Bi-Directional Solid State Relay

TELEDYNE RELAYS

Part Number Relay Description

C60	Solid State Relay, Terminals for Through Hole Mount
SC60	Solid State Relay, Terminals For Surface Mount

ELECTRICAL SPECIFICATIONS

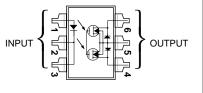
(25°C UNLESS OTHERWISE SPECIFIED)

INPUT (CONTROL) SPECIFICATIONS (See Note 1)

Parameter	Min	Max	Units
Control Voltage Range (See Figure 1)		1.5	Vdc
Input Current (See Figure 1 and Notes 1, 7)		50	mA
Input Current (Guaranteed On), (See Figure 4 and Note 7)			mA
Turn-Off Voltage (Guaranteed Off)		0.8	Vdc
Reverse Voltage Protection		-6	Vdc

OUTPUT (LOAD) SPECIFICATIONS (See Figure 2 And Note 2)

Parameter Min Max Min Max Units Load Voltage Rating $C60-10$ 60 ± 100 ± 100 ± 100 ± 100 C60-30 200 ± 200 ± 200 ± 200 ± 200 ± 200 ± 200 C60-40 400 ± 400 ± 400 ± 400 ± 400 C40-40 400 ± 400 ± 400 ± 400 ± 400 Output Current Rating $C60-10$ 2.5 ± 1.25 ± 0.50 ± 0.50 C60-40 0.5 ± 0.25 ± 0.25 ± 0.25 ± 0.25 On Resistance $C60-10$ 0.07 0.28 ± 0.50 ± 0.50 (See Note 6) $C60-20$ 0.2 0.7 ± 0.50 ± 0.50 ± 0.50 Leakage Current at Maximum Voltage 2.0 1.0 μAdc μAdc Turn-On Time @ 10 mA $C60-10$ 4.0 4.0 ± 0.50 ± 0.50 ± 0.50 ± 0.50 ± 0.50 ± 0.5		Part Number	DC		Bi-Dire			
$ \begin{array}{ c c c c c } \label{eq:loss} \begin{tabular}{ c c c c } \hline C60-20 & 100 & \pm 100 \\ \hline C60-30 & 200 & \pm 200 \\ \hline C60-30 & 200 & \pm 200 \\ \hline C60-40 & 400 & \pm 400 \\ \hline \hline C60-40 & 400 & \pm 400 \\ \hline \hline C60-20 & 1.5 & \pm 1.25 \\ \hline C60-20 & 1.5 & \pm 0.75 \\ \hline C60-30 & 1.0 & \pm 0.50 \\ \hline \hline C60-40 & 0.5 & \pm 0.25 \\ \hline \hline C60-40 & 0.5 & \pm 0.25 \\ \hline \hline C60-40 & 0.7 & 0.28 \\ \hline \hline C60-20 & 0.2 & 0.7 \\ \hline \hline C60-30 & 0.45 & 1.8 \\ \hline \hline C60-40 & 1.0 & 4.0 \\ \hline \hline C60-40 & 1.0 & 4.0 \\ \hline \hline Leakage Current at Maximum Voltage & 2.0 & 1.0 \\ \hline Leakage Current at Maximum Voltage & 2.0 & 1.0 \\ \hline Iurn-On Time @ 10 mA \\ \hline C60-20 & 3.0 & 3.0 \\ \hline Turn-Off Time & \hline \hline C60-10 & 4.0 & 4.0 \\ \hline \hline C60-20,-30,-40 & 3.0 & 3.0 \\ \hline \hline Turn-Off Time & \hline \hline C60-10 & 4.0 & 4.0 \\ \hline \hline C60-20,-30,-40 & 3.0 & 3.0 \\ \hline \hline C60-20 & 500 & 250 \\ \hline \hline C60-30 & 400 & 200 \\ \hline \hline \hline \hline C60-30 & 400 & 200 \\ \hline \hline \hline \ Dielectric Strength & 10^9 & 10^9 & Ohms \\ \hline \hline Dielectric Strength & 1500 & 1500 \\ \hline \hline \ Vac \\ \hline \eep (Input to Output) & 3.0 & 3.0 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Parameter		Min	Max	Min	Max	Units	
