Set. The table indicates that the commands require one or more bus cycles to implement. The table and notes following the table describe each bus cycle. Complete descriptions of the individual commands follow in subsections of the current document section.

5.1.1 READ ARRAY COMMAND

Upon initial device power-up and after exit from reset/power-down mode, the card's memory devices default to read array mode. This operation is also initiated by writing the Read Array command to a memory device. The device remains enabled for reads until another command is written. Once the internal WSM has started a block erase, write, or lock-bit configuration, the device will not recognize the Read Array command until the WSM completes its operation unless the WSM is suspended via an Erase Suspend command.

Command	Bus Cycles Req'd.	Notes	First Bus Cycle			Second Bus Cycle		
			Oper ⁽¹⁾	Addr ⁽²⁾	Data ^(3,4)	Oper ⁽¹⁾	Addr ⁽²⁾	Data ^(3,4)
Read Array	1		Write	Х	XXFFH			
Read Identifier Codes	≥2	5	Write	Х	XX90H	Read	IA	ID
Read Status Register	2		Write	Х	XX70H	Read	Х	SRD
Clear Status Register	1		Write	Х	XX50H			
Word Write	2	6, 7	Write	Х	XX40H or XX10H	Write	WA	WD
Block Erase	2	7	Write	Х	XX20H	Write	BA	XXD0H
Block Erase Suspend	1	7	Write	Х	XXB0H			
Block Erase Resume	1	7	Write	Х	XXD0H			
Set Block Lock-Bit	2		Write	Х	XX60H	Write	BA	XX01H
Clear Block Lock-Bits	2	8	Write	Х	XX60H	Write	Х	XXD0H

Table 6. Basic Command Set Definitions⁽⁹⁾

NOTES:

1. Card signal values for the identified bus operations are defined in Table 5.

2. X = Any valid address within the device.

IA = Identifier Code Address:

BA = Address within the block being erased or locked.

WA = Address of memory location to be written.
SRD = Data read from Status Register.
WD = Data to be written at location WA. Data is latched on the rising edge of WE#.
ID = Data read from Identifier Codes.

4. The upper byte of the data bus during command writes is a "Don't Care" (X).

5. Following the Read Identifier Codes command, read operations access manufacturer, device, block lock, and master lock codes. See Read Identifier Section for read identifier code data.

6. Either XX40H or XX10H are recognized by the WSM as the word-write command setup.

7. The issue of a block erase or write-word command to a locked block will fail.

8. The clear block lock-bits operation simultaneously clears all block lock-bits.

9. Commands other than those shown above are reserved by Intel for future device implementations and should not be used.

PRELIMINARY

5.1.2 READ IDENTIFIER CODES COMMAND

The identifier code operation is initiated by writing the Read Identifier Codes command to a memory device. Following the command write, read cycles from addresses shown in Figure 3 retrieve the manufacturer, device, block lock configuration and master lock configuration codes (see Table 7 for identifier code values). To terminate the operation, write another valid command. The Read Identifier Codes command is valid only when the WSM is off or the device is suspended. Following the Read Identifier Codes command, the following information can be read:

	Table 7.	Identifier	Codes(1)
--	----------	------------	----------

Co	de	Address(1)	Data
Manufacture C	ode	00000	(00) 89
Device Code	Device Code 32-Mbit		(00) 14
	64-Mbit	00001	(00) 15
Block Lock Cor	nfiguration	X0002 ⁽²⁾	
Block Is Unlo	cked		$DQ_0 = 0$
Block Is Lock	ed		$DQ_0 = 1$
Reserved for	Future Use		DQ ₁₋₇
Master Lock C	onfiguration ⁽³⁾	00003	
Device Is Un	locked		$DQ_0 = 0$
Device Is Loc	cked		$DQ_0 = 1$
 Reserved for 	Future Use		DQ ₁₋₇

NOTES:

1. Data is always presented on the low byte (upper byte contains 00h).

 X selects the specific block's lock configuration code. See Figure 3 for the device identifier code memory map.

 See 5 Volt Intel[®] StrataFlash[™] Memory; 28F320J5 and 28F640J5 datasheet for a description of Master Lock Configuration information. For 5 Volt Series 200 Miniature Cards the Master Lock Configuration byte should indicate that the device is unlocked (DQ₀ = 0).

5.1.3 READ STATUS REGISTER COMMAND

The status register may be read to determine when a block erase, write, or lock-bit configuration operation is complete and whether the operation completed successfully. Table 8 defines the content and format of the status register. The register may be read at any time by writing the Read Status Register command. After writing this command, all subsequent read operations output data from the status register until another valid command is written. The status register contents are latched on the falling edge of OE# or the first edge of CEL# and CEH# that enables the device (see Table 5, Card Signal Values for the Card's Bus Operations and Modes). OE# must toggle to VIH or the device enter standby mode (Table 5) before further reads to update the status register latch.

During a word write, write to buffer, block erase, set lock-bit, or clear lock-bit command sequence, only SR.7 is valid until the Write State Machine completes or suspends the operation. Device I/O pins DQ_0 – DQ_6 and DQ_8 – DQ_{15} are placed in a high-impedance state. When the operation completes or suspends (check Status Register bit 7), all contents of the Status Register are valid when read.

5.1.4 CLEAR STATUS REGISTER COMMAND

Status register bits SR.5, SR.4, SR.3, and SR.1 are set to "1"s by the WSM and can only be reset by the Clear Status Register command. These bits indicate various failure conditions (see Table 8). By allowing system software to reset these bits, several operations (such as cumulatively erasing or locking of multiple blocks or writing of several bytes in sequence) may be performed. The status register may be polled to determine if an error occurred during the sequence.

To clear the status register, the Clear Status Register command (50H) is written. The Clear Status Register Command is only valid when the WSM is off or the device is suspended.

