E3X-DA-S

Digital Fiber Sensors

HEPO

> Perfection Transcended!
> A Wealth of Advanced Functions for Easy and Reliable Application

Evolution and Perfection

The next-generation platform for a wide range of sensing

```
point-
The industry's first Power Tuning Function in a digital sensor.
poin!2
Large, Easy-to-Read Displays that are clear even from a distance.
Seven convenient display formats.
        point?
            Stable long-term performance achieved with
            OMRON's Auto Power Control (APC) function.
        point 4
            A wide artray of Advanced Functions for even more applications.
            point}
                The same Ease-of-Use as the E3X-DA-N Amplifier.
                point}
                    Environmentally
                    Friendly design.
                poni
                    Improved Mobile Console.
```


Smartstule

Industry's First Power Tuning Function in a Digital Sensor.
No complicated mode settings
Troublesome power adjustments have been eliminated, so it isn't necessary to select from power mode settings, such as long-distance mode, standard mode, and short-distance mode. When the MODE Key is pressed once, the power tuning function shifts the power level so that
is set to the ideal level (2000 on the digital display.)
set to the ideal level (2000 on the digital display.)

Method	Incidentlevel		
High-speed mode	40	189	Incident insufficient
Short-distance mode	153	870	Appropriate
Standard mode	15	P79	Appropriate
ong-distance mode	50]	878	Saturated
Super-long-distance mode	4707	878	Saturated

New Method
The Sensor can be used immediately without
setting the mode.
If the incident light level is too high or too low,
just press the Mode key to achieve the optimum just press the Mode key to achieve the optimum
status. selected from several power modes.
sufficient light or saturation at short distances can be corrected
The power tuning range is extended to the allowable limits to eliminate prob-
lems such as insufficient light or detection failures due to saturation.
the install insufficient light or detection failures due to saturation.
It the installation distance is too short, the incident light may saturate (i.e., to
a digital incident level of 4,000), preventing detection The tuned down to $1 / 25$ th of the default setting for stable detection ever at close range.

Detection is possible.

Variations between different Sensors can be eliminated.
Threshold levels had to be set and maintained separately for individual Sen-
sors due to variations in the digital light levels measured by each Senso
With power tuning, the incident level can be fine-tuned so the same thresh
old level can be set for each Sensor in an application. Maintenance is also
old level can be set for each Sensor in an application. Maintenance is also
simplified because it is easier to recognize measurement levels that have shifted during operation.

 Digital light tevels vary due to individual difierences in the Sensors, so the

Large, Easy-to-Read Displays: Clear Even from a Distance

Seven Convenient Display Formats

An incident level/threshold display, percentage/threshold display, and large bar graph display have been added so you can select the best display method for the application

Stable, Long-term Performance with OMRON's APC Function

OMRON provides the industry's most stable long-term detection Highest Level of Stability by using new 4-element LEDs and an APC (Auto Power Control) circuit.

In addition to our unique APC circuit used in the
E3X-DA-N E3X-DA-N Amplifiers to compensate for the deterioration of the LED, the E3X-DA-S uses 4-ele-
ment LEDS to counteract the deterioration of the light-emitting elements over time and achieve the light-emitting elements over time and achieve
industry's mance.
Furthermore, the circuit is designed with excess
light capacity, so the Sensors can light capacity, so the Sensors can be used with
high stability regardless of whether the APC circuit is ON or OFF.

Compensate for the effects of contaminants and temperature variation with differential operation mode. (Advanced Models)
This operation mode uses a special OMRON algorithm to compensate for slight light level changes
due to dirt or temperature variations and detect only the light level changes due to the workpiece.
Slight light level changes can be detected with stability and
precision, eliminating the need for time-consuming manual ad-
justments for light level changes.
With the Twin-output Amplifiers, output 2 can function as an alarm output (light level operation) to indicate when the light alarm hatput (light level operation) to indicate
level has changed due to dirt or other causes.
Light Level Operation (Normal Operation) Judges light level changes by comparing
the incident level and threshold level.

Time
The light level varies due to dirt, temperature

Incorrect operation

Differential Operation Judges light level changes by comparing the
ncident level to a time-averaged incident level
 $\frac{\text { Time }}{\substack{\text { Alarm output }}}$ Detecting differences in the light level enables
setting more subtel el light evel differences. \square

Minute changes are

 detected reliably.
Many Advanced Functions for Even More Applications

In super-high-speed mode, it is the Fastest in the Industry fastest digital model at $48 \mu \mathrm{~s}$. (Standard Models) Provides high-speed response for miniature workpieces, such as chip parts and devices with short tact times.

Three kinds of timer functions are supported. The timers can be set between 1 ms and 5 s .
A one-shot timer is supported in addition to the ON-delay and OFF-delay timers.
The Amplifier's ON time can be fixed, which is useful during high-speed workpiece detection.

Area output function can be used for range judgement. (Advanced Twin-output Models) Operations that required multiple Sensors, such as Operations that required multiple Sensors, such as
height measurement, can be performed with just one height measurement, can be performed with just one
Sensor. Two threshold levels can be set to easily output
within-range and out-of-range outputs. within-range and out-of-range outputs.

Remote input function can control the Sensor remotely. (Advanced External-input Models) Input signals can make various remote settings, such as teaching operations, power tuning, and emitter
OFF. This model is ideal for diverse needs, such as checking Sensor operation remotely before operation or making settings remotely because teaching has to be performed often for frequent workpiece mode changes.

The counter function can output signal after counter Patent Pending counts up or down.
(Advanced External-input Models) A counter function is built-in, so the number of workpieces can be counted without a separate counter or small PLC that used to be

The Same Ease-of-Use as the E3X-DA-N

The E3X-DA-S uses OMRON's own simplified wiring connectors that were introduced with the E3X-DA-N. Patent Pending In Amplifiers with Connectors, the power supply is distributed to slave connectors through a single master connector. This design has three major advantages.

1. Wiring time is significantly reduced.
2. Relay connectors are unnececsany, so wining takes up less space. 3. Storage and manienenare are simpler because it isnt neecessay to opisinguish between masere comenector and save comenectos on the Amplifier

Optical communications prevents mutual interference. Mutual interference is prevented with optical communications, so up to 10 Amplifiers can be mounted together.
The number of Amplifiers depends on the operating conditions.)

Reversible Digital Display (Reverse Mode)

The digital display can be reversed to match the Amplifier's mounting direction.

Environmentally Friendly Design

Environmentally friendly features are essential in truly high-performance products.

1 Materials containing lead have been completely eliminated. First in the industry
The Fiber Sensor is the first in the industry
to use environmentally friendly lead-free
to use
solder.

2 The digital display can be turned OFF or dimmed during operation. Eco-mode
When the digital display is viewed infrequention can be reduced by dimming the display or turning it OFF entirely.
The display will light up again automatically when an operation key is touched. (Ecoonly.)

3 Cable disposal is not required during maintenance.
In addition to saving space and reducing
wiring time, the new connector design eliminars with the Amplifiers. together with the Amplifiers.

Further Improvements to the Mobile Console

Improved Mode Lock Function

Settings can be customized for different applications by locking

		Function Block		
Application		Manual setting	Teaching	Function setting
(1) Manual	Set for manual operation.	Operation OK	Locked	Locked
	Set for teaching operation.	Locked	Operation OK	Locked
$\downarrow_{\text {Teaching }}+$ (${ }_{\text {Manual }}$	Set for teaching manual operation.	Operation OK	Operation OK	Locked

Retains all of the Previous Advantages of the Mobile Console.
New and Improved Fiber Sensor and Mobile Console.

Settings, teaching, and fine-tuning can be performed at the fiber tip.

The Mobile Console can be used for settings and teaching at the tip of the fiber. Difficult adjustments can be made while checking the workpiece position.
Even if the Amplifier and Sensor head are separated during operation, it is still possible to flash the Sensor head and dis play the amplifier channels.

With Group Teaching, Teach Multiple Amplifiers Simultaneously.

The tedious teaching that had to be performed separately for
each Amplifier can now be performed for several Amplifiers at once using the Mobile Console.

Copying Settings within the Same Group

Settings such as mode or threshold settings in an Amplifier or bank can be copied to all of the Amplifiers in the same group.

Copying Settings to Other Groups

The settings for a group of Amplifiers on one machine can be copied to a group of Amplifiers on another machine. copied to a group of Amplifiers on another machine.
(The settings can also be copied to and from banks.)


```
OMRON Corporation Industrial Automation Company
Application Sensors Division
Sensing Devices and Components Division H.Q.
Shiokoji Horikawa, Shimogyo-ku,
Kyoto, 600-8530 Japan
Tel: (81)75-344-7068/Fax: (81)75-344-7107
```


Regional Headquarters

```
OMRON EUROPE B.V.
Sensor Business Unit
Carl-Benz-Str. 4, D-71154 Nufringen,
Germany
Tel: (49)7032-811-0/Fax: (49)7032-811-199
```


OMRON ELECTRONICS LLC

```
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568
OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue
\#11-01, UE Square,
239920 Singapore
Tel: (65)6835-3011/Fax: (65)6835-2711
OMRON CHINA CO., LTD. BEIJING OFFICE
Room 1028, Office Building,
Beijing Capital Times Square,
No. 88 West Chang'an Road,
Beijing, 100031 China
Tel: (86)10-8391-3005/Fax: (86)10-8391-3688
```

In the interest of product improvement, specifications are subject to change without notice

Authorized Distributor:

This document provides information mainly for selecting suitable models. Please read the Instruction Sheet carefully for information that the user must understand and accept before purchase, including information on warranty, limitations of liability, and precautions.