$ \begin{array}{ c c c c c c } \mbox{Load Voltage Rating} & \hline \hline C60-30 & 200 & \pm 200 \\ \hline \hline C60-40 & 400 & \pm 400 \\ \hline \hline C60-40 & 400 & \pm 400 \\ \hline \hline C60-40 & 2.5 & \pm 1.25 \\ \hline \hline C60-20 & 1.5 & \pm 0.75 \\ \hline \hline C60-30 & 1.0 & \pm 0.50 \\ \hline \hline C60-40 & 0.5 & \pm 0.25 \\ \hline \hline C60-40 & 0.5 & \pm 0.25 \\ \hline \hline C60-40 & 0.7 & 0.28 \\ \hline \hline C60-20 & 0.2 & 0.7 \\ \hline \hline C60-30 & 0.45 & 1.8 \\ \hline \hline C60-40 & 1.0 & 4.0 \\ \hline \hline C60-40 & 1.0 & 4.0 \\ \hline \hline Leakage Current at Maximur Voltage & 2.0 & 1.0 \\ \hline Iurn-On Time @ 10 mA \\ (See Figure 4 and Note 7) & \hline \hline C60-10 & 4.0 & 4.0 \\ \hline \hline Turn-Off Time & \hline \hline C60-10 & 4.0 & 4.0 \\ \hline \hline Turn-Off Time & \hline \hline C60-10 & 4.0 & 4.0 \\ \hline \hline \hline C60-20,-30,-40 & 3.0 & 3.0 \\ \hline \hline \hline C60-20,-30,-40 & 3.0 & 3.0 \\ \hline \hline \hline Output Capacitance & \hline \hline \hline C60-10 & 1000 & 500 \\ \hline \hline \hline C60-20 & 500 & 250 \\ \hline \hline \hline C60-30 & 400 & 200 \\ \hline \hline$		C60-10		60		±60		
$\frac{C60-30}{C60-40} = \frac{200}{400} \pm 200}{\frac{1200}{C60-40}}$ Output Current Rating $\frac{C60-10}{C60-20} = \frac{1.5}{1.25} \pm 1.25}{C60-20} = \frac{1.5}{1.25} \pm 1.25}{C60-30} = \frac{1.0}{1.0} \pm 0.75}{C60-30} = \frac{1.0}{1.0} \pm 0.75}{C60-30} = \frac{1.0}{1.0} \pm 0.75}{C60-40} = \frac{1.5}{1.25} \pm 0.25}$ On Resistance (See Note 6) $\frac{C60-10}{C60-20} = \frac{0.2}{0.2} = 0.7}{C60-30} = \frac{0.45}{1.8}}{C60-40} = \frac{0.45}{1.0} = \frac{0.45}{1.8}}{C60-40} = \frac{0.45}{1.8}}{C60-10} = \frac{0.45}{1.8}}{C60-10}{C60-20} = \frac{0.45}{1.8}}{C60-10}{C60-20}{$	Lood Valtage Dating	C60-20		100		±100	- Vdc	
$\begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline C60-10 & 2.5 & \pm 1.25 \\ \hline C60-20 & 1.5 & \pm 0.75 \\ \hline C60-30 & 1.0 & \pm 0.50 \\ \hline \hline C60-40 & 0.5 & \pm 0.25 \\ \hline \hline C60-40 & 0.5 & \pm 0.25 \\ \hline \hline C60-10 & 0.07 & 0.28 \\ \hline \hline C60-20 & 0.2 & 0.7 \\ \hline \hline C60-30 & 0.45 & 1.8 \\ \hline \hline C60-40 & 1.0 & 4.0 \\ \hline \hline C60-40 & 1.0 & 4.0 \\ \hline \hline Leakage Current at Maximum Voltage & 2.0 & 1.0 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	Load voltage Rating	C60-30		200		±200		
$ \begin{array}{ c c c c c c } Output Current Rating & \hline C60-20 & 1.5 & \pm 0.75 \\ \hline C60-30 & 1.0 & \pm 0.50 \\ \hline C60-40 & 0.5 & \pm 0.25 \\ \hline C60-40 & 0.5 & \pm 0.25 \\ \hline C60-10 & 0.07 & 0.28 \\ \hline C60-20 & 0.2 & 0.7 \\ \hline C60-30 & 0.45 & 1.8 \\ \hline C60-40 & 1.0 & 4.0 \\ \hline C60-40 & 1.0 & 4.0 \\ \hline Leakage Current at Maximum Voltage & 2.0 & 1.0 & \mu Adc \\ \hline Iurn-On Time @ 10 mA \\ (See Figure 4 and Note 7) & \hline C60-10 & 4.0 & 4.0 \\ \hline C60-20,-30,-40 & 3.0 & 3.0 \\ \hline Turn-Off Time & \hline C60-10 & 4.0 & 4.0 \\ \hline C60-20,-30,-40 & 3.0 & 3.0 \\ \hline Turn-Off Time & \hline C60-10 & 4.0 & 4.0 \\ \hline C60-20,-30,-40 & 3.0 & 3.0 \\ \hline Output Capacitance & \hline C60-10 & 1000 & 500 \\ \hline C60-30 & 400 & 200 \\ \hline C60-30 & 400 & 200 \\ \hline C60-30 & 400 & 200 \\ \hline C60-40 & 400 & 200 \\ \hline Isolation (Input to Output) & 10^9 & 10^9 & Ohms \\ \hline Dielectric Strength & 1500 & 1500 & Vac \\ \hline Capacitance (Input to Output) & 3.0 & 3.0 & pF \\ \hline \end{array} $		C60-40		400		±400		