	Table 8. Status Register Definitions ⁽¹					ions ⁽¹⁾			
WSMS	6	ESS	ECLBS	PSLBS	VPEN	S	R	DPS	R
bit 7		bit 6	bit 5	bit 4	bit 3		bit 2	bit 1	bit 0
High Z When Busy?	Status Register Bits							NOTES:	
No Yes	SR.7 = WRITE STATE MACHINE STATUS 1 = Ready 0 = Busy SR.6 = ERASE SUSPEND STATUS					Check BUSY# or SR.7 to determine block erase, write (program), or lock-bit configuration completion. SR.6–SR.0 are not driven while SR.7 = "0."			-bit
						eras	se or lock-bit	configuration	after a block attempt, an was entered.
Yes	1 :	STATU = Error ir	E AND CLEAF JS n Block Erasui ssful Block Era	e or Clear Lo		SR. dev indi	3 does not price (write) pro cation. The V	rovide a contin ogramming vo VSM interroga	nuous memory ltage level ites and
Yes	1 :	 Error ir Master Succes 	AND SET LC Write Operat Block Lock-B Sful Write Op Block Lock B	tion or Set it eration or Set		afte Buff Bloo SR.	r Block Erase fer, Set Block ck Lock-Bits o 1 does not pl	e, Word Write /Master Lock command seq	Bit, or Clear uences. nuous
Yes	1 :	= Low Pr Write C	RAMMING V0 ogramming V Operation Abo mming Voltag	oltage Detector rted		The bloc Bloc	e WSM interro ck lock-bit, an ck Erase, Wri	ogates the ma d RESET# (R te Word, Write	P#) only after
Yes	SR.2 :		RVED FOR FUNCEMENTS	JTURE		atte	mpted opera	stem, dependi tion, if the blo bit is set, and	ck lock-bit is
Yes	-	= Master	E PROTECT Lock-Bit, Blo I# (RP#) Lock	ck Lock-Bit ar		(RP mas Rea	2#) is not V _{HH} ster lock conf ad Identifier C	. Read the blo iguration code	ock lock and es using the nd to determine
Yes	-		RVED FOR FUNCEMENTS	JTURE		and		are reserved fo asked when p	

Table 8	Status	Register	Definitions ⁽¹⁾
i abie 0.	Juaius	Negister	Deminitions

NOTE:

See the 5 Volt Intel[®] StrataFlash[™] Memory; 28F320J5 and 28F640J5 datasheet (order number 290606) for a description
of the Master Lock-bit. For 5 Volt Series 200 Miniature Cards, the Master Lock-bit should always be ="0" and should not
interfere with any of the card's write or erase operations. The bit is referenced in the table for consistency of definition
between the card and card memory device datasheets as the card status register information is actually provided by
whatever memory device receives the Read Status Register command.

PRELIMINARY

WBS	Reserved		
bit 7	bits 6	-0	
High Z When Busy?	Status Register Bits	NOTES:	
No	XSR.7 = WRITE BUFFER STATUS 1 = Write buffer available 0 = Write buffer not available	After a Buffer-Write command, XSR.7 = 1 indicates that a Write Buffer is available. SR.6–SR.0 are reserved for future use and	
Yes	XSR.6–XSR.0 = RESERVED FOR FUTURE ENHANCEMENTS	should be masked when polling the status register.	

5.1.5 BLOCK ERASE COMMAND

Erase is executed one block at a time and initiated by a two-cycle command. A block erase setup is first written, followed by an block erase confirm. This command sequence requires an appropriate address within the block to be erased (erase changes all block data to FFH). Block preconditioning, erase, and verify are handled internally by the WSM (invisible to the system). After the two-cycle block erase sequence is written, the device automatically outputs status register data when read. The CPU can detect block erase completion by analyzing the logic level of the STS pin or status register bit SR.7. Toggle OE#, CEL# or CEH# to update the status register.

When the block erase is complete, status register bit SR.5 should be checked. If a block erase error is detected, the status register should be cleared before system software attempts corrective actions. The CUI remains in read status register mode until a new command is issued.

This two-step command sequence of set-up followed by execution ensures that block contents are not accidentally erased. An invalid Block Erase command sequence will result in both status register bits SR.4 and SR.5 being set to "1." Successful block erase requires that the corresponding block lock-bit be cleared. If block erase is attempted when the corresponding block lock-bit is set, SR.1 and SR.5 will be set to "1."

5.1.6 BLOCK ERASE SUSPEND COMMAND

The Block Erase Suspend command allows blockerase interruption to read or write data in another block of memory. Once the block erase process starts, writing the Block Erase Suspend command requests that the WSM suspend the block erase sequence at a predetermined point in the algorithm. The device outputs status register data when read after the Block Erase Suspend command is written. Polling status register bit SR.7 then SR.6 can determine when the block erase operation has been suspended (both will be set to "1"). The BUSY# output will also transition to V_{OH}. Specification t_{WHRH} defines the block erase suspend latency.

At this point, a Read Array command can be written in order to read data from blocks other than that which is suspended. A word-write or write-to-buffer command sequence can also be issued during erase suspend to write data in other blocks. During a write operation with block erase suspended, status register bit SR.7 will return to "0" and the BUSY# output will transition to V_{OL} .

The only other valid commands while block erase is suspended are Read Query, Read Status Register, Clear Status Register, Configure, and Block Erase Resume. After a Block Erase Resume command is written to the flash memory, the WSM will continue the block erase process. Status register bits SR.6 and SR.7 will automatically clear and the BUSY# output will return to V_{OL} . After the Erase Resume command is written, the device automatically outputs status register data when read. Block erase glock erase suspend have completed.

5.1.7 WORD-WRITE COMMAND

Word-Write commands are executed in a two-cycle command sequence. Word-Write command setup (standard 40H or alternate 10H) is written in the first cycle and then followed in the next cycle by a second write that specifies the address and data (latched on the rising edge of WE#) to be written in memory. The WSM then takes over, controlling the word-write and Word-Write verify algorithms internally. After the word-write command sequence is written, the device automatically outputs status register data when read. The CPU can detect the completion of the write event by analyzing the logic state of the BUSY# output or status register bit SR.7.