E3X-MDA

Super Dual Fiber Sensor

...the 2-channel amplifier has arrived.

This document provides information mainly for selecting suitable models.
 Please read the Instruction Sheet carefully for information that the user must understand and accept before purchase, including

 information on warranty, limitations of liability, and precautions.```
OMRON Corporation
```

Industrial Automation Company
Sensing Devices Division H.O.
Industrial Sensors
Sensing Devices Division H.Q.
Industrial Sensors Division
Shiokoji Horikawa, Shimogyo-ku,

Tel: $(811) 75-344-7022$
Fax: $(81) 75-344-107$
Regional Headquarter
omron europe b.v.
Sensor Business Unit. Cat-Benz-Str. 4
D-71154 Nufringen, Germany
Tel: ( 49 ) 7032 -811-0
arex
Tel: (49)7032-811-0/Fax: (49)7032-811-19
omron electronics llc
East Commerce Drive, Schaumburg, LL 60173 U.S.A.
Tel: (1)847-843-7900/Fax: (1) $1847-843-8588$
OMRON ASIA PACIIIC PTE LTD.
${ }_{83}$ Clemenceau Avenue, \#11-01, UE Square,
83 Clemenceau Avenue, $111-01$, UE Squ
239920 Singapore
Tel: (65) $6835-3011$ /Fax: $(65) 6835-2711$
OMron (CHINA) CO., LTD.
Room 2211, Bank of China To
200 Yin Cheng Road ( (in),
Shanghai. 200120 China
Shanghai, 200120 China
Tel: (86)21-5037-2222FFax: (86)21-5037-2200
Authorized Distributo

realizzing

Having problems gang-mounting Fiber Sensor Amplifier Units in tight spaces?


Slimmest in the industry $\mathbf{- 5 m m}$ per channel. Patent pending
Two Amplifiers squeezed into a body of width
Remarkable space saving of approx. $50 \%$.
Power saving of approx. $40 \%$.
(Savings per channel compared with existing products.)


2 ch $\left\{\begin{array}{l}\text { Emititing- } \\ \text { Receiving }\end{array}\right.$
1 ch $\left\{\begin{array}{l}\text { Receiving } \\ \text { Emiting } \\ \text { Receiving }\end{array}\right.$

Equipped with AND/OR control output. Patent pending
Two types of control output possible with one
Sensor (AND/OR).
Compact PLCs and Sensor Controllers no
longer required.



## Flexible control with Mobile Console.

The Mobile Console, which can also be used with the E3X-DA-S allows handheld operation of the Fiber Head even when it is separated from the Amplifier.

Checking alignment and mounting of LCD substrates


An impressive lineup of Digital Amplifiers to handle a wide variety of applications.


A host of remarkable functions inside a compact body. A complete lineup of Sensor Heads to handle an even wider range of applications.
This is the platform for OMRON's sensing technology.
 and magnetic technology


## ON/OFF Platform

A common platform for Fiber Sensors and Sensors with Separate Amplifiers


## OmROn

## New Models That Counteract the Decline in Operating Rates Caused by Dust and Dirt

## Advanced ATC Models

- Active Threshold Control (ATC) Automatically adjusts the threshold value.
■ ATC Error Output (Selectable Function) Provides an error output when ATC does not adjust the threshold value.
- Alarm Output (Selectable Function) Provides an alarm when maintenance is required.


Glass substrate detection though view ports


Chip component detection


## Technology

## Intelligently Solve Problems Onsite with

## ATC Function

A unique OMRON algorithm has been used that can determine whether changes have been caused by dust and dirt or by differences in workpieces.
The threshold value is automatically adjusted by the Sensor according to changes to increase equipment operating rates by reducing sensing errors. This is particularly true in applications requiring high-precision detection.


- Active Threshold Control (ATC Models)

$\mathrm{ON}^{\mathrm{ON}}$ OFF


## The $\boldsymbol{D}_{\text {IN }} C$ Engine for High-performance

## Sensing

OMRON's many years of accumulated sensing technology and highspeed digital processing techniques merge to meet onsite needs. Our goal is high-performance sensing that provides easy, reliable application.

## Reliable Detection of Small Workpieces

 12-bit A/D converter (4,000 resolution),high-speed response of $48 \mu$ s (Fiber Sensors)


## Easy-to-read Displays Even at a Distance

 Intelligent DisplayEliminates the Need for Distance Mode Settings Power Tuning

Digital Fiber Sensor

| Type | Functions | Model |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Pre-wired Models |  |  | NPN output | PNP output |
| Connector Models | ATC | E3X-DA11AT-S | E3X-DA41AT-S |  |
|  | ATC error output |  | E3X-DA6AT-S | E3X-DA8AT-S |

Separate Digital Amplifier Laser Sensors

| Type | Appearance | Functions | Model |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | NPN output | PNP output |
| Pre-wired Models |  | ATC | E3C-LDA11AT | E3C-LDA41AT |
| Connector Models |  | Alarm output | E3C-LDA6AT | E3C-LDA8AT |

Ratings and Specifications

| Type |  | Model | Digital Fiber Sensors |  | Separate Digital Amplifier Laser Sensors |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NPN output | E3X-DA11AT-S | E3X-DA6AT-S | E3C-LDA11AT | E3C-LDA6AT |
| Item |  | PNP output | E3X-DA41AT-S | E3X-DA8AT-S | E3C-LDA41AT | E3C-LDA8AT |
| Response time | Super-high-speed mode |  | Operate or Reset: $80 \mu \mathrm{~s}$ |  | Operate or Reset: $100 \mu \mathrm{~s}$ |  |
|  | High-speed mode |  | Operate or Reset: $250 \mu \mathrm{~s}$ |  | Operate or Reset: $250 \mu \mathrm{~s}$ |  |
|  | Standard mode |  | Operate or Reset: 1 ms |  |  |  |
|  | High-resolution mode |  | Operate or Reset: 4 ms |  |  |  |
| Functions | ATC |  | Active threshold control (used for output 1) |  |  |  |
|  | I/O settings |  | The signal that is output can be selected (used for output 2): ATC error output |  |  |  |
|  | Startup operation |  | The operation when power is turned ON can be selected: No operation, PT, or PT + ATC |  |  |  |

Note: Basic performance is the same as the Advanced Twin-output Sensors. Refer to E3C-LDA Datasheet (E338) and E3X-DA-S Datasheet (E336) for details. Only differences from the Advanced Twin-output Sensors have been given above.

Note: Do not use this document to operate the Unit.

## OMRON Corporation <br> Industrial Automation Company <br> Application Sensors Division <br> Sensing Devices and Components Division H.Q. <br> Shiokoji Horikawa, Shimogyo-ku, <br> Kyoto, 600-8530 Japan <br> Tel: (81)75-344-7068/Fax: (81)75-344-7107 <br> Regional Headquarters <br> OMRON EUROPE B.V. <br> Sensor Business Unit, <br> Carl-Benz-Str. 4, D-71154 Nufringen, <br> Germany <br> Tel: (49)7032-811-0/Fax: (49)7032-811-199

OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg IL 60173 U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568
OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
\#11-01, UE Square,
239920 Singapore
Tel: (65)6835-3011/Fax: (65)6835-2711
OMRON CHINA CO., LTD. BEIJING OFFICE
Room 1028, Office Building,
Beijing Capital Times Square,
No. 88 West Chang'an Road,
Beijing, 100031 China
Tel: (86)10-8391-3005/Fax: (86)10-8391-3688 Note: Specifications subject to change without notice.

## New Models That Eliminate Worries about Digital Sensor Setting Mistakes

Limited-function Models: Simple and Easy

One-key, one-operation concept for easy operation.
$\square$ Threshold value setting with direct operation performed while monitoring the detection status.

Lock function to prevent operating errors through unintentional operation.

> Easy and Reliable Digital Sensors with the Same Detection Performance as Previous Models