Output Current Rating $C60-30$ 1.0 ± 0.50 Adc C60-40 0.5 ± 0.25 ± 0.25 ± 0.25 On Resistance (See Note 6) C60-20 0.2 0.7 $Ohms$ C60-30 0.45 1.8 $Ohms$ $Ohms$ C60-40 1.0 4.0 Adc Leakage Current at Maximum Voltage 2.0 1.0 μAdc Turn-On Time @ 10 mA C60-10 4.0 4.0 ms Geb Figure 4 and Note 7) C60-10 4.0 4.0 ms Turn-Off Time C60-10 4.0 4.0 ms Output Capacitance C60-10 4.0 4.0 ms Output Capacitance C60-10 1000 500 $c60$ $c60-20$ $c60-20$ $c60-20$ $c60-20$ pF Output Capacitance C60-30 400 200 pF pF Solation (Input to Output) 10^9 10^9 Ohms $Dielectric Strength$ 1500 Vac </td <td></td> <td>C60-10</td> <td></td> <td>2.5</td> <td></td> <td>±1.25</td> <td rowspan="4">- Adc</td>		C60-10		2.5		±1.25	- Adc	
$\frac{\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Output Current Pating	C60-20		1.5		±0.75		
$\begin{array}{c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		C60-30		1.0		±0.50		
$ \begin{array}{c c c c c c c } On \ {\rm Resistance} & \hline C60-20 & 0.2 & 0.7 \\ \hline C60-30 & 0.45 & 1.8 \\ \hline C60-40 & 1.0 & 4.0 \\ \hline \\ \hline \\ Leakage \ Current at \ {\rm Maximum \ Voltage} & 2.0 & 1.0 \\ (See \ {\rm Figure \ 4 \ and \ Note \ 7)} & \hline \\ \hline \\ \hline \\ C60-10 & 4.0 & 4.0 \\ \hline \\ \hline \\ C60-20, -30, -40 & 3.0 & 3.0 \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline$		C60-40		0.5		±0.25		
$\begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \hline \end{tabular} \\ \hline \end{tabular} (See Note 6) & \hline \end{tabular} \hline \end{tabular} \\ \hline \end{tabular} Leakage Current at Maximum Voltage & 2.0 & 1.0 & \mu Adc \\ \hline \end{tabular} \\ \hline \end{tabular} Leakage Current at Maximum Voltage & 2.0 & 1.0 & \mu Adc \\ \hline \end{tabular} \\ \hline \end{tabular}$		C60-10		0.07		0.28	- Ohms -	
$ \begin{array}{ c c c c c c } \hline (See Note 6) & \hline C60-30 & 0.45 & 1.8 \\ \hline C60-40 & 1.0 & 4.0 \\ \hline \hline C60-10 & 4.0 & 4.0 \\ \hline \hline C60-20, -30, -40 & 3.0 & 3.0 \\ \hline \hline Turn-Off Time & \hline C60-10 & 4.0 & 4.0 \\ \hline \hline C60-20, -30, -40 & 3.0 & 3.0 \\ \hline \hline Turn-Off Time & \hline \hline C60-10 & 4.0 & 4.0 \\ \hline \hline C60-20, -30, -40 & 3.0 & 3.0 \\ \hline \hline C60-20, -30, -40 & 3.0 & 3.0 \\ \hline \hline C60-20 & 500 & 250 \\ \hline \hline C60-20 & 500 & 250 \\ \hline \hline C60-30 & 400 & 200 \\ \hline \hline \hline C60-40 & 400 & 200 \\ \hline \hline \hline Isolation (Input to Output) & 10^9 & 10^9 & Ohms \\ \hline \hline Dielectric Strength & 1500 & 1500 & Vac \\ \hline \hline \hline \hline Capacitance (Input to Output) & 3.0 & 3.0 & pF \\ \hline \end{array} $		C60-20		0.2		0.7		
Leakage Current at Maximum Voltage 2.0 1.0 μ Adc Turn-On Time @ 10 mA (See Figure 4 and Note 7) C60-10 4.0 4.0 ms Turn-Off Time C60-10 4.0 4.0 ms Turn-Off Time C60-10 4.0 4.0 ms C60-20,-30,-40 3.0 3.0 3.0 ms C60-20,-30,-40 3.0 3.0 3.0 ms C60-10 4.0 4.0 4.0 ms C60-20,-30,-40 3.0 3.0 3.0 ms Output Capacitance C60-10 1000 500 250 C60-30 400 200 pF PF Isolation (Input to Output) 10 ⁹ 10 ⁹ Ohms Dielectric Strength 1500 1500 Vac Capacitance (Input to Output) 3.0 3.0 3.0 pF	(See Note 6)	C60-30		0.45		1.8		