When the word-write operation is complete, status register bit SR.4 should be checked. If a write error is detected, the status register should be cleared. The internal WSM verify only detects errors for "1"s that do not successfully program to "0"s. The CUI remains in read status register mode until it receives another command.

Successful write operations require that the corresponding block lock-bit be cleared. If a word write operation is attempted when the corresponding block lock-bit is set, SR.1 and SR.4 will be set to "1."

5.1.8 SET BLOCK LOCK-BIT COMMAND

A flexible block locking and unlocking scheme is enabled via a combination of block lock-bits. The block lock-bits gate memory write and erase operations. Individual block lock-bits can be set using the Set Block Lock-Bit command. Set Block Lock-Bit commands are invalid while the WSM is running or the device is suspended.

Set block lock-bit commands are executed by a two-cycle sequence. The set block lock-bit setup along with appropriate block or device address is written followed by either the set block lock-bit confirm (and an address within the block to be locked). The WSM then controls the set lock-bit algorithm. After the sequence is written, the device automatically outputs status register data when read. The CPU can detect the completion of the set lock-bit event by analyzing the logic state of the BUSY# pin output or status register bit SR.7.

When the set lock-bit operation is complete, status register bit SR.4 should be checked. If an error is detected, the status register should be cleared. The

CUI will remain in read status register mode until a new command is issued.

This two-step sequence of set-up followed by execution ensures that lock-bits are not accidentally set. An invalid Set Block Lock-Bit command will result in status register bits SR.4 and SR.5 being set to "1."

5.1.9 CLEAR BLOCK LOCK-BITS COMMAND

All set block lock-bits are cleared in parallel via the Clear Block Lock-Bits command. This command is invalid while the WSM is running or the device is suspended.

Clear block lock-bits command is executed by a two-cycle sequence. A clear block lock-bits setup is first written followed by the clear block lock-bits confirm. The device automatically outputs status register data when read. The CPU can detect completion of the clear block lock-bits event by analyzing the logic state of the BUSY# pin output or status register bit SR.7.

When the operation is complete, status register bit SR.5 should be checked. If a clear block lock-bit error is detected, the status register should be cleared. The CUI will remain in read status register mode until another command is issued.

This two-step sequence of set-up followed by execution ensures that block lock-bits are not accidentally cleared. An invalid Clear Block Lock-Bits command sequence will result in status register bits SR.4 and SR.5 being set to "1."

If a clear block lock-bits operation is aborted due to V_{CC} transitioning out of valid range or RESET# active transition, block lock-bit values are left in an undetermined state. A repeat of the Clear Block Lock-Bits command is then required to initialize block lock-bit contents to known values.

5.2 Scaleable Command Set

Table 10 presents the 5 Volt Series 200 Miniature Card's Scaleable Command Set. The table indicates that the commands require one or more bus cycles to implement. The table and notes following the table describe each bus cycle. Complete descriptions of the individual commands follow in subsections of the current document section.

18

Command	Bus Cycles Req'd.	Notes	First Bus Cycle			Sec	ond Bus C	Cycle
			Oper ⁽¹⁾	Addr ⁽²⁾	Data ^(3,4)	Oper ⁽¹⁾	Addr ⁽²⁾	Data ^(3,4)
Read Query	≥2		Write	х	XX98H	Read	QA	QD
Write to Buffer	> 2	5, 6, 7, 8, 9	Write	BA	XXE8H	Write	BA	Ν
— Confirm	1	6, 7	Write	х	XXD0H			
Configuration		9						

Table 10. Scaleable Command Set Definitions(10)

NOTES:

1. Card signal values for the identified bus operations are defined in Table 5, *Signal Values for the Card's Bus Operations and Modes.*

2. X = Any valid address within the device. QA = QUERY database Address.

BA = Block Address.

3. QD = Data read from QUERY database.

- CC = Configuration Code.
- 4. The upper byte of the data bus during command writes is a "Don't Care."

5. After the first bus cycle of the Write to Buffer command, check the Extended Status Register to make sure the write buffer is available for writing. If the buffer is available for writing, proceed with the second bus cycle; otherwise, continue repeating the first bus cycle and checking the Extended Status Register in turn until the buffer becomes available; when the buffer becomes available, proceed with the second bus cycle of the Write to Buffer command.

 The number of words to be written to the Write Buffer = N + 1, where N = word count argument. The word count range on this device is N = 0000H to N = 000FH. Writing a word count outside the buffer boundary causes unexpected results and should be avoided.

The third and consecutive bus cycles of a Write to Buffer command sequence, as determined by N, are for writing data into the Write Buffer. In the third bus cycle a device start address is given along with the write buffer data. Subsequent write cycles provide additional device addresses and data. All subsequent addresses must lie within the start address plus the count. The Confirm command (XXD0H) is expected after exactly N + 1 write cycles; any other command at that point in the sequence aborts the write to buffer operation. Please see the 5 Volt Intel[®] StrataFlashTM Memory; 28F320J5 and 28F640J5 datasheet for additional information on the Write to Buffer command.