## Technology

## The Simplest Digital Fiber Sensor

Some people think that digital sensors with their advanced performance are difficult to use, so we went back to the drawing board to rethink performance and functions.
Without changing basic functions like APC and digital displays, OMRON created a Digital Fiber Sensor that can be used as easily as the familiar sensors with sensitivity adjustment knobs.


## The $\boldsymbol{D}_{\text {IN }} \boldsymbol{C}$ Engine for High-performance Sensing

OMRON's many years of accumulated sensing technology and highspeed digital processing techniques merge to meet onsite needs. Our goal is high-performance sensing that provides easy, reliable application.

Reliable Detection of Small Workpieces
12-bit A/D converter (4,000 resolution)


Ordering Information

| Type | Model |  |  |
| :---: | :---: | :---: | :---: |
|  |  | NPN output | PNP output |
| Pre-wired Models |  |  | E3X-DA41SE-S |
| Connector Models |  | E3X-DA11SE-S | E3X-DA6SE-S |

Ratings and Specifications

| Item Type |  | Model | Digital Fiber Sensor |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | NPN output | E3X-DA11SE-S | E3X-DA6SE-S |
|  |  | PNP output | E3X-DA41SE-S | E3X-DA8SE-S |
| Light source (wavelength) |  |  | Red LED (650 nm) |  |
| Power supply voltage |  |  | 12 to 24 VDC $\pm 10 \%$, ripple (p-p): $10 \%$ max. |  |
| Power consumption |  |  | 960 mW max. (Power supply: 24 V , Current consumption: $40 \mathrm{~mA} \mathrm{max}$. ) |  |
| Control output |  |  | Load power supply: 26.4 VDC max., Open-collector output, Load current: 50 mA max. (Residual voltage: 1 V max.) |  |
| Protection circuits |  |  | Power supply reverse polarity protection, Output short-circuit protection |  |
| Response time |  |  | Operate or Reset: 1 ms |  |
| Sensitivity setting |  |  | Teaching or manual adjustment |  |
| Functions | Auto power control |  | High-speed control method for emission current |  |
|  | Mutual interference prevention |  | Optical communications sync, possible for up to 10 Units |  |
| Indicators |  |  | Operation indicator (orange) |  |
| Digital displays |  |  | Twin digital displays (incident level + threshold) |  |

Note: Basic performance is the same as the E3X-DA-S Series. Refer to the E3X-DA-S Datasheet (E336) for details.

This document provides information mainly for selecting suitable models.
Please read the Instruction Sheet carefully for information that the user must understand and accept before purchase, including information on warranty, limitations of liability, and precautions.

## Note: Do not use this document to operate the Unit.

## OMRON Corporation <br> Industrial Automation Company

Application Sensors Division
Sensing Devices and Components Division H.Q.
Shiokoji Horikawa, Shimogyo-ku,
Kyoto, 600-8530 Japan
Tel: (81)75-344-7068/Fax: (81)75-344-7107

## Regional Headquarters

OMRON EUROPE B.V.
Sensor Business Unit,
Carl-Benz-Str. 4, D-71154 Nufringen,
Germany
Tel: (49)7032-811-0/Fax: (49)7032-811-199

OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg,
IL 60173 U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568
OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
\#11-01, UE Square,
239920 Singapore
Tel: (65)6835-3011/Fax: (65)6835-2711
OMRON CHINA CO., LTD. BEIJING OFFICE
Room 1028, Office Building,
Beijing Capital Times Square,
No. 88 West Chang'an Road,
Beijing, 100031 China
Tel: (86)10-8391-3005/Fax: (86)10-8391-3688 Note: Specifications subject to change without notice.

## OMRON's Next-generation Platform for a Wide Range of Detection

- Features a Power Tuning function that optimizes light reception at the press of a button.
- Combines newly developed 4-element LEDs with an APC circuit to ensure stable, long-term LED performance.
- Utilizes OMRON's innovative wire-saving connector.
- 2-channel models achieve the thinnest profile in the industry, at only 5 mm per channel.
- 2-channel models also offer AND/OR control output.



## Features

## Equipped with an Industry's First Power Tuning (Optimum Light Setting) Function

The E3X-DA-S/MDA features a Power Tuning function that optimizes power at the press of a button.
This function easily but securely resolves saturation due to short sensing distances or insufficient incident light due to long sensing distances.
In addition, the response speed does not change as mode selection has tuned the power.


## Adoption of Newly Developed 4-Element LEDs and an APC (Auto Power Control) Circuit Achieves Long-term Reliable Detection at the Highest Level in the Industry

The long-term reliable detection at the highest level in the industry is achieved with the innovative APC circuit whose performance is proved by E3X-DA-N series and the newly developed high-power LEDs (4-element type) to ensure super stable, long-term LED performance.
Stable performance is always available without the ON/OFF setting of an APC circuit.

Conventional


Newly developed


## OMRON's Innovative Wire-saving Connector Inherited from the E3X-DA-N

The amplifier units with connectors supply the power to slave connectors via a master connector. This offers three following advantages.

[^0]

Models available for a wide variety of applications at manufacturing sites
Industry Leading Two Amplifiers Loaded in a Small Body $\cdots$ ． 2 －channel models
Two amplifiers are loaded in a 10 mm －wide body． Space usability can be approximately doubled． In addition，approximately $40 \%$ of the energy can be saved．
（compared to the value per channel of the former model）


## Simpler Digital Fiber Sensors … Simple \＆Easy Single－function Models

Required performance and functions have been reviewed from basic points to improve high－performance but hard－to－use digital models．Digital fiber sensors，used in the sense as if using volume type sensors， are added to the basic functions such as an APC function and digital display．


## High－speed and High－resolution Analog Output Supports Wide Variety of Applications

－ーーーーー
Yes／No：Teaching at two points to
Yes／No：Teaching at two points to be detected
Automatic：Automatic teaching by feeding workp
．．．Advanced Analog Output Models

## Analog Control Output

The voltage in the range of 1 to 5 V is output according to the incident level（digital display）．Wide variety of applications is possible including positioning control or difference detection with multiple levels．


## Area Output Function Area Judgment Is Possible …Advanced，Twin－output Models

Only one sensor is enough for area judgment for height or others that has required multiple sensors．
Setting two threshold values allows easy output inside and outside range．

High－speed and High Resolution
Detection modes can be switched in accordance with applications． High－speed response of $80 \mu$ s（super－high－speed mode）supports the positioning controls that require high－speed control．


－Advanced，External－ input Models

## Equipped with an Industry＇s First ATC Function that Resolves Problems at Manufacturing Sites

Remote settings for teaching／power tuning／light OFF are possible with input signals．
The remote input function meets the diversifying demands such as remote settings made for frequent teaching due to level change corresponding to workpiece change or remote operation check of sensors before operation．

OMRON＇s unique algorithm is equipped to distinguish dust or dirt and the change of workpieces．Automatic correction of threshold values by sensors in accordance with changes prevents malfunctions and improves the operating rates of machines．The ATC function is especially effective for the applications that require high－resolution detection．