$ \begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline Turn-On Time @ 10 mA \\ \hline (See Figure 4 and Note 7) \hline \hline C60-10 & 4.0 & 4.0 \\ \hline C60-20,-30,-40 & 3.0 & 3.0 \\ \hline \end{tabular} \\ \hline tabula$		C60-40		1.0		4.0		
$\frac{(\text{See Figure 4 and Note 7})}{(\text{See Figure 4 and Note 7})} } \frac{(\text{C60-20,-30,-40})}{(\text{C60-20,-30,-40})} \frac{3.0}{3.0} = \frac{3.0}{3.0} \text{ms}}{1000} \frac{1000}{1000} \frac{1000}{100} \frac{1000}{1000} \frac{1000}{100} 100$	Leakage Current at Maximu	um Voltage		2.0		1.0	μAdc	
$ \begin{array}{c ccccc} (See \ \mbox{Figure 4 and Note 7}) & C60-20,-30,-40 & 3.0 & 3.0 \\ \hline \ \mbox{Turn-Off Time} & \hline C60-10 & 4.0 & 4.0 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		C60-10		4.0		4.0	- ms	
Turn-Off Time C60-20,-30,-40 3.0 3.0 ms C60-20,-30,-40 3.0 3.0 ms C60-10 1000 500 250 PF C60-30 400 200 PF Isolation (Input to Output) 10 ⁹ 10 ⁹ Ohms Dielectric Strength 1500 1500 Vac Capacitance (Input to Output) 3.0 3.0 PF	(See Figure 4 and Note 7)	C60-20,-30,-40		3.0		3.0		
$\begin{array}{c ccccc} C60-20,-30,-40 & 3.0 & 3.0 \\ \hline \\ C60-20 & 1000 & 500 \\ \hline \\ C60-20 & 500 & 250 \\ \hline \\ C60-30 & 400 & 200 \\ \hline \\ C60-40 & 400 & 200 \\ \hline \\ Isolation (Input to Output) & 10^9 & 10^9 & Ohms \\ \hline \\ Dielectric Strength & 1500 & 1500 & Vac \\ \hline \\ Capacitance (Input to Output) & 3.0 & 3.0 & pF \\ \hline \end{array}$	Turn-Off Time	C60-10		4.0		4.0	- ms	
$\begin{array}{ c c c c c }\hline & C60-20 & 500 & 250 \\ \hline C60-30 & 400 & 200 \\ \hline C60-40 & 400 & 200 \\ \hline & & & & & \\ \hline \\ Isolation (Input to Output) & 10^9 & 10^9 & Ohms \\ \hline \\ Dielectric Strength & 1500 & 1500 & Vac \\ \hline \\ Capacitance (Input to Output) & 3.0 & 3.0 & pF \\ \hline \\ \hline \end{array}$		C60-20,-30,-40		3.0		3.0		
Output Capacitance $C60-30$ 400 200 pF C60-40400200 10^9 0^{9} OhmsIsolation (Input to Output) 10^9 10^9 0^{9} Vac Dielectric Strength15001500 Vac Capacitance (Input to Output) 3.0 3.0 pF		C60-10		1000		500	- pF	
C60-30 400 200 C60-40 400 200 Isolation (Input to Output) 10 ⁹ 10 ⁹ Ohms Dielectric Strength 1500 1500 Vac Capacitance (Input to Output) 3.0 3.0 pF	Output Capacitance	C60-20		500		250		
Isolation (Input to Output)109109OhmsDielectric Strength15001500VacCapacitance (Input to Output)3.03.0pF	Output Oupdollarioe	C60-30		400		200		
Dielectric Strength15001500VacCapacitance (Input to Output)3.03.0pF		C60-40		400		200		
Capacitance (Input to Output) 3.0 3.0 pF	Isolation (Input to Output)	10 ⁹		10 ⁹		Ohms		
	Dielectric Strength		1500		1500		Vac	
Junction Temperature (T _J) 125 125 °C	Capacitance (Input to Output)			3.0		3.0	pF	
	Junction Temperature (T_J)		125		125	°C		

