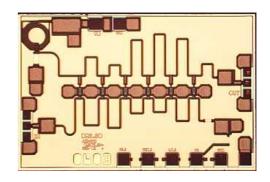


Amplifier, Distributed, 0.1W 1.0-18.0 GHz

MAAMGM0002-DIE Rev E

Features


- ◆ 0.1 Watt Saturated Output Power Level
- ◆ 4 dB Typical Noise Figure
- ◆ Select-at-Test Biasing
- ◆ MSAG™ Process

Description

The MAAMGM0002-Die is a 0.1W Distributed Amplifier with on-chip bias networks. This product is fully matched to 50 ohms on both the input and output. The MMIC can be used as a broadband amplifier stage or as a driver stage in high power applications.

Each device is 100% RF tested to ensure performance compliance. The part is fabricated using M/A-COM's GaAs Multifunction Self-Aligned Gate Process.

M/A-COM's MSAG™ process features robust silicon-like manufacturing processes, planar processing of ion implanted transistors, multiple implant capability enabling power, low-noise, switch and digital FETs on a single chip, and polyimide scratch protection for ease of use with automated manufacturing processes. The use of refractory metals and the absence of platinum in the gate metal formulation prevents hydrogen poisoning when employed in hermetic packaging.

Primary Applications

- ◆ Test Equipment
- Electronic Warfare
- ♦ Radar

Also Available in:		SAMPLES		
Description	Ceramic Package	Sample Board (Die) Sample Board (Package		
Part Number	MAAMGM0002	MAAMGM0002-DIE-SMB	MAAMGM0002-SMB	

Electrical Characteristics: $T_B = 40^{\circ}C^1$, $Z_0 = 50\Omega$, $V_{DD} = 5V$, $I_{DQ} = 75 \text{ mA}^2$, $P_{in} = 13 \text{ dBm}$

Parameter	Symbol	Minimum	Typical	Maximum	Units
Bandwidth	f	1.0		18.0	GHz
Output Power	P _{out}	19.5	21		dBm
Power Added Efficiency	PAE		12		%
1-dB Compression Point	P1dB		20		dBm
Small Signal Gain	G	7	9		dB
Noise Figure	NF		4		dB
Output TOI	OTOI		31		dBm
Input VSWR f = 2 GHz	VSWR		1.7:1	2:1	
Output VSWR f = 2 GHz	VSWR		1.7:1	2:1	
Gate Current	I_{GG}		< 2		mA
Drain Current	I _{DD}		100	150	mA

- 1. T_B = MMIC Base Temperature
- 2. Adjust V_{GG} between -1.0 and -0.3 V to achieve I_{DQ} indicated.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Amplifier, Distributed, 0.1W 1.0-18.0 GHz

MAAMGM0002-DIE Rev E

Maximum Ratings³

Parameter	Symbol	Absolute Maximum	Units
Input Power	P _{IN}	19.0	dBm
Drain Voltage	V_{DD}	+7.0	V
Gate Voltage	V_{GG}	-1.5	V
Gate Voltage, Select at Test	HI, MID, LO	-6.0	V
Quiescent Drain Current (No RF)	I _{DQ}	120	mA
Quiescent DC Power Dissipation (No RF)	P _{DISS}	0.5	W
Junction Temperature	TJ	170	°C
Storage Temperature	T _{STG}	-55 to +150	°C

^{3.} Operation beyond these limits may result in permanent damage to the part.

Recommended Operating Conditions⁴

Parameter	Symbol	Min	Тур	Max	Unit
Drain Voltage	V _{DD}	4.5	5.0	5.5	V
Gate Voltage	V_{GG}	-1.0	-0.6	-0.3	V
Gate Voltage, Select at Test	HI, MID, LO		-5.0		V
Input Power	P _{IN}		13	17	dBm
Thermal Resistance	$\Theta_{ ext{JC}}$		91.2		°C/W
MMIC Base Temperature	T _B			Note 5	°C

^{4.} Operation outside of these ranges may reduce product reliability.

Operating Instructions

This device is static sensitive. Please handle with care. To operate the device, follow these steps according to which configuration you are using.

Select-at-Test Gate Bias Figure 5a.	Direct Gate Bias Figure 5b.
1. With $V_{DD} = 0$, apply $V_{GG} = -5V$ to HI,	1. With $V_{DD} = 0 \text{ V}$, set $V_{GG} = -0.8 \text{ V}$.
MID or LO for desired I_{DQ} .	2. Set V _{DD} = 5 V.
2. Set V_{DD} = 5V. Confirm I_{DQ} .	3. Adjust V_{GG} for desired I_{DQ} .
3. Power down sequence in reverse.	4. Power down sequence in reverse.
4.Turn off V _{GG} last.	5. Turn off V _{GG} last.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

^{5.} MMIC Base Temperature = $170^{\circ}\text{C} - \Theta_{\text{JC}}^* \text{V}_{\text{DD}} * \text{I}_{\text{DQ}}$

Amplifier, Distributed, 0.1W 1.0-18.0 GHz

MAAMGM0002-DIE

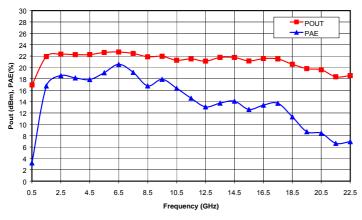
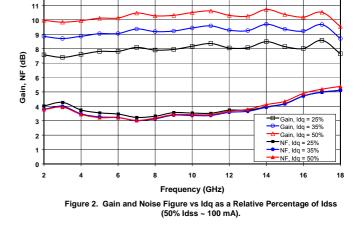



Figure 1. Output Power and Power Added Efficiency vs. Frequency at $V_{DD} = 5V$, $P_{in} = 14dBm$.