## Ordering Information

## Amplifier Units

Amplifier Units with Cables (2 m) [Refer to Dimensions on page 17.]


Amplifier Units with Connectors

| Item |  | Appearance | Functions | Model |  | |
|---|---|---|---|---|---|---|
|  |  | NPN output |  | PNP output |
| Single-function models |  |  | $\bigcirc$ | --- | E3X-DA6SE-S | E3X-DA8SE-S |
| Standard models |  | Timer, Response speed change |  | E3X-DA6-S | E3X-DA8-S |
| Mark-detecting models (multiple color light sources) | Green LED |  |  | E3X-DAG6-S | E3X-DAG8-S |
|  | Blue LED |  |  | E3X-DAB6-S | E3X-DAB8-S |
|  | Infrared LED |  |  | E3X-DAH6-S | E3X-DAH8-S |
| Advanced models | External-input models | Remote setting, counter, differential operation |  | E3X-DA6RM-S | E3X-DA8RM-S |
|  | Twin-output models | Area output, self-diagnosis, differential operation |  | E3X-DA6TW-S | E3X-DA8TW-S |
|  | ATC function models | ATC (Threshold value automatic correction) |  | E3X-DA6AT-S | E3X-DA8AT-S |
| 2-channel models |  |  | AND/OR output | E3X-MDA6 | E3X-MDA8 |

## Ratings and Specifications



## Amplifier Unit Connectors (Order Separately)

Note: Protector seals are provided as accessories. [Refer to Dimensions on page 19.]

| Item | Appearance | Cable <br> length | No. of con- <br> ductors | Model |
| :---: | :---: | :---: | :---: | :--- |
| Master Connector |  | 2 m | 3 | E3X-CN11 |
|  |  |  | 4 | E3X-CN21 |
|  |  |  | 1 | E3X-CN12 |
|  |  |  | 2 | E3X-CN22 |

## Combining Amplifier Units and Connectors

Amplifier Units and Connectors are sold separately. Refer to the following tables when placing an order.

| Amplifier Unit |  |  |
| :--- | :--- | :--- |
| Model | NPN output | PNP output |
| Single-function models | E3X-DA6SE-S | E3X-DA8SE-S |
| Standard models | E3X-DA6-S | E3X-DA8-S |
| Mark-detecting models <br> (multiple color light <br> sources) | E3X-DAG6-S | E3X-DAG8-S |
|  | E3X-DAB6-S | E3X-DAB8-S |
|  | E3X-DAH6-S | E3X-DAH8-S |
| Advanced models | E3X-DA6TW-S | E3X-DA8TW-S |
|  | E3X-DA6RM-S | E3X-DA8RM-S |
|  | E3X-DA6AT-S | E3X-DA8AT-S |
| 2-channel models | E3X-MDA6 | E3X-MDA8 |


| Applicable Connector (Order Separately) |  |
| :---: | :---: |
| Master Connector | Slave Connector |
| E3X-CN11 |  |
| E3X-CN21 | E3X-CN12 |

When Using 5 Amplifier Units
Amplifier Units (5 Units) $+\quad 1$ Master Connector + 4 Slave Connectors

Mobile Console (Order Separately) [Refer to Dimensions on page 20.]

| Appearance | Model | Remarks |
| :--- | :--- | :--- |
|  | E3X-MC11-SV2 | Mobile Console with Head, <br> Cable, and AC adapter pro- <br> vided as accessories <br> (model number of set) |

Note: Use the E3X-MC11-SV2 Mobile Console for the E3X-DA-S/MDA-series Amplifier Units.
The E3X-MC11-SV2 is an upgraded version of the E3X-MC11-S that is fully interchangeable with the older model.

## Accessories (Order Separately)

Mounting Bracket [Refer to E39-L/F39-L/E39-S/E39-R.]

| Appearance | Model | Quantity |
| :---: | :---: | :---: |
|  | E39-L143 | 1 |

End Plate [Refer to PFP- $\square$.]


## Amplifier Units

| TypeItemModel |  | Single-function models | Standard models | Mark-detecting models (multiple color light sources) |  |  | |
|---|---|---|---|---|---|---|---|
|  |  | Green LED |  | Blue LED | Infrared LED |
|  |  | E3X-DA $\square$ SE-S | E3X-DA $\square$-S | E3X-DAG口-S | E3X-DAB $\square$-S | E3X-DAH $\square$-S |
| Light source (wavelength) |  |  | Red LED (635 nm) |  | Green LED (525 nm) | Blue LED (470 nm) | $\begin{aligned} & \text { Infrared LED } \\ & (870 \mathrm{~nm}) \end{aligned}$ |
| Power supply voltage |  | 12 to 24 VDC $\pm 10 \%$, ripple (p-p) 10\% max. |  |  |  |  |
| Power consumption |  | 960 mW max. (current consumption: 40 mA max. at power supply voltage of 24 VDC ) |  |  |  |  |
| Control output |  | Load power supply voltage: 26.4 VDC; NPN/PNP open collector; load current: 50 mA max.; residual voltage: 1 V max. |  |  |  |  |
| Protection circuits |  | Reverse polarity for power supply connection, output short-circuit |  |  |  |  |
| Response time | Super-highspeed mode | --- | Operate: $48 \mu \mathrm{~s}$, reset: $50 \mu \mathrm{~s}$ *1, *2 |  |  |  |
|  | High-speed mode | --- | Operate/reset: $250 \mu \mathrm{~s}$ |  |  |  |
|  | Standard mode | Operate or reset: 1 ms |  |  |  |  |
|  | High-resolution mode | --- | Operate or reset: 4 ms |  |  |  |
| Sensitivity setting |  | Teaching or manual method |  |  |  |  |
| Functions | Power tuning | --- | Light emission power and reception gain, digital control method |  |  |  |
|  | Timer function | --- | Select from OFF-delay, ON-delay, or one-shot timer. 1 ms to $5 \mathrm{~s}(1$ to 20 ms set in 1-ms increments, 20 to 200 ms set in $10-\mathrm{ms}$ increments, 200 ms to 1 s set in $100-\mathrm{ms}$ increments, and 1 to 5 s set in 1 s -increments) |  |  |  |
|  | Automatic power control (APC) | High-speed control method for emission current |  |  |  |  |
|  | Zero-reset | --- | Negative values can be displayed. (Threshold value is shifted.) |  |  |  |
|  | Initial reset | Settings can be returned to defaults as required. |  |  |  |  |
|  | Mutual interference prevention | Possible for up to 10 Units *3 |  |  |  |  |
| Display |  | Operation indicator (orange) | Operation indicator (orange), Power Tuning indicator (orange) |  |  |  |
| Digital display |  | incident level + threshold | Select from incident level + threshold or other 6 patterns |  |  |  |
| Display orientation |  | --- | Switching between normal/reversed display is possible. |  |  |  |
| Ambient illumination (Receiver side) |  | Incandescent lamp: 10,000 lux max.Sunlight: $\quad 20,000$ lux max. |  |  |  |  |
| Ambient temperature range |  | Operating: Groups of 1 to 2 Amplifiers: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Groups of 3 to 10 Amplifiers: $-25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ Groups of 11 to 16 Amplifiers: $-25^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ <br> Storage: $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation) |  |  |  |  |
| Ambient humidity range |  | Operating and storage: 35\% to 85\% (with no condensation) |  |  |  |  |
| Insulation resistance |  | $20 \mathrm{M} \Omega$ min. (at 500 VDC ) |  |  |  |  |
| Dielectric strength |  | 1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute |  |  |  |  |
| Vibration resistance |  | Destruction: 10 to 55 Hz with a 1.5-mm double amplitude for 2 hrs each in $\mathrm{X}, \mathrm{Y}$ and Z directions |  |  |  |  |
| Shock resistance |  | Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in $\mathrm{X}, \mathrm{Y}$ and Z directions |  |  |  |  |
| Degree of protection |  | IEC 60529 IP50 (with Protective Cover attached) |  |  |  |  |
| Connection method |  | Pre-wired or amplifier unit connector |  |  |  |  |
| Weight (packed state) |  | Pre-wired model: Approx. 100 g , Amplifier unit connector model: Approx. 55 g |  |  |  |  |
| Materials | Case | Polybutylene terephthalate (PBT) |  |  |  |  |
|  | Cover | Polycarbonate (PC) |  |  |  |  |
| Accessories |  | Instruction manual |  |  |  |  |

*1. Communications are disabled if the detection mode is selected during super-high-speed mode, and the communications functions for mutual interference prevention and the Mobile Console will not function.
*2. PNP output is as follows: Operate: $53 \mu \mathrm{~s}$, reset: $55 \mu \mathrm{~s}$.