- 7. The Write Buffer operation does not begin until a Confirm command is issued.
- 8. The issue of a Write to Buffer command to a locked block will fail.
- 9. The Configuration Command is not supported on the 5 Volt Series 200 Miniature Card. The Configuration Command serves to program the configurable status output (STS output pin) of a memory device. To satisfy the Miniature Card Implementers Forum Specification the STS output pin for all card memory devices must be configured as a RY/BY# pin to generate the card's BUSY# output signal. At card power-up the STS output for all devices defaults to RY/BY# pin operation; thereafter, host software shall not issue the Configuration Command.
- 10. Commands other than those shown above are reserved for future use and should not be used.

intel®

5.2.1 BLOCK WRITE COMMAND

To write to the flash device write buffer, a Write to Buffer command sequence is initiated. A variable number of bytes, up to the buffer size, can be loaded into the buffer and written to the Flash device. First, the Write to Buffer setup command is issued along with the Block Address of the memory device erase block to which the buffer content will be written. At this point, the eXtended Status Register information (reference Table 9) is loaded into the register and XSR.7 reverts to reflecting "buffer available" status. Whenever the memory device is read immediately after receiving a Write to Buffer command, the eXtended Status Register content will be presented by the memory. If XSR.7=0, the write buffer is not available for writing. When XSR.7 = "1," the memory device will allow data to be written to the write buffer. To determine when the write buffer can be written, continue to monitor XSR.7 until XSR.7=1 by repeating the sequence of first issuing the Write to Buffer setup command along with the appropriate Block Address, and then reading the eXtended Status Register.

When the write buffer becomes available for writing, a word count (N) is given to the memory device with the Block Address of the memory device erase block to which the buffer content will be written. On the next write, a device start address is given along with the write buffer data. For maximum programming performance and lower power, align the start address at the beginning of a Write Buffer boundary. Subsequent writes provide additional device addresses and data. All subsequent addresses must lie within the start address plus the count.

After the final buffer data is given, a Write Confirm command is issued. This initiates the WSM (Write State Machine) to begin copying the buffer data to the flash memory. If a command other than Write Confirm is written to the device, an "Invalid Command/Sequence" error will be generated and Status Register bits SR.5 and SR.4 will be set to a "1." For additional buffer writes, issue another Write to Buffer setup command and check XSR.7. The write buffers can be loaded while the WSM is busy as long as XSR.7 indicates that a buffer is available.

If an error occurs while a device is writing data to memory, the device will stop writing, and status register bit SR.4 will be set to a "1" to indicate a write operation failure. Any time a media failure occurs during a write or an erase (for which SR.4 or SR.5 is set, respectively), the device will not except any more buffered write commands. Additionally, if the user attempts to write past an erase block boundary with a Write to Buffer command, the device will abort the write. This will generate an "Invalid Command/Sequence" error ("botch") and Status Register bits SR.5 and SR.4 will be set to a "1." To clear SR.4 and/or SR.5 issue a Clear Status Register command.

Successful writing to an erase block requires that the block's associated Block Lock-Bit bit be reset. If the Block Lock-Bit is set, the erase block is locked. A Write to Buffer command which attempts to write data to the locked block will fail and result in SR.1 and SR.4 being set to "1."

5.2.2 CONFIGURATION COMMAND

The Configuration Command is not supported on the 5 Volt Series 200 Miniature Card. The Configuration Command serves to program the configurable status output (STS output pin) of a memory device. To satisfy the PCMCIA Miniature Card Specification the STS output pin for all card memory devices must be configured as a RY/BY# pin to generate the card's BUSY# output signal. At card power-up the STS output for all devices defaults to RY/BY# pin operation; thereafter, host software shall not issue the Configuration Command.

5.2.3 READ QUERY COMMAND

The SCS (Scaleable Command Set) Read Query command causes the flash component to output the Common Flash Interface (CFI) Query structure or "database" information. The Common Flash Interface provides a standard means for a flash memory to tell a host system about the memory's architecture, algorithms and characteristics. See *AP-646 Common Flash Interface (CFI) and Command Sets* (order number 292204) for a full description of CFI.

Writing the Read Query command to the memory puts it in Read Query mode. While in read query mode, the memory responds to read bus operations with data from a ROM instead of data from the flash array data. The data in the ROM describes the memory component to which the Ready Query command is addressed.

PRELIMINARY

As the definition of CFI data presented by a card memory device is quite extensive, the definition is not repeated as part of the current document. Refer to the 5 Volt Intel® StrataFlashTM Memory; 28F320J5 and 28F640J5 datasheet for a complete definition of the card memory's CFI data and the Read Query command by which the data is accessed.

6.0 CARD ATTRIBUTE INFORMATION

The Card Attribute Information consists of a Miniature Card Attribute Information Structure (AIS) in accordance with the Miniature Card Implementers Forum as well as a Card Information Structure (CIS) in compliance with the PCMCIA PC Card Specification. These two structures co-exist for compatibility with both industry standards. This allows the 5 Volt Series 200 Miniature Card to function in both PC Card and Miniature Card environments.

The Card Attribute Information data for the 5 Volt Series 200 Miniature Card is found in Section 6.3. For more information on the description of these structures refer to the appropriate specification.

CAUTION:

The Card Attribute Information data is located in Block 0. This information is not write protected and should not be erased by the system software if this information is needed for card recognition.

6.1 Card Information Structure

The CIS begins at address 0000H (device tuple) of the card's memory. The CIS data resides only in the low byte of the word. It contains a variable length chain of data blocks (tuples) that conform to a basic format. See Table 11 for the CIS memory map.

6.2 Attribute Information Structure

The AIS begins at address 0010H (identifier byte) of the card's memory. The AIS data resides only in the low byte of the word. It contains a fixed list of data information that ends at address 00FFH. See Table 12 for the AIS memory map.

NOTE:

All addresses listed in Table 11 and Table 12 are **WORD** addresses.