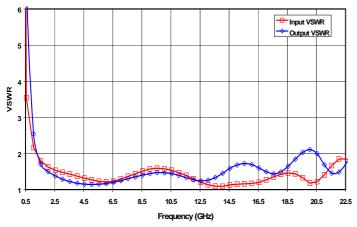


Figure 3. Input and Output VSWR.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Amplifier, Distributed, 0.1W 1.0-18.0 GHz

MAAMGM0002-DIE

Mechanical Information

Chip Size: 2.98 x 1.98 x 0.075 mm (118 x 78 x 3 mils)

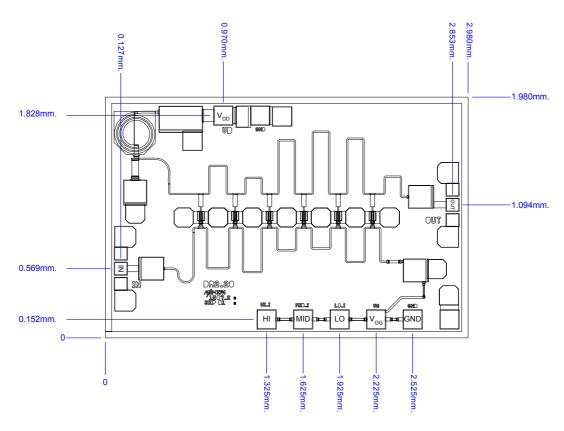


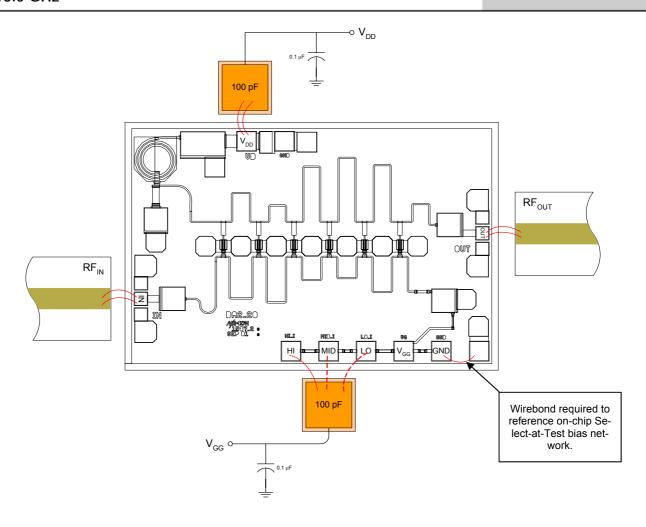
Figure 4. Die Layout

Bond Pad Dimensions

Pad	Size (μm)	Size (mils)
RF: IN, OUT	100 x 100	4 x 4
Drain Supply Voltage: V _{DD}	150 x 150	6 x 6
Direct Gate Supply Voltage: V _{GG}	150 x 150	6 x 6
Select-at-Test Gate Supply Voltage: HI, MID, LO	150 x 150	6 x 6
Ground: GND	150 x 150	6 x 6

⁴

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300


[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

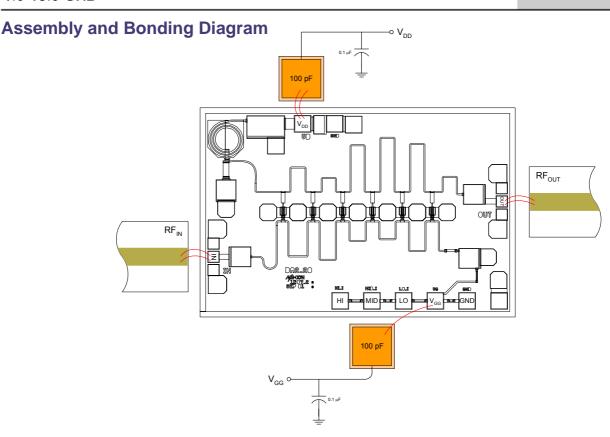
Amplifier, Distributed, 0.1W 1.0-18.0 GHz

MAAMGM0002-DIE

Figure 5a. Required Bonding for Select-at-Test Gate Bias Configuration. Support circuitry typical of MMIC characterization fixture for CW testing.

Pad	Applied Voltage (V)	% IDSS
HI	-5	50
MID	-5	35
LO	-5	25

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300


Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Amplifier, Distributed, 0.1W 1.0-18.0 GHz

MAAMGM0002-DIE Rev E

Figure 5b. Required Bonding for Direct Application of Gate Bias. Support circuitry typical of MMIC characterization fixture for CW testing.

Pad	Applied Voltage (V)	% IDSS
V_{GG}	-1.0 to -0.3	25 - 50

Die Handling:

Refer to Application Note AN3016.

Assembly Instructions:

Die Attach: Use AuSn (80/20) 1 mil. preform solder. Limit time @ 310 °C to less than 7 minutes. Refer to Application Note AN3017 for more detailed information.

Wirebonding: Bond @ 160 °C using standard ball or thermal compression wedge bond techniques. For DC pad connections, use either ball or wedge bonds. For best RF performance, use wedge bonds of shortest length, although ball bonds are also acceptable.

Biasing Note: Must apply negative bias to V_{GG} before applying positive bias to V_{DD} to prevent damage to amplifier.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298