*3. Mutual interference prevention can be used for only up to 6 Units if power tuning is enabled.

| Type |  | Advanced models |  |  |  | 2-channel models |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | External input models | Twin output models | ATC function models | Analog output models |  |
| Item Model |  | E3X-DA $\square$ RM-S | E3X-DA $\square$ TW-S | E3X-DA $\square$ AT-S | E3X-DA $\square$ AN-S | E3X-MDA $\square$ |
| Light source (wavelength) |  | Red LED (635 nm) |  |  |  |  |
| Power supply voltage |  | 12 to 24 VDC $\pm 10 \%$, ripple (p-p) 10\% max. |  |  |  |  |
| Power consumption |  | $1,080 \mathrm{~mW}$ max. (current consumption: 45 mA max . at power supply voltage of 24 VDC ) |  |  |  |  |
| Control output | ON/OFF output | Load power supply voltage: 26.4 VDC; NPN/PNP open collector; load current: 50 mA max.; residual voltage: 1 V max. |  |  |  |  |
|  | Analog output |  | --- |  | Control output <br> Voltage output: 1 to 5 VDC <br> (Connection load $10 \mathrm{k} \Omega \mathrm{min}$.) <br> Temperature characteristics <br> $0.3 \%$ F.S. $/{ }^{\circ} \mathrm{C}$ <br> Response speed/repeat accuracy <br> Super-high-speed mode: <br> $80 \mu \mathrm{~s} / 1.5 \% F . S$. <br> High-speed mode: <br> $250 \mu \mathrm{~s} / 1.5 \%$ F.S. <br> Standard mode: <br> $1 \mathrm{~ms} / 1 \% F$.S. <br> High-resolution mode: <br> $4 \mathrm{~ms} / 0.75 \% F . S$. | --- |
| Remote control input |  | No-voltage input (contact/non-contact) *1 |  |  |  |  |
| Protection circuits |  | Reverse polarity for power supply connection, output short-circuit |  |  |  |  |
| Response time | Super-highspeed mode | $\begin{aligned} & \text { Operate: } 48 \mu \mathrm{~s}, \\ & \text { reset: } 50 \mu \mathrm{~s} * 2,{ }^{*} 3, * 4 \end{aligned}$ | Operate or reset: $80 \mu \mathrm{~s}$ *2 | Operate or reset: $130 \mu \mathrm{~s}$ *2 | Operate or reset: $80 \mu \mathrm{~s}$ *2 | Operate or reset: $130 \mu \mathrm{~s}$ *2, *5 |
|  | High-speed mode | Operate or reset: $250 \mu \mathrm{~s}$ |  |  |  | Operate or reset: $450 \mu \mathrm{~s}$ |
|  | Standard mode | Operate or reset: 1 ms |  |  |  |  |
|  | High-resolution mode | Operate or reset: 4 ms |  |  |  |  |
| Sensitivity setting |  | Teaching or manual method |  |  |  |  |
| Functions | Power tuning | Light emission power and reception gain, digital control method |  |  |  |  |
|  | Differential detection | Switchable between single edge and double edge detection mode Single edge: Can be set to $250 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 1 \mathrm{~ms}, 10 \mathrm{~ms}$, or 100 ms . Double edge: Can be set to $500 \mu \mathrm{~s}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 20 \mathrm{~ms}$, or 200 ms . |  |  |  |  |
|  | Timer function | Select from OFF-delay, ON-delay, or one-shot timer. |  |  |  |  |
|  |  | 1 ms to 5 s ( 1 to 20 ms set in 1-ms increments, 20 to 200 ms set in $10-\mathrm{ms}$ increments, 200 ms to 1 s set in 100-ms increments, and 1 to 5 s set in 1 s -increments) |  |  |  |  |
|  | Automatic power control (APC) | High-speed control method for emission current |  |  |  |  |
|  | Zero-reset | Negative values can be displayed. (Threshold value is shifted.) |  |  |  |  |
|  | Initial reset | Settings can be returned to defaults as required. |  |  |  |  |
|  | Mutual interference prevention | Possible for up to 10 Units *6 |  |  |  | Possible for up to 9 Units (18 channels) *7 |
|  | Counter | Switchable between up counter and down counter. <br> Set count: <br> 0 to $9,999,999$ |  | --- |  |  |
| *1. Input Specifications |  |  |  |  |  |  |
|  | Contact input (relay or switch) |  |  | Non-contact input (transistor) |  |  |
| NPN | ON : Shorted to 0 V (sourcing current: 1 mA max.). OFF: Open or shorted to Vcc. |  |  | ON: 1.5 V max. (sourcing current: 1 mA max.) OFF: Vcc-1.5 V to Vcc (leakage current: 0.1 mA max.) |  |  |
| PNP | ON: Shorted to Vcc (sinking current: 3 mA max.). OFF: Open or shorted to 0 V . |  |  | ON : Vcc-1.5 V to Vcc (sinking current: 3 mA max.) OFF: 1.5 V max. (leakage current: 0.1 mA max.) |  |  |

*2. Communications are disabled if the detection mode is selected during super-high-speed mode, and the communications functions for mutual interference prevention and the Mobile Console will not function.
*3. PNP output is as follows: Operate: $53 \mu \mathrm{~s}$, reset: $55 \mu \mathrm{~s}$.
*4. When counter is enabled: $80 \mu \mathrm{~s}$ for operate and reset respectively.
*5. When differential output is selected for the output setting, the second channel output is $200 \mu \mathrm{~s}$ for operation and reset respectively
*6. Mutual interference prevention can be used for only up to 6 Units if power tuning is enabled.
*7. Mutual interference prevention can be used for up to 5 Units ( 10 channels) if power tuning is enabled.

| Item Model |  | Advanced models |  |  |  | 2-channel models |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | External input models | Twin-output models | ATC function models E3X-DA $\square$ AT-S | Analog output models |  |
|  |  | E3X-DA $\square$ RM-S | E3X-DA $\square$ TW-S |  | E3X-DA $\square$ AN-S | E3X-MDA $\square$ |
| Functions | I/O setting | External input setting (Select from teaching, power tuning, zero reset, light OFF, or counter reset.) | Output setting (Select from channel 2 output, area output, or self-diagnosis.) | Output setting (Select from channel 2 output, area output, self-diagnosis output, or ATC error output) | Analog output setting (offset voltage adjustable) | Output setting (Select from channel 2 output, AND, OR, leading edge sync, falling edge sync, or differential output) |
| Display |  | Operation indicator (orange), Power Tuning indicator (orange) | Operation indicator for channel 1 (orange), Operation indicator for channel 2 (orange) |  | Operation indicator (orange), <br> Power Tuning indicator (orange) | Operation indicator for channel 1 (orange), Operation indicator for channel 2 (orange) |
| Digital display |  | Select from incident level + threshold or other 7 patterns | Select from incident level + threshold or other 6 patterns |  |  | Select from incident level for channel $1+$ incident level for channel 2 or other 7 patterns |
| Display orientation |  | Switching between normal/reversed display is possible. |  |  |  |  |
| Ambient illumination (Receiver side) |  | Incandescent lamp: 10,000 lux max.Sunlight: $\quad 20,000$ lux max. |  |  |  |  |
| Ambient temperature range |  | Operating: Groups of 1 to 2 Amplifiers: $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Groups of 3 to 10 Amplifiers: $-25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ Groups of 11 to 16 Amplifiers: $-25^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ |  |  |  |  |
|  |  | Storage: $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing or condensation) |  |  |  |  |
| Ambient humidity range |  | Operating and storage: $35 \%$ to $85 \%$ (with no condensation) |  |  |  |  |
| Insulation resistance |  | $20 \mathrm{M} \Omega$ min. (at 500 VDC$)$ |  |  |  |  |
| Dielectric strength |  | 1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute |  |  |  |  |
| Vibration resistance |  | Destruction: 10 to 55 Hz with a 1.5-mm double amplitude for 2 hrs each in $\mathrm{X}, \mathrm{Y}$ and Z directions |  |  |  |  |
| Shock resistance |  | Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in $\mathrm{X}, \mathrm{Y}$ and Z directions |  |  |  |  |