Tuple Name	Description	Tuple Code	Address Location
CISTPL_DEVICE	Device Information	01H	0H - 04H
CISTPL_NULL	Null (Ignore)	00H	05H - 0DH
CISTPL_MINI	Miniature Card AIS (Vendor Unique)	80H	0EH - FFH
CISTPL_DEVICEGEO	Device Geometry Information	1EH	100H - 107H
CISTPL_MANFID	Manufacturer Identification String	20H	108H - 10DH
CISTPL_FUNCID	Function Class Identification	21H	10EH - 111H
CISTPL_LONGLINK_C	Longlink to Common Memory	12H	112H - 117H
CISTPL_VERS_1	Level 1 Version/Product Information	15H	118H - 167H
CISTPL_JEDEC_C	JEDEC ID	18H	168H - 16BH
CISTPL_END	The End-of-Chain Tuple	FFH	16CH - 16DH

Table 11. CIS Memory Map

Table 12. AIS Memory Ma	able 12.	AIS Mem	ory Map
-------------------------	----------	---------	---------

AIS Section	Description	Address Location
Identification Data	Identifies Card Type	10H - 3FH
Compatibility Data	Describes Attributes of Card	40H - 4FH
Not Used	Reserved for Future Use	50H - FFH

6.3 CIS Data

CIS data is located in memory and describes the 5 Volt Series 200 Miniature Card as follows:

Address	Values	Description
00H	01H	CISTPL_DEVICE
01H	03H	TPL_LINK
02H	53H	FLASH = 150 ns
	52H	FLASH = 200 ns
03H	0EH	CARD SIZE: 4 MB
	1EH	CARD SIZE: 8 MB
	3EH	CARD SIZE: 16 MB
04H	FFH	END OF DEVICE
05H - 0DH	00H	CISTPL_NULL
0EH	80H	CISTPL_MIN
0FH	F0H	TPL_LINK
10H	99H	Identifier
11H	10H	Rev 1.0 Compliant
12H	65H	4-MB,150 ns AIS Checksum
	5BH	8-MB, 200 ns AIS Checksum
	52H	16-MB, 200 ns AIS Checksum
13H	49H	Manufacturer Name I
14H	4EH	N
15H	54H	Т
16H	45H	E

Address	Values	Description
17H	4CH	L
18H	20H	SPACE
19H	43H	С
1AH	4FH	0
1BH	52H	R
1CH	50H	Р
1DH	4FH	0
1EH	52H	R
1FH	41H	A
20H	54H	Т
21H	49H	I
22H	4FH	0
23H	4EH	Ν
24H - 26H	00H	NULL
27H	53H	Card Name S
28H	45H	E
29H	52H	R
2AH	49H	I
2BH	45H	E
2CH	53H	S
2DH	20H	SPACE
2EH	32H	2

PRELIMINARY

intel

Address	Values	Description	
2FH	30H	0	
30H	30H	0	
31H	20H	SPACE	
32H	43H	С	
33H	41H	A	
34H	52H	R	
35H	44H	D	
36H - 3AH	00H	NULL	
3BH	01H	1 Technology Device	
3CH - 3FH	00H	Reserved Space Set to 00H	
40H	00H	Flash	
41H	89H	Device JEDEC Manufacturer ID	
42H	14H	4-MB Device Componen JEDEC ID	
	15H	8-MB Device Componer JEDEC ID	
	15H	16-MB Device Component JEDEC ID	
43H	03H	4 MB	
	07H	8 MB	
	0FH	16 MB	
44H	00H	no x.x V Accesses	
45H	00H	no 3.3 V Access Time	
46H	0FH	150 ns 5.0 V Access Time	
	14H	200 ns 5.0 V Access Time	
47H	00H	no x.x V Accesses	
48H	00H	no 3.3 V Accesses	
49H	47H	40 mA read/70 mA write @ 5.0 V	

Address	Values	Description
4AH	01H	100 μA standby - 4 MB
	01H	180 μA standby - 8 MB
	02H	340 μA standby - 16 MB
4BH - 4FH	00H	Reserved
50H - FFH	00H	NULL / Not Used
100H	1EH	CISTPL_DEVICEGEO
101H	06H	TPL_LINK
102H	02H	DGTPL_BUS
103H	11H	DGTPL_EBS
104H	01H	DGTPL_RBS
105H	01H	DGTPL_WBS
106H	01H	DGTPL_PART = 1
107H	01H	FLASH DEVICE INTERLEAVE
108H	20H	CISTPL_MANFID
109H	04H	TPL_LINK
10AH	89H	TPLMID_MANF: LSB (INTEL JEDEC ID)
10BH	00H	TPLMID_MANF: MSB
10CH	12H	4 MB - 150 ns
	21H	8 MB - 200 ns
	31H	16 MB - 200 ns
10DH	86H	TPLMID_CARD MSB Value Series 200 Card
10EH	21H	CISTPL_FUNCID
10FH	02H	TPL_LINK
110H	01H	TPLFID_FUNCTION : Memory
111H	00H	TPLFID_SYSINIT
112H	12H	CISTPL_LONGLINK_C
113H	04H	TPL_LINK

intel®

Address	Values	Description			
114H	00H	LOWEST BYTE			
115H	00H	MID BYTE			
116H	02H	MID BYTE			
117H	00H	HIGHEST BYTE			
118H	15H	CISTPL_VERS1			
119H	4EH	TPL_LINK			
11AH	05H	TPLLV1_MAJOR			
11BH	00H	TPLLV1_MINOR			
11CH	49H	TPLLV1_INFO I			
11DH	6EH	n			
11EH	74H	t			
11FH	65H	е			
120H	6CH	I			
121H	00H	END TEXT			
122H	53H	S			
123H	45H	E			
124H	52H	R			
125H	49H	I			
126H	45H	E			
127H	53H	S			
128H	20H	SPACE			
129H	32H	2			
12AH	30H	0			
12BH	30H	0			
12CH	20H	SPACE			
12DH	46H	F			
12EH	4CH	L			
12FH	41H	А			
130H	53H	S			
131H	48H	Н			

