PRELIMINARY DATA SHEET

LASER DIODE NX8508 Series

1 470 TO 1 610 nm InGaAsP MQW-DFB LASER DIODE COAXIAL MODULE FOR 2.5 Gb/s, CWDM

DESCRIPTION

The NX8508 Series is a 1 470 to 1 610 nm Multiple Quantum Well (MQW) structured Distributed Feed-Back (DFB) laser diode coaxial module with an internal optical isolator.

These devices are ideal for 2.5 Gb/s CWDM application.

FEATURES

· Internal optical isolator

· Peak emission wavelength $\lambda_p = 1470$ to 1610 nm (Based on CWDM)

· Optical output power

• Operating case temperature range

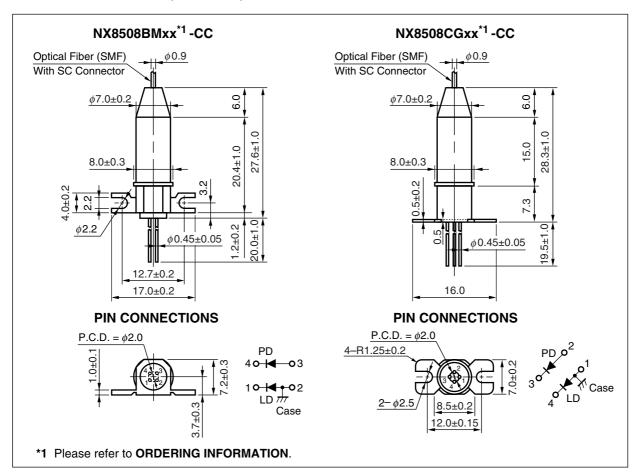
 $Tc = -20 \text{ to } +85^{\circ}C$

• Side mode suppression ratio

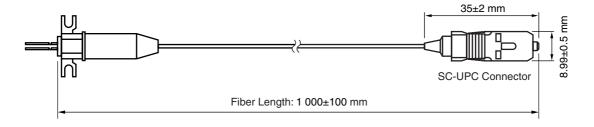
SMSR = 40 dB

 $P_f = 2.0 \text{ mW}$

• InGaAs monitor PIN-PD


· With SC-UPC connector

Based on Telcordia reliability


The information in this document is subject to change without notice. Before using this document, please confirm that Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

★ PACKAGE DIMENSIONS (UNIT : mm)

OPTICAL FIBER CHARACTERISTICS

Parameter	Specification	Unit
Mode Field Diameter	9.5±1	μm
Cladding Diameter	125±2	μm
Maximum Cladding Noncircularity	2	%
Maximum Core/Cladding Concentricity	1.6	%
Outer Diameter	0.9±0.1	mm
Cut-off Wavelength	1 100 to 1 270	nm
Minimum Fiber Bending Radius	30	mm
Fiber Length	1 000±100	mm
Flammability	UL1581 VW-1	

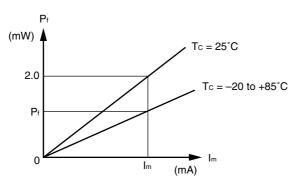
ORDERING INFORMATION

Part Number	Flange Type	Available Connector	
NX8508BMxx-CC	Flat Mount Flange	With SC-UPC Connector	
NX8508CGxx-CC	Vertical Mount Flange		

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Optical Output Power from Fiber	Pf	5	mW
Forward Current of LD	lF	150	mA
Reverse Voltage of LD	VR	2.0	٧
Forward Current of PD	lF	2.0	mA
Reverse Voltage of PD	VR	15	٧
Operating Case Temperature	Tc	-20 to +85	ç
Storage Temperature	T _{stg}	-40 to +85	ç
Lead Soldering Temperature	Tsld	350 (3 sec.)	°C
Relative Humidity (noncondensing)	RH	85	%