| Degree of protection |  | IEC 60529 IP50 (with Protective Cover attached) |  |  |  |  |
| Connection method |  | Pre-wired or amplifier unit connector |  |  |  |  |
| Weight (packed state) |  | Pre-wired model: Approx. 100 g , Amplifier unit connector model: Approx. 55 g |  |  |  |  |
| Materials | Case | Polybutylene terephthalate (PBT) |  |  |  |  |
|  | Cover | Polycarbonate (PC) |  |  |  |  |
| Accessories |  | Instruction manual |  |  |  |  |

## Amplifier Unit Connectors

| Item $\quad$ Model | E3X-CN11/21/22 | E3X-CN12 |
| :--- | :--- | :--- |
| Rated current | 2.5 A |  |
| Rated voltage | 50 V | $20 \mathrm{~m} \Omega$ max. (20 mVDC max., 100 mA max.) <br> (The figure is for connection to the Amplifier Unit and the adjacent Connec- <br> tor. It does not include the conductor resistance of the cable.) |
| Contact resistance |  |  |
| No. of insertions | Destruction: 50 times <br> (The figure for the number of insertions is for connection to the Amplifier Unit <br> and the adjacent Connector.) |  |
| Mate- <br> rials | Housing | Contacts |
|  | Polybutylene terephthalate (PBT) |  |
| Weight <br> (packed state) | Phosphor bronze/gold-plated nickel |  |

## Mobile Console

| Item $\quad$ Model | E3X-MC11-SV2 |
| :--- | :--- |
| Applicable <br> Sensors | E3X-DA-S <br> E3X-MDA <br> E3C-LDA <br> E2C-EDA |
| Power supply <br> voltage | Charged with AC adapter |
| Connection <br> method | Connected via adapter |
| Weight <br> (packed state) | Approx. 580 g (Console <br> only: 120 g ) |

Refer to Instruction Manual provided with the Mobile Console for details.

## Sensing Distance

## Through-beam Models

(Unit: mm)

| Type Model |  |  | E3X-DA■-S |  |  |  | E3X-MDA $\square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | High-resolution mode | Standard mode | Highspeed mode | Super-highspeed mode | High-resolution mode | Standard mode | Highspeed mode | Super-highspeed mode |
| Standard models | Flexible (new standard) | E32-T11R/E32-T12R/E32-T15XR/ E32-TC200BR(B4R) | 700 | 530 | 350 | 140 | 450 | 350 | 230 | 140 |
|  |  | E32-T14LR/E32-T15YR/E32-T15ZR | 270 | 210 | 130 | 50 | 170 | 130 | 85 | 50 |
|  |  | E32-T21R/E32-T22R/E32-T222R/ E32-T25XR/E32-TC200FR(F4R) | 160 | 130 | 75 | 30 | 100 | 75 | 50 | 30 |
|  |  | E32-T24R/E32-T25YR/E32-T25ZR | 60 | 50 | 25 | 10 | 35 | 27 | 18 | 10 |
|  | Standard | E32-TC200/E32-T12/E32-T15X/ E32-TC200B(B4) | 1,000 | 760 | 500 | 200 | 650 | 500 | 330 | 200 |
|  |  | E32-T14L/E32-T15Y/E32-T15Z | 600 | 460 | 300 | 120 | 390 | 300 | 200 | 120 |
|  |  | E32-TC200A | 900 | 680 | 450 | 180 | 580 | 450 | 300 | 180 |
|  |  | $\begin{aligned} & \text { E32-TC200E/E32-T22/E32-T222/ } \\ & \text { E32-T25X/E32-TC200F(F4) } \end{aligned}$ | 270 | 220 | 125 | 50 | 170 | 130 | 85 | 50 |
|  |  | E32-T24/E32-T25Y/E32-T25Z | 160 | 130 | 75 | 30 | 100 | 70 | 45 | 30 |
|  | Breakresistant | E32-T11/E32-T12B/E32-T15XB | 900 | 680 | 450 | 180 | 580 | 450 | 300 | 180 |
|  |  | E32-T21/E32-T221B/E32-T22B | 240 | 200 | 110 | 45 | 150 | 110 | 70 | 45 |
|  |  | E32-T25XB | 180 | 150 | 85 | 35 | 125 | 95 | 60 | 35 |
|  | Fluorine coating | E32-T11U | 900 | 680 | 450 | 180 | 580 | 450 | 300 | 180 |
| Specialbeam models | Longdistance, high power | E32-T17L | 20,000*1 | 20,000* | 10,000 | 4,000 | 13,000 | 10,000 | 6,500 | 4,000 |
|  |  | E32-TC200 + E39-F1 | 4,000*2 | 4,000*2 | 2,600 | 1,500 | 4,000 | 3,700 | 2,400 | 1,500 |
|  |  | E32-T11R + E39-F1 | 4,000*2 | 3,700 | 2,400 | 970 | 3,100 | 2,400 | 1,600 | 970 |
|  |  | E32-T11 + E39-F1 | 4,000*2 | 3,600 | 2,300 | 930 | 3,000 | 2,300 | 1,500 | 930 |
|  |  | E32-T14 | 4,000*2 | 3,400 | 2,250 | 900 | 2,900 | 2,200 | 1,450 | 900 |
|  |  | E32-T11L/E32-T12L | 1,700 | 1,330 | 870 | 350 | 1,100 | 870 | 580 | 350 |
|  |  | E32-T11L + E39-F2 | 910 | 800 | 500 | 180 | 600 | 520 | 340 | 180 |
|  |  | E32-T11R + E39-F2 | 520 | 400 | 250 | 100 | 330 | 260 | 170 | 100 |
|  |  | E32-T11 + E39-F2 | 820 | 660 | 430 | 160 | 530 | 430 | 280 | 160 |
|  |  | E32-T21L/E32-T22L | 540 | 440 | 250 | 100 | 340 | 260 | 170 | 100 |
|  | Ultracompact, ultrafine sleeve | E32-T223R | 160 | 130 | 75 | 30 | 110 | 85 | 55 | 30 |
|  |  | E32-T33-S5 | 53 | 44 | 25 | 10 | 35 | 28 | 18 | 10 |
|  |  | E32-T333-S5 | 12 | 10 | 6 | 4 | 8 | 6 | 5 | 4 |
|  |  | E32-T334-S5 | 6 | 5 | 3 | 2 | 4 | 3 | 2 | 2 |
|  | Fine beam | E32-T22S | 2,500 | 1,900 | 1,250 | 500 | 1,600 | 1,250 | 830 | 500 |
|  |  | E32-T24S | 1,750 | 1,300 | 870 | 350 | 1,100 | 870 | 580 | 350 |
|  | Area sensing | E32-T16PR | 1,100 | 840 | 560 | 220 | 730 | 560 | 370 | 220 |
|  |  | E32-T16P | 1,500 | 1,100 | 750 | 300 | 970 | 750 | 500 | 300 |
|  |  | E32-T16JR | 980 | 750 | 480 | 190 | 600 | 480 | 320 | 190 |
|  |  | E32-T16J | 1,300 | 1,000 | 650 | 260 | 800 | 650 | 430 | 260 |
|  |  | E32-T16WR | 1,700 | 1,300 | 850 | 340 | 1,100 | 860 | 570 | 340 |
|  |  | E32-T16W | 2,300 | 1,800 | 1,150 | 450 | 1,400 | 1,100 | 730 | 450 |
|  |  | E32-T16 | 3,700 | 2,800 | 1,850 | 740 | 2,400 | 1,800 | 1,200 | 740 |
|  |  | E32-M21 | 750 | 610 | 350 | 140 | 470 | 360 | 240 | 140 |

[^1]

* The optical fiber for the E32-T12F is 2 m long on each side, so the sensing distance is $4,000 \mathrm{~mm}$.


## Reflective Models

(Unit: mm)

| Model |  |  | E3X-DA■-S |  |  |  | E3X-MDA $\square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type |  |  | High-resoIution mode | Standard mode | Highspeed mode | Super-highspeed mode | High-resoIution mode | Standard mode | Highspeed mode | Super-highspeed mode |
| Standard models | Flexible (new standard) | $\begin{aligned} & \text { E32-D11R/E32-D12R/E32-D15XR/ } \\ & \text { E32-DC200BR(B4R) } \end{aligned}$ | 300 | 170 | 120 | 50 | 170 | 120 | 80 | 50 |
|  |  | E32-D14LR | 80 | 45 | 30 | 14 | 45 | 33 | 22 | 14 |
|  |  | E32-D15YR/E32-D15ZR | 70 | 40 | 26 | 12 | 40 | 29 | 19 | 12 |
|  |  | E32-D211R/E32-D21R/E32-D22R/ E32-D25XR/E32-DC200FR(F4R) | 50 | 30 | 20 | 8 | 30 | 22 | 14 | 8 |
|  |  | E32-D24R | 26 | 15 | 10 | 4 | 15 | 10 | 6 | 4 |
|  |  | E32-D25YR/E32-D25ZR | 14 | 8 | 5 | 2 | 8 | 5 | 3.3 | 2 |
|  | Standard | $\begin{aligned} & \text { E32-DC200/E32-D15X/ } \\ & \text { E32-DC200B(B4) } \end{aligned}$ | 500 | 300 | 200 | 90 | 300 | 210 | 130 | 90 |
|  |  | E32-D12 | 400 | 230 | 160 | 70 | 230 | 160 | 100 | 70 |
|  |  | E32-D14L | 200 | 110 | 80 | 36 | 110 | 80 | 50 | 36 |
|  |  | E32-D15Y/E32-D15Z | 170 | 100 | 65 | 30 | 100 | 70 | 45 | 30 |
|  |  | $\begin{aligned} & \text { E32-D211/E32-DC200E/E32-D22/ } \\ & \text { E32-D25X/E32-DC200F(F4) } \end{aligned}$ | 130 | 80 | 50 | 22 | 80 | 55 | 35 | 22 |
|  |  | E32-D24 | 50 | 30 | 20 | 8 | 30 | 22 | 14 | 8 |
|  |  | E32-D25Y/E32-D25Z | 35 | 20 | 12 | 6 | 20 | 14 | 9 | 6 |
|  | Breakresistant | E32-D11/E32-D15XB | 300 | 170 | 120 | 50 | 170 | 125 | 80 | 50 |
|  |  | E32-D21B/E32-D221B | 110 | 70 | 45 | 20 | 70 | 50 | 30 | 20 |
|  |  | E32-D21/E32-D22B | 50 | 30 | 20 | 8 | 30 | 22 | 14 | 8 |
|  |  | E32-D25XB | 85 | 50 | 30 | 15 | 50 | 35 | 23 | 15 |
|  | Fluorine coating | E32-D11U | 300 | 170 | 120 | 50 | 170 | 125 | 80 | 50 |


| Type |  |  | E3X-DA■-S |  |  |  | E3X-MDA $\square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | High-resolution mode | Standard mode | Highspeed mode | Super-highspeed mode | Highreso lution mode | Standard mode | Highspeed mode | Super-highspeed mode |