132H 20H SPACE 133H 4DH M 134H 49H I 135H 4EH N 135H 4EH N 136H 49H I 137H 41H A 138H 54H T 139H 55H U 13AH 52H R 13BH 45H E 13CH 20H SPACE 13DH 43H C 13EH 41H A 13FH 52H R	
134H 49H I 135H 4EH N 135H 49H I 136H 49H I 136H 49H I 137H 41H A 138H 54H T 139H 55H U 13AH 52H R 13BH 45H E 13CH 20H SPACE 13DH 43H C 13EH 41H A	
135H 4EH N 135H 4EH N 136H 49H I 137H 41H A 137H 55H U 139H 55H U 13AH 52H R 13BH 45H E 13CH 20H SPACE 13DH 43H C 13EH 41H A	
136H 49H I 137H 41H A 138H 54H T 139H 55H U 13AH 52H R 13BH 45H E 13BH 20H SPACE 13DH 43H C 13EH 41H A	
137H 41H A 138H 54H T 139H 55H U 139H 52H R 13AH 52H E 13BH 45H E 13CH 20H SPACE 13DH 43H C 13EH 41H A	
138H 54H T 139H 55H U 13AH 52H R 13BH 45H E 13CH 20H SPACE 13DH 43H C 13EH 41H A	
139H 55H U 13AH 52H R 13BH 45H E 13CH 20H SPACE 13DH 43H C 13EH 41H A	
13AH 52H R 13BH 45H E 13CH 20H SPACE 13DH 43H C 13EH 41H A	
13BH 45H E 13CH 20H SPACE 13DH 43H C 13EH 41H A	
13CH 20H SPACE 13DH 43H C 13EH 41H A	
13DH 43H C 13EH 41H A	
13EH 41H A	
13FH 52H R	
140H 44H D	
141H 00H END TEXT	
142H 30H 4 MB	
30H 8 MB	
31H 16 MB	
143H 34H 4 MB	
38H 8 MB	
36H 16 MB	
144H 20H SPACE	
145H 00H END TEXT	
146H 43H C	
147H 4FH O	
148H 50H P	
149H 59H Y	
14AH 52H R	
14BH 49H I	
14CH 47H G	

PRELIMINARY

Address	Values	Description
14DH	48H	Н
14EH	54H	т
14FH	20H	SPACE
150H	49H	I
151H	4EH	Ν
152H	54H	Т
153H	45H	E
154H	4CH	L
155H	20H	SPACE
156H	43H	С
157H	4FH	0
158H	52H	R
159H	50H	Р
15AH	4FH	0
15BH	52H	R
15CH	41H	A
15DH	54H	Т
15EH	49H	I
15FH	4FH	0
160H	4EH	Ν
161H	20H	SPACE

Address	Values	Description		
162H	31H	1		
163H	39H	9		
164H	39H	9		
165H	37H	7		
166H	00H	END TEXT		
167H	FFH	END OF LIST		
168H	18H	CISTPL_JEDEC_C		
169H	02H	TPL_LINK		
16AH	89H	MANUFACTURER ID		
16BH	14H	4 MB Card Device Component JEDEC ID		
	15H	8 MB Card Device Component JEDEC ID		
	15H	16 MB Card Device Component JEDEC ID		
16CH	FFH	CISTPL_END		
16DH	00H	INVALID ADDRESS		

7.0 ELECTRICAL SPECIFICATIONS

7.1 Absolute Maximum Ratings*

Commercial Operating Temperature

During Read, Block Erase, Write,
and Lock-Bit Configuration . –20 °C to +70 °C ⁽¹⁾
Temperature under Bias –10 °C to +80 °C
Storage Temperature65 °C to +125 °C
Voltage on Any Pin –2.0 V to +7.0 $V^{(2)}$
Output Short Circuit Current100 mA ⁽³⁾

NOTICE: This datasheet contains preliminary information on new products in production. Do not finalize a design with this information. Revised information will be published when the product is available. Verify with your local Intel Sales office that you have the latest datasheet before finalizing a design.

* WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may effect device reliability.

NOTES:

1. Operating temperature is for commercial product defined by this specification.

- All specified voltages are with respect to GND. Minimum DC voltage is -0.5 V on input/output pins and -0.2 V on V_{CC} pin. During transitions, this level may undershoot to -2.0 V for periods <20 ns. Maximum DC voltage on input/output pins and V_{CC} is V_{CC} +0.5 V which, during transitions, may overshoot to V_{CC} +2.0 V for periods <20 ns.
- 3. Output shorted for no more than one second. No more than one output shorted at a time.

7.2 Operating Conditions

Temperature and V_{CC} Operating Conditions

Symbol	Parameter	Notes	Min	Max	Unit	Test Condition
T _A	Operating Temperature		-20	+70	°C	Ambient Temperature
V _{CC}	V _{CC} Supply Voltage (5 V ± 5%)		4.75	5.25	V	

7.3 Capacitance⁽¹⁾

T_A = +25 °C, f = 1 MHz

Symbol	Parameter	Тур	Max	Unit	Condition
C _{IN}	Input Capacitance	6	8	pF	V _{IN} = 0.0 V
C _{OUT}	Output Capacitance	8	12	pF	V _{OUT} = 0.0 V

NOTE:

26

1. Sampled, not 100% tested.

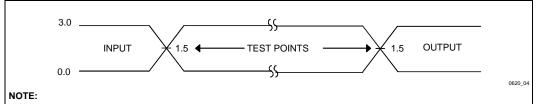
7.4 DC Characteristics

						Test
Sym	Parameter	Notes	Тур	Max	Unit	Conditions
ILI	Input Load Current	1,4		20	μΑ	$V_{CC} = V_{CC} Max$, $V_{IN} = V_{CC} or GND$
ILO	Output Leakage Current	1		20	μA	$V_{CC} = V_{CC}$ Max, $V_{IN} = V_{CC}$ or GND
I _{CCS}	V _{CC} Standby Current				μΑ	V _{CC} = V _{CC} Max
	 4-Mbyte Card 	1,3	100	170		CEL# = CEH# = RESET# = $V_{CC} \pm 0.2 \text{ V}$
	 8-Mbyte Card 	1,3	180	320		
	 16-Mbyte Card 	1,3	340	620		
I _{CCD}	V _{CC} Deep Power-Down Current				μA	RESET#, GND ± 0.2V I _{OUT} (RESET) = 0 mA
	4-Mbyte Card	1,3	100	145		
	 8-Mbyte Card 	1,3	180	270		
	 16-Mbyte Card 	1,3	340	520		
I _{CCR}	V _{CC} Read Current	1	35	55	mA	V _{CC} = V _{CC} Max, CEL#/CEH# = GND, f = 5 MHz, I _{OUT} = 0 mA
I _{CCW}	V _{CC} Word Write or Set Lock-Bit Current	1,3	35	60	mA	CMOS Inputs
I _{CCE}	V _{CC} Block Erase or Clear Lock-Bits Current	1,3	35	70	mA	CMOS Inputs
I _{CCES}	V _{CC} Block Erase Suspend Current	1,2		10	mA	CEL# = CEH# = V _{IH}