★ ELECTRO-OPTICAL CHARACTERISTICS (Tc = -20 to +85°C, unless otherwise specified)


	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Optical Output Power from Fiber	Pf	CW, $T_{C} = 25^{\circ}C$, $I_{F} = I_{th} + 20 \text{ mA}$		2.0		mW
	Operating Voltage	Vop	CW, P _f = 2.0 mW		1.1	1.6	V
	Threshold Current	Ith	Tc = 25°C		10	20	mA
*						50	
	Differential Efficiency	η d	P _f = 2.0 mW, T _C = 25°C	0.07	0.1		W/A
			P _f = 2.0 mW	0.04			
*	Peak Emission Wavelength	λ_{P}	CW, P _f = 2.0 mW, T _C = 35°C	λ _p –2	${\lambda_p}^{\star 1}$	λ _p +2	nm
	Temperature Dependence of Peak Emission Wavelength	Δλ/ΔΤ	CW	0.08	0.10	0.12	nm/°C
	Side Mode Suppression Ratio	SMSR	P _f = 2.0 mW	30	40		dB
	Rise Time	t r	20-80%, P _f = 2.0 mW			100	ps
	Fall Time	t f	80-20%, P _f = 2.0 mW			150	ps
	Monitor Current	Im	$V_R = 1.5 \text{ V}, P_f = 1.0 \text{ mW}$	100	500	1 000	μΑ
*	Monitor Dark Current	lσ	V _R = 1.5 V, T _C = 25°C		0.1	10	nA
*			V _R = 1.5 V		10	100	
	Tracking Error 2	γ	I _m = const.	-1.0		1.0	dB

^{*1} Available Available for CWDM Wavelengths based on ITU-T recommendations λ_p = 1 470, 1 490, 1 510, 1 530, 1 550, 1 570, 1 590, 1 610 nm Please refer to **Table A**.

★ Table A: CWDM wavelength code (@ Tc = 35°C)

Wavelength Code	MIN. (nm)	MIN. (nm) TYP. (nm)	
47	1 468	1 470	1 472
49	1 488	1 490	1 492
51	1 508	1 510	1 512
53	1 528	1 530	1 532
55	1 548	1 550	1 552
57	1 568	1 570	1 572
59	1 588	1 590	1 592
61	1 608	1 610	1 612