| Specialbeam models | Long distance, high power | E32-D16 | $\begin{aligned} & 40 \text { to } \\ & 1,000 \end{aligned}$ | $\begin{gathered} 40 \text { to } \\ 700 \end{gathered}$ | $\begin{gathered} 40 \text { to } \\ 450 \end{gathered}$ | $\begin{gathered} 40 \text { to } \\ 240 \end{gathered}$ | $\begin{aligned} & 40 \text { to } \\ & 600 \end{aligned}$ | $\begin{gathered} 40 \text { to } \\ 490 \end{gathered}$ | $\begin{gathered} 40 \text { to } \\ 300 \end{gathered}$ | $\begin{gathered} 40 \text { to } \\ 240 \end{gathered}$ |
|  |  | E32-D11L | 650 | 400 | 260 | 110 | 400 | 270 | 180 | 110 |
|  |  | E32-D21L/E32-D22L | 210 | 130 | 80 | 35 | 130 | 85 | 55 | 35 |
|  | Ultracompact, ultrafine sleeve | E32-D33 | 25 | 16 | 10 | 4 | 16 | 10 | 6 | 4 |
|  |  | E32-D331 | 5 | 3 | 2 | 0.8 | 3 | 2 | 1.3 | 0.8 |
|  | Coaxial/small spot | E32-CC200R | 250 | 150 | 100 | 45 | 150 | 105 | 65 | 45 |
|  |  | E32-CC200 | 500 | 300 | 200 | 90 | 300 | 210 | 140 | 90 |
|  |  | E32-D32L | 250 | 150 | 100 | 45 | 150 | 100 | 65 | 45 |
|  |  | E32-C31/E32-D32 | 120 | 75 | 50 | 22 | 75 | 50 | 30 | 22 |
|  |  | E32-C42 + E39-F3A | Spot diameter variable in the range 0.1 to 0.6 mm at distances in the range 6 to 15 mm . |  |  |  |  |  |  |  |
|  |  | E32-D32 + E39-F3A | Spot diameter variable in the range 0.5 to 1 mm at distances in the range 6 to 15 mm . |  |  |  |  |  |  |  |
|  |  | E32-C41 + E39-F3A-5 | $0.1-\mathrm{mm}$ dia. spot at a distance of 7 mm . |  |  |  |  |  |  |  |
|  |  | E32-C31 + E39-F3A-5 | $0.5-\mathrm{mm}$ dia. spot at a distance of 7 mm . |  |  |  |  |  |  |  |
|  |  | E32-C41 + E39-F3B | $0.2-\mathrm{mm}$ dia. spot at a distance of 17 mm . |  |  |  |  |  |  |  |
|  |  | E32-C31 + E39-F3B | $0.5-\mathrm{mm}$ dia. spot at a distance of 17 mm . |  |  |  |  |  |  |  |
|  |  | E32-C31 + E39-F3C | Spot diameter of 4 mm max. at distances in the range 0 to 20 mm . |  |  |  |  |  |  |  |
|  | Area sensing | E32-D36P1 | 250 | 150 | 100 | 45 | 150 | 100 | 65 | 45 |
|  | Retroireflective | E32-R21 + E39-R3 (provided) | 10 to 250 |  |  |  |  |  |  |  |
|  |  | E32-R16 + E39-R1 (provided) | 150 to 1,500 |  |  |  |  |  |  |  |
|  | Convergentreflective | E32-L25/E32-L25A | 3.3 |  |  |  |  |  |  |  |
|  |  | E32-L24S | 0 to 4 |  |  |  |  |  |  |  |
|  |  | E32-L24L | 2 to 6 (center 4) |  |  |  |  |  |  |  |
|  |  | E32-L25L | 5.4 to 9 (center 7.2) |  |  |  |  |  |  |  |
|  |  | E32-L86 | 4 to 10 |  |  |  |  |  |  |  |
| Environ-mentresistant models | Heatresistant | E32-D51 | 400 | 230 | 160 | 72 | 230 | 165 | 110 | 72 |
|  |  | $\begin{aligned} & \text { E32-D81R-S } \\ & \text { E32-D61-S } \end{aligned}$ | 150 | 90 | 60 | 27 | 90 | 63 | 40 | 27 |
|  |  | E32-D73-S | 100 | 60 | 40 | 18 | 60 | 40 | 25 | 18 |
|  | Chemicalresistant | E32-D12F | 160 | 95 | 65 | 30 | 95 | 70 | 45 | 30 |
|  |  | E32-D14F | 70 | 40 | 30 | 10 | 40 | 28 | 18 | 10 |

## Application-specific Models

(Unit: mm)

| Type |  |  | E3X-DA】-S |  |  |  | E3X-MDA $\square$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | High-resolution mode | Standard mode | Highspeed mode | Super-highspeed mode | High-resolution mode | Standard mode | Highspeed mode | Super-highspeed mode |
| Applica-tionspecific models | Label detection | E32-G14 | 10 |  |  |  |  |  |  |  |
|  |  | E32-T14 | 4,000* | 3,400 | 2,250 | 900 | 2,900 | 2,200 | 1,450 | 900 |
|  | Liquid-level detection | E32-L25T | Applicable tube: Transparent tube with a diameter in the range 8 to 10 mm and a recommended wall thickness of 1 mm |  |  |  |  |  |  |  |
|  |  | E32-D36T | Applicable tube: Transparent tube (no restriction on diameter) |  |  |  |  |  |  |  |
|  |  | E32-A01 | Applicable tube: Transparent tube with a diameter of $3.2,6.4$, or 9.5 mm and a recommended wall thickness of 1 mm |  |  |  |  |  |  |  |
|  |  | E32-A02 | Applicable tube: Transparent tube with a diameter in the range 6 to 13 mm and a recommended wall thickness of 1 mm |  |  |  |  |  |  |  |
|  |  | E32-D82F1(F2) | Liquid-contact model |  |  |  |  |  |  |  |
|  | Glasssubstrate alignment | E32-L16-N | 0 to 15 |  |  | 0 to 12 | 0 to 15 |  |  | 0 to 12 |
|  |  | E32-A08 | 10 to 20 |  |  | --- | 10 to 20 |  |  | --- |
|  |  | E32-A07E1(E2) | 15 to 25 |  |  | --- | 15 to 25 |  |  | --- |
|  |  | E32-L66 | 5 to 18 |  | 5 to 16 | --- | 5 to 18 |  | 5 to 14 | --- |
|  | Glasssubstrate Mapping | E32-A09/E32-A09H | 15 to 38 |  |  | --- | 15 to 38 |  |  | --- |
|  |  | E32-A09H2 | 20 to 30 |  |  | --- | 20 to 30 |  |  | --- |
|  | Wafer mapping | E32-A03/E32-A03-1 | 1,150 | 890 | 600 | 250 | 750 | 580 | 380 | 250 |
|  |  | E32-T24S | 1,750 | 1,300 | 870 | 350 | 1,100 | 870 | 580 | 350 |
|  |  | E32-A04/E32-A04-1 | 460 | 340 | 225 | 100 | 300 | 220 | 145 | 100 |

[^2]Green, Blue, and Infrared Light Sources
(Unit: mm)

| Type Model |  |  | E3X-DAG $\square$-S/DAB $\square$-S |  |  |  | E3X-DAH $\square$-S |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | High-resoIution mode | Standard mode | Highspeed mode | Super-highspeed mode | High-resolution mode | Standard mode | Highspeed mode | Super-highspeed mode |
| Throughbeam models | Standard | E32-T11R/E32-T12R/E32-T15XR/ E32-TC200BR(B4R) | 65 | 50 | 35 | 30 | 280 | 190 | 130 | 55 |
|  |  | E32-T14LR/E32-T15YR/E32-T15ZR | 25 | 20 | 22 | 12 | 100 | 75 | 80 | 21 |
|  |  | $\begin{aligned} & \text { E32-TC200/E32-T12/E32-T15X/ } \\ & \text { E32-TC200B(B4) } \end{aligned}$ | 100 | 75 | 50 | 45 | 400 | 280 | 180 | 80 |
|  |  | E32-T14L/E32-T15Y/E32-T15Z | 50 | 40 | 30 | 25 | 240 | 160 | 110 | 45 |
|  | Special beam | E32-T11L/E32-T12L | 150 | 120 | 85 | 75 | 700 | 490 | 320 | 140 |
| Reflective models | Standard | $\begin{aligned} & \text { E32-D11R/E32-D12R/E32-D15XR/ } \\ & \text { E32-DC200BR(B4R) } \end{aligned}$ | 17 | 14 | 10 | 8 | 120 | 90 | 60 | 21 |
|  |  | E32-D14LR | 4.4 | 3.5 | 2.5 | 2.2 | 32 | 24 | 16 | 5.5 |
|  |  | E32-D15YR/E32-D15ZR | 4.2 | 3.3 | 2.2 | 2.1 | 28 | 20 | 13 | 5 |
|  |  | $\begin{aligned} & \text { E32-DC200/E32-D15X/ } \\ & \text { E32-DC200B(B4) } \\ & \hline \end{aligned}$ | 32 | 25 | 16 | 16 | 200 | 150 | 100 | 35 |
|  |  | E32-D14L | 11 | 9 | 6 | 5.5 | 80 | 60 | 40 | 14 |
|  |  | E32-D15Y/E32-D15Z | 10 | 8 | 5.5 | 5 | 65 | 50 | 33 | 11 |
|  | Special beam | E32-D11L | 44 | 35 | 22 | 22 | 260 | 190 | 130 | 45 |
|  |  | E32-CC200R | 15 | 12 | 8 | 7.5 | 100 | 75 | 50 | 17 |
|  |  | E32-CC200 | 32 | 25 | 16 | 16 | 200 | 150 | 100 | 35 |
|  |  | E32-D32L | 15 | 12 | 8 | 7.5 | 100 | 75 | 50 | 17 |
|  |  | E32-C31/E32-D32 | 7.5 | 6 | 4 | 3.5 | 50 | 37 | 25 | 8.5 |
| Applica-tionspecific models | Label detection | E32-T14 | 320 | 260 | 220 | 160 | 1,800 | 1,200 | 820 | 360 |
|  |  | E32-G14 | 10 |  |  |  | 10 |  |  |  |

Refer to E32 Series for details on Fiber Units.

Output Circuit Diagrams
NPN Output

\begin{tabular}{|c|c|c|c|c|}
\hline Model \& Operation mode \& Timing charts \& Operation selector \& Output circuit \\
\hline \begin{tabular}{l}
E3X-DA11-S \\
E3X-DA6-S \\
E3X-DAG11-S \\
E3X-DAG6-S \\
E3X-DAB11-S \\
E3X-DAB6-S \\
E3X-DA11SE-S \\
E3X-DA6SE-S
\end{tabular} \& Light-ON

Dark-ON \&  \& | LIGHT ON (L-ON) |
| :--- |
| DARK ON (D-ON) | \&  <br>

\hline | E3X-DA11TW-S |
| :--- |
| E3X-DA6TW-S |
| E3X-MDA11 |
| E3X-MDA6 |
| E3X-DA11AT-S |
| E3X-DA6AT-S | \& Light-ON

Dark-ON \&  \& | LIGHT ON (L-ON) |
| :--- |
| DARK ON (D-ON) | \&  <br>

\hline E3X-DA11RM-S E3X-DA6RM-S \& Light-ON

Dark-ON \&  \& | LIGHT ON (L-ON) |
| :--- |
| DARK ON (D-ON) | \&  <br>

\hline E3X-DA11AN-S \& Light-ON

Dark-ON \&  \& | LIGHT ON (L-ON) |
| :--- |
| DARK ON (D-ON) | \&  <br>

\hline | Note: 1. The ON/OFF DADTW-S a LIGHT ON: channels 1 a DARK ON: O channels 1 a |
| :--- |