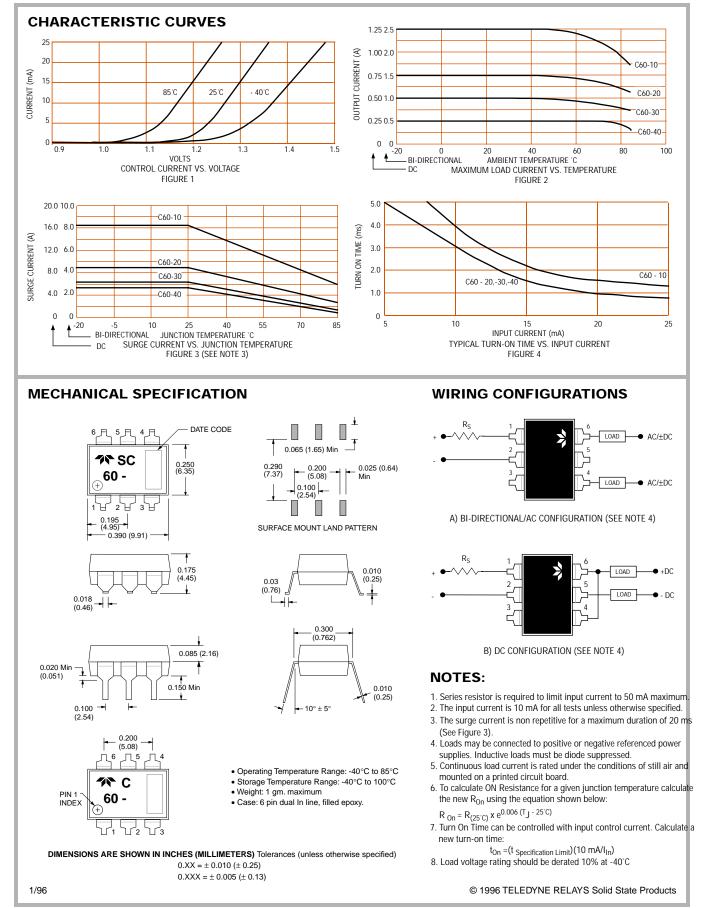

FEATURES/BENEFITS

- Power FET output with Very Low On Resistance - Virtually no offset with very low leakage and voltage drop.
- Optical Isolation Isolates control elements from load transients. Eliminates ground loops and signal ground noise.
- Three Terminal Output -Output FETs can be paralleled externally to change current load rating.
- Floating Output Allows for high and low side switching.
- Switches High Voltages and Currents - Voltages to 400 Vdc. Current to 2.5 Adc. Bi-directional, DC, or AC.
- High Noise Immunity -Control circuit cannot be triggered by output switching noise.
- 6 Pin Mini-DIP Package -Standard or surface mount available.

DESCRIPTION

The C60 series solid state relay is an advanced design capable of switching very heavy loads in a physically small 6 pin mini DIP package. These relays have a power FET output that ensures low On resistance, no offset voltage and low leakage current. They are versatile and can be used to switch AC, Bidirectional or DC loads. Optical isolation ensures complete protection of signal lines, power and ground bus and control circuits from switching

BLOCK DIAGRAM



C60 Series

OPTICALLY ISOLATED 0.5 to 2.5 A

TELEDYNE RELAYS

C60 Series