★ *2 Tracking Error: γ

$$\gamma = \left| 10 \log \frac{P_f}{2.0} \right| [dB]$$

DFB-LD FAMILY

		Maximum ings	Electro-Optical Characteristics (Tc = 25°C)				
Part Number	Tc (°C)	T _{stg} (°C)	I _{th} (mA)	P _f (mW)	λ _p (nm)	Application	Package
			TYP.	MIN.	TYP.		
NX8300BE-CC NX8300CE-CC	0 to +75	-40 to +85	15	2*1	1 310	2.5 Gb/s: STM-16 (S-16.1, L-16.1)	Coaxial
NX8303BG-CC NX8303CG-CC	-10 to +85	-40 to +85	15	2*1	1 310	622 Mb/s: STM-4 (L-4.1)	Coaxial
NX8304BE-CC NX8304CE-CC	-40 to +85	-40 to +85	15	2*1	1 310	For fiberoptic communications	Coaxial
NX8503BG-CC	-10 to +85	-40 to +85	15	2*1	1 550	156 Mb/s: STM-1 (L-1.2, L-1.3)	Coaxial
NX8503CG-CC						622 Mb/s: STM-4 (L-4.2, L-4.3)	
NX8504BE-CC NX8504CE-CC	-10 to +85	-40 to +85	15	2*1	1 550	622 Mb/s: STM-4 (L-4.2, L-4.3)	Coaxial
NX8508 Series	-20 to +85	-40 to +85	10	2*1	λ _p *2	2.5 Gb/s: CWDM	Coaxial
NX8509 Series	-20 to +85	-40 to +85	10	2*1	1 550	2.5 Gb/s: STM-16 (L-16.2)	Coaxial
NX8562 Series	-20 to +70	-40 to +85	20	20	1 550 ⁻³	CW Light Source for external modulator	BFY
NX8563 Series	-20 to +70	-40 to +85	20	10	1 550 ^{*3}	CW Light Source for external modulator	BFY
NX8563LA Series	-20 to +85	-40 to +85	20	10	1 550 ^{*3}	2.5 Gb/s: DWDM	BFY
NX8570SA/SCxxx-BA	-20 to +70	-40 to +85	20	20	1 550 ^{'3}	CW Light Source with λ monitoring PD single channel wavelength, 50 GHz-spacing	BFY
NX8570SA/SCxxxD-BA	-20 to +70	-40 to +85	20	20	1 550 ^{'3}	CW Light Source with λ monitoring PD 4 channel wavelength tunable capability for 50 GHz-spacing	BFY
NX8570SCxxxQ-BA	-20 to +70	-40 to +85	20	20	1 550 ^{'3}	CW Light Source with λ monitoring PD 8 channel wavelength tunable capability for 50 GHz-spacing	BFY
NX8571SA/SCxxx-BA	-20 to +70	-40 to +85	20	10	1 550 ^{*3}	CW Light Source with λ monitoring PD single channel wavelength, 50 GHz-spacing	BFY
NX8571SA/SCxxxD-BA	-20 to +70	-40 to +85	20	10	1 550 ^{*3}	CW Light Source with λ monitoring PD 4 channel wavelength tunable capability for 50 GHz-spacing	BFY
NX8571SCxxxQ-BA	-20 to +70	-40 to +85	20	10	1 550 ^{'3}	CW Light Source with λ monitoring PD 8 channel wavelength tunable capability for 50 GHz-spacing	BFY

^{*1} TYP.

Available for CWDM Wavelengths based on ITU-T recommendations $\lambda_p=1\ 470,\ 1\ 490,\ 1\ 510,\ 1\ 530,\ 1\ 550,\ 1\ 570,\ 1\ 590,\ 1\ 610\ nm$

[★] *2 Tc = 35°C

^{*3} Available for DWDM Wavelengths based on ITU-T recommendations also

REFERENCE

Document Name	Document No.
OPTICAL SEMICONDUCTOR DEVICES FOR FIBEROPTIC COMMUNICATIONS SELECTION GUIDE	PL10161E
Opto-Electronics Devices Pamphlet	PX10160E

NEC NX8508 Series

The information in this document is current as of March, 2004. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

NEC NX8508 Series

SAFETY INFORMATION ON THIS PRODUCT

SEMICONDUCTOR LASER

AVOID EXPOSURE-Invisible Laser Radiation is emitted from this aperture

Warning Laser Beam	A laser beam is emitted from this diode during operation. The laser beam, visible or invisible, directly or indirectly, may cause injury to the eye or loss of eyesight.
	Do not look directly into the laser beam.
	Avoid exposure to the laser beam, any reflected or collimated beam.
Caution GaAs Products	This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.
	• Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
	Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
	Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
	Do not burn, destroy, cut, crush, or chemically dissolve the product.
	Do not lick the product or in any way allow it to enter the mouth.
Caution Optical Fiber	A glass-fiber is attached on the product. Handle with care. When the fiber is broken or damaged, handle carefully to avoid injury from the damaged part or fragments.

▶ For further information, please contact

NEC Compound Semiconductor Devices, Ltd. http://www.ncsd.necel.com/

E-mail: salesinfo@ml.ncsd.necel.com (sales and general) techinfo@ml.ncsd.necel.com (technical)

5th Sales Group, Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579

NEC Compound Semiconductor Devices Hong Kong Limited

E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)

Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209

NEC Electronics (Europe) GmbH http://www.ee.nec.de/

TEL: +49-211-6503-0 FAX: +49-211-6503-1327

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279