| 2. Timing Chart | \& ions when area follows: when the incide when the incid Timer Functio \& | settings are used with the E3X |
| :--- |
| level is between the threshol |
| level is between the thresho |
| Settings (T: Set Time) | \& \& 3. Control Output (AND, OR, Sync) and Timing Chart for Timer Settings (T: Set Time) <br>

\hline
\end{tabular}

PNP Output

\begin{tabular}{|c|c|c|c|c|}
\hline Model \& Operation mode \& Timing chart \& Operation selector \& Output circuit <br>
\hline $$
\begin{aligned}
& \text { E3X-DA41-S } \\
& \text { E3X-DA8-S } \\
& \text { E3X-DAG41-S } \\
& \text { E3X-DAG8-S } \\
& \text { E3X-DAB41-S } \\
& \text { E3X-DAB8-S } \\
& \text { E3X-DA41SE-S } \\
& \text { E3X-DA8SE-S }
\end{aligned}
$$ \& Light-ON

Dark-ON \&  \& | LIGHT ON (L-ON) |
| :--- |
| DARK ON (D-ON) | \&  <br>

\hline $$
\begin{aligned}
& \text { E3X-DA41TW-S } \\
& \text { E3X-DA8TW-S } \\
& \text { E3X-MDA41 } \\
& \text { E3X-MDA8 } \\
& \text { E3X-DA41AT-S } \\
& \text { E3X-DA8AT-S }
\end{aligned}
$$ \& Light-ON

Dark-ON \&  \& | LIGHT ON (L-ON) |
| :--- |
| DARK ON (D-ON) | \&  <br>

\hline $$
\begin{aligned}
& \text { E3X-DA41RM-S } \\
& \text { E3X-DA8RM-S }
\end{aligned}
$$ \& Light-ON

Dark-ON \&  \& | LIGHT ON (L-ON) |
| :--- |
| DARK ON (D-ON) | \&  <br>

\hline E3X-DA41AN-S \& Light-ON

Dark-ON \&  \& | LIGHT ON (L-ON) |
| :--- |
| DARK ON (D-ON) | \&  <br>

\hline
\end{tabular}

Note: The ON/OFF regions when areas settings are used with the E3X-DA $\square$ TW-S are as follows:
LIGHT ON: ON when the incident level is between the thresholds for channels 1 and 2 .
DARK ON: OFF when the incident level is between the thresholds for channels 1 and 2 .

Nomenclature

## Amplifier Units



E3X-DA $\square$ TW-S
E3X-DA $\square A T-S$
E3X-MDA $\square$


## Safety Precautions

## Refer to Warranty and Limitations of Liability.

## WARNING

This product is not designed or rated for ensuring safety of persons either directly or indirectly. Do not use it for such purposes.

## Precautions for Correct Use

Do not use the product in atmospheres or environments that exceed product ratings.

## Amplifier Unit <br> - Designing

## Operation after Turning Power ON

The Sensor is ready to detect within 200 ms after the power supply is turned ON. If the Sensor and load are connected to separate power supplies, be sure to turn ON the Sensor first.

## - Mounting

## Connecting and Disconnecting Connectors

## Mounting Connectors

1. Insert the Master or Slave Connector into the Amplifier Unit until it clicks into place.

2. Attach the protector seals (provided as accessories) to the sides of master and slave connectors that are not connected.


Note: Attach the seals to the sides with grooves.

## Removing Connectors

1. Slide the slave Amplifier Unit(s) for which the Connector is to be removed away from the rest of the group.
2. After the Amplifier Unit(s) has been separated, press down on the lever on the Connector and remove it. (Do not attempt to remove Connectors without separating them from other Amplifier Units first.)


Adding and Removing Amplifier Units

## Adding Amplifier Units

1. Mount the Amplifier Units one at a time onto the DIN track.

2. Slide the Amplifier Units together, line up the clips, and press the Amplifier Units together until they click into place.


Removing Amplifier Units
Slide Amplifier Units away from each other, and remove from the DIN track one at a time. (Do not attempt to remove Amplifier Units from the DIN track without separating them first.)

Note: 1 . The specifications for ambient temperature will vary according to the number of Amplifier Units used together. For details, refer to Ratings and Specifications.
2. Always turn OFF the power supply before joining or separating Amplifier Units.

## Mounting the End Plate (PFP-M)

An End Plate should be used if there is a possibility of the Amplifier Unit moving, e.g., due to vibration. If a Mobile Console is going to be mounted, connect the End Plate in the direction shown in the following diagram.


## Mounting the Mobile Console Head

Leave a gap of at least 20 mm between the nearest Amplifier Unit and the Mobile Console head.


## Fiber Connection

The E3X Amplifier Unit has a lock button for easy connection of the Fiber Unit. Connect or disconnect the fibers using the following procedures:

## 1. Connection

Open the protective cover, insert the fibers according to the fiber insertion marks on the side of the Amplifier Unit, and lower the lock lever.


Fibers with E39-F9 Attachment


## Fibers That Cannot Be Free-Cut (with Sleeves)



## 2. Disconnecting Fibers

Remove the protective cover and raise the lock lever to pull out the fibers.


Note: 1. To maintain the fiber properties, confirm that the lock is released before removing the fibers
2. Be sure to lock or unlock the lock button within an ambient temperature range between $-10^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.

- Adjusting


## Mutual Interference Protection Function

There may be some instability in the digital display values due to light from other sensors. If this occurs, decrease the sensitivity (i.e., decrease the power or increase the threshold) to perform stable detection.

## EEPROM Writing Error

If the data is not written to the EEPROM correctly due to a power failure or static-electric noise, initialize the settings with the keys on the Amplifier Unit. ERR/EEP will flash on the display when a writing error has occurred.

## Optical Communications

Several Amplifier Units can be slid together and used in groups. Do not, however, slide the Amplifier Units or attempt to remove any of the Amplifier Units during operation.

## - Others

## Protective Cover

Always keep the protective cover in place when using the Amplifier Unit.

## Mobile Console

Use the E3X-MC11-SV2 Mobile Console for the E3X-DA-S-series Amplifier Units.

## Amplifier Units



Amplifier Units with Connectors
E3X-DA6-S
E3X-DA8-S
E3X-DAG6-S
E3X-DAG8-S
E3X-DAB6-S
E3X-DAB8-S
E3X-DA6RM-S
E3X-DA8RM-S
E3X-DA6TW-S
E3X-DA8TW-S
E3X-DA6SE-S
E3X-DA8SE-S
E3X-DA6AT-S
E3X-DA8AT-S

## E3X-MDA6


(E3X-DA $\square$-S) (E3X-MDA $\square$


With Mounting Bracket Attached


1 The Mounting Bracket can also be used on this side.



## Amplifier Unit Connectors




Refer to E32 Series for details on Fiber Units.

## Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

## Warranty and Limitations of Liability

## WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

## LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

## Application Considerations

## SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

## Disclaimers

## CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products

## DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

## PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

## ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.


[^0]:    1. Greatly reduced wiring work
    2. Improved space usability due to the unnecessity of relay connectors
    3. Simple stock management due to the unnecessity of distinction between master and slave for amplifiers
[^1]:    *1. The optical fiber for the E32-T17L is 10 m long on each side, so the value is $20,000 \mathrm{~mm}$
    *2. The optical fiber is 2 m long on each side, so the sensing distance is $4,000 \mathrm{~mm}$.

[^2]:    * The optical fiber for the E32-T14 is 2 m long on each side, so the sensing distance is $4,000 \mathrm{~mm}$.