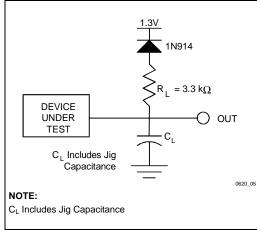
NOTES:

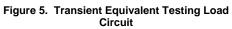
1. All currents are in RMS unless otherwise noted. These currents are valid for all product versions (speeds). Contact Intel's Application Support Hotline or your local sales office for information about typical specifications.

2. I_{CCES} is specified with the card's memory de-selected. If read or word write occurs while in erase suspend mode, the card's current draw is the sum of I_{CCES} and either I_{CCR} (read) or I_{CCW} (write).


3. CMOS inputs are either V_{CC} \pm 0.2 V or GND \pm 0.2 V.

4. Exceptions: With V_{IN} = GND, the leakage current on CEL#, CEH# will be < 50 μ A each due to internal pull-up resistors.


7.4 DC Characteristics (Continued)


						Test
Sym	Parameter	Notes	Min	Max	Unit	Conditions
V _{IL}	Input Low Voltage		-0.5	0.8	V	
V_{IH}	Input High Voltage		0.7 V _{CC}	V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage			0.1 V _{CC}	V	$V_{CC} = V_{CC}$ Min $I_{OL} = 4.0$ mA
V _{OH}	Output High Voltage		0.9 V _{CC}		V	$V_{CC} = V_{CC}$ Min $I_{OH} = -1$ mA
V _{LKO}	V _{CC} Lockout Voltage		0.7 V _{CC}		V	

 AC test inputs are driven at 3.0 V for a Logic "1" and 0.0 V for a Logic "0". Input timing begins, and output timing ends, at 1.5 V. Input rise and fall times (10% to 90%) < 10 ns.

Figure 4. Transient Input/Output Reference Waveform for $V_{CC} = 5 V \pm 5\%$ (Standard Testing Configuration)

Test Configuration Capacitance Loading Value

Test Configuration	C∟ (pF)
$V_{CC} = 5.0 \text{ V} \pm 5\%$	100

7.5 AC Characteristics

AC timing diagrams and characteristics are designed to meet or exceed the Miniature Card Specification.

IEEE		4-, 8-, 16-	MB Cards	
Symbol	Parameter	Min	Max	Unit
t _{AVAV}	Read Cycle Time	150		ns
t _{AVQV}	Address Access Time		150	ns
t _{ELQV}	CE# Access Time		150	ns
tGLQV	OE# Access Time		75	ns
tGHQZ	Output Disable Time from OE# Inactive		75	ns
t GLQNZ	Output Enable Time from OE# Active(1)	5		ns
t ELQNZ	Output Enable Time from CE# Active ⁽¹⁾	5		ns
t _{AXQX}	Data Hold from Address, CE#, or OE# Change (Whichever Occurs First)	0		ns
tELGL	CE# Setup Time to OE# Active	0		ns
t _{AVGL}	Address Setup Time to OE# Active	20		ns
t _{PHQV}	BUSY# High to Output Delay		180	ns

7.5.1 READ OPERATIONS

NOTE:

1. Sampled, not 100% tested.

intel®

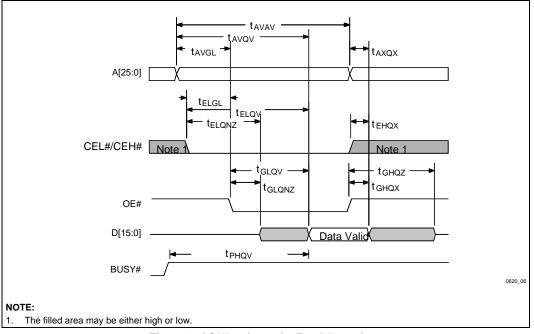


Figure 6. AC Waveforms for Read Operations

PRELIMINARY

7.5.2 WRITE OPERATIONS

IEEE	4-, 8-,16-MB Cards			
Symbol	Parameter	Min	Max	Unit
t _{AVAV}	Write Cycle Time	150		ns
t _{WLWH}	WE# Pulse Width	80		ns
t _{AVWL}	Address Setup Time to WE# Active	20		ns
t _{DVWH}	Data Setup Time to WE# Inactive	50		ns
t _{WHDX}	Data Hold Time from WE# Inactive	20		ns
t _{WHAX}	Address Hold Time from WE# Inactive	10		ns
t _{WHEH}	CE# Hold Time from WE# Inactive	10		ns
tELWL	CE# Setup Time to WE# Active ⁽¹⁾	0		ns
tehwl	CE# Inactive Time to WE# Active ⁽¹⁾	35		ns
twhwL	WE# Inactive Time to WE# Active	30		ns
t _{WHRL}	WE# (CE#) Inactive Time to BUSY# Active		90	ns

NOTE:

1. These timings apply only if both CE#s (CEL# and CEH#) are deasserted prior to WE# asserted.

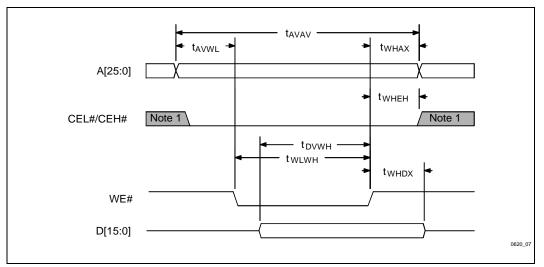


Figure 7. AC Waveforms for Write Operations

intel

7.5.3 POWER-UP TIMING

Symbol	Parameter	Notes	Min	Max	Units
t _{su} (CEL#/CEH#)	CE# Setup Time		1		ms
t _{su} (RESET#)	RESET# Setup Time		1		ms
t _{pr}	V _{CC} Rising Time	1	0.1	100	ms
t _w (RESET#)	RESET# Width	2	36		μs

NOTES:

If RESET# is asserted while a block erase, write, or lock-bit configuration operation is not executing, then the minimum required RESET# Pulse Low Time is 1 µs.

3. A reset time, tPHQV (reference Section 8.4.1), is required from BUSY# or RESET# going high until outputs are valid.

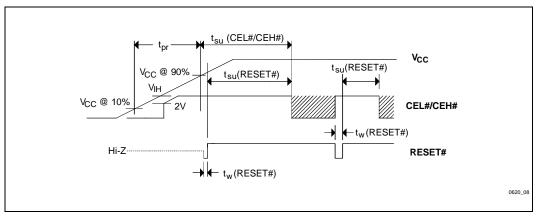


Figure 8. Power-Up Timing for Systems Supporting RESET#

PRELIMINARY

^{1.} The t_{pr} is defined as a "linear waveform" in the period of 10% to 90%. Even if the waveform is not a "linear waveform," its rising time must meet this specification.

Sym	Parameter	Notes	Min	Typ ⁽¹⁾	Max	Unit
twhqv1 tehqv1	Write Buffer Word Write Time	2,5,6	TBD	12	TBD	μs
t _{WHQV2} t _{EHQV2}	Word Write Time (Using Word Write Command)	2,6	TBD	180	TBD	μs
	Block Write Time (Using Write to Buffer Command)	2,6	TBD	1.6	TBD	sec
t _{WHQV4} t _{EHQV4}	Block Erase Time	2	TBD	0.7	TBD	sec
t _{WHQV5} t _{EHQV5}	Set Lock-Bit Time	2	TBD	32	TBD	μs
t _{WHQV6} t _{EHQV6}	Clear Block Lock-Bits Time	2	TBD	0.3	TBD	sec
t _{WHRH} t _{EHRH}	Erase Suspend Latency Time to Read			25	TBD	μs

7.6 Block Erase, Write, and Lock-Bit Configuration Performance^(3,4)

NOTES:

1. Typical values measured at $T_A = +25$ °C and nominal voltages. Assumes corresponding lock-bits are not set. Subject to change based on device characterization.

2. Excludes system-level overhead.

3. These performance numbers are valid for all speed versions.

4. Sampled but not 100% tested.

5. These values are valid when the buffer is full, and the start address is aligned on a 32-byte boundary.

6. The maximum write time is the absolute maximum time it takes the write algorithm to complete. The overwhelming majority of the bits are written within the typical value specified. To maximize system performance, the BUSY# signal should be polled to determine the completion of a write operation.

PRELIMINARY

8.0 PACKAGING

Figure 9 shows the outside dimensions of the 5 Volt Series 200 Miniature Card. For complete mechanical drawings refer to the Miniature Card Specification.

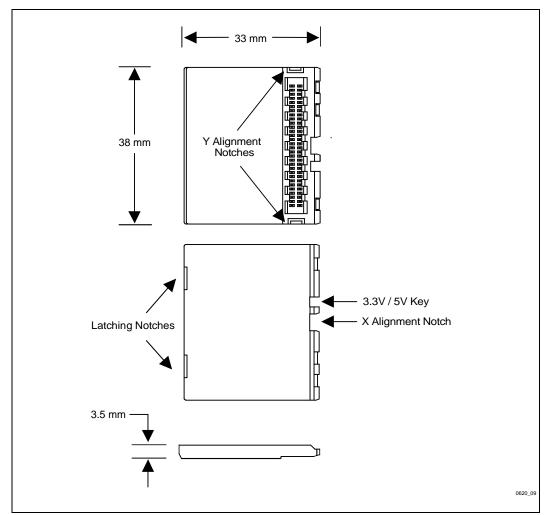


Figure 9. Miniature Card Dimensions

PRELIMINARY

9.0 ORDERING INFORMATION

iFM004G, SHXXXXX

WI	here	<u>-</u> .	

whiche.	
i	= INTEL
FM	= FLASH MINIATURE CARD
004	= DENSITY IN MEGABYTES (004, 008, 016 AVAILABLE)
G	= REVISION
SHXXXXX	= CUSTOMER IDENTIFIER

10.0 ADDITIONAL INFORMATION

Order Number	Document
210830	Flash Memory Databook
297899	5 Volt Series 200 Flash Memory Miniature Card Specification Update
290606	5 Volt Intel [®] StrataFlash™ Memory; 28F320J5 and 28F640J5 datasheet
297848	5 Volt Intel® StrataFlash™ Memory; 28F320J5 and 28F640J5 Specification Update
292205	AP-647 5 Volt Intel [®] StrataFlash™ Memory Design Guide
292204	AP-646 Common Flash Interface (CFI) and Command Sets
292203	AP-644 Migration Guide to Intel® StrataFlash™ Memory
Note 3	AP-374 Flash Memory Write Protection Techniques

NOTE:

1. Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International customers should contact their local Intel or distribution sales office.

2. Visit Intel's World Wide Web home page at http://www.intel.com for technical documentation and tools.

3. These documents can be located at the Intel World Wide Web support site, http://www.intel.com/support/flash/memory