Programmable Peripheral PSD3XX Family ### Field-Programmable Microcontroller Peripheral | Key Features | ☐ Single Chip Programmable Peripheral for Microcontroller-based Applications | |--------------|---| | | ☐ Wide Operating Voltage Range— Others: 4.5 to 5.5 volts | | | 19 Individually Configurable I/O pins that can be used as Microcontroller I/O port expansion Programmable Address Decoder (PAD) I/O Latched address output Open drain or CMOS | | | Two Programmable Arrays (PAD A and PAD B) Total of 40 Product Terms and up to 16 Inputs and 24 Outputs Address Decoding up to 1 MB Logic replacement of discrete PALs[®] | | | "No Glue" Microcontroller Chip-Set Built-in address latches for multiplexed address/data bus Non-multiplexed address/data bus mode ALE and Reset polarity programmable Selectable modes for read and write control bus as RD/WR or R/W/E | | | 256K to 2 MBits of UV EPROM (2 Mbit version is SRAMless) Configurable as 32, 64, 128 or 256K x 8 or as 16, 32, 64 or 128K x 16 Divides into 8 equal mappable blocks for optimized mapping Block resolution is 4K x 8 or 2K x 16 (PSD3X1) to 32K x 8 or 16K x 16 (PSD3X4R) As fast as 70 ns EPROM access time, including input latches and PAD address decoding. | | | 16 Kbit Static RAM (No SRAM on PSD3XXR versions) Configurable as 2K x 8 or as 1K x 16 As fast as 70 ns SRAM access time, including input latches and PAD address decoding | | | Built-in Page Logic (PSD3X2/3X3/3X4R)Expands the MCU address space up to sixteen 1 Mb pages | | | CMiser BitProgrammable option to further reduce power consumption | | | Address/Data Track Mode Enables easy Interface to Shared Resources (Mail Box SRAM) with other Microcontrollers or a Host Processor | | | Built-In Security Locks the device and PAD Decoding configuration | | | | Return to Main Menu For lower power operation refer to the ZPSD3XX product family. ## Key Features (Cont.) - Available in a Variety of Packaging - 44 Pin PLDCC, CLDCC, TQFP, CPGA, and PQFP - ☐ Simple Menu-Driven Software: Configure the PSD3XX on an IBM PC - ☐ PSD3XX standard versions are excellent for general purpose applications - □ PSD3XXR SRAMless versions result in lower cost - PSD3XX mass-programmable versions are ideal for code-stable, high-volume low cost applications #### PSD3XX Family Feature Summary | Part | PLD
Inputs/
Product
Terms | Ports | EPROM
Size | SRAM
Size | Configuration | Memory
Paging | C-Miser
Bit | Security
Bit | |---------------------|------------------------------------|-------|---------------|--------------|---------------|------------------|----------------|-----------------| | PSD301 [®] | 14/40 | 19 | 256 Kb | 16 Kb | x8 or x16 | | Х | Х | | PSD301R | 14/40 | 19 | 256 Kb | _ | x8 or x16 | | Х | Х | | PSD311 | 14/40 | 19 | 256 Kb | 16 Kb | x8 | | Х | Х | | PSD311R | 14/40 | 19 | 256 Kb | - | x8 | | Х | Х | | PSD302 | 18/40 | 19 | 512 Kb | 16 Kb | x8 or x16 | Х | Х | Х | | PSD302R | 18/40 | 19 | 512 Kb | _ | x8 or x16 | Χ | Х | Х | | PSD312 | 18/40 | 19 | 512 Kb | 16 Kb | x8 | Х | Х | Х | | PSD312R | 18/40 | 19 | 512 Kb | _ | x8 | Х | Х | Х | | PSD303 | 18/40 | 19 | 1 Mb | 16 Kb | x8 or x16 | Х | Х | Х | | PSD303R | 18/40 | 19 | 1 Mb | _ | x8 or x16 | Х | Х | Х | | PSD313 | 18/40 | 19 | 1 Mb | 16 Kb | x8 | Х | Х | Х | | PSD313R | 18/40 | 19 | 1 Mb | _ | x8 | Х | Х | Х | | PSD304R | 18/40 | 19 | 2 Mb | | x8 or x16 | Х | Х | Х | | PSD314R | 18/40 | 19 | 2 Mb | _ | x8 | Χ | Х | Х | ## Partial Listing of Microcontrollers Supported Motorola family: M6805, M68HC11, M68HC16, M68000/10/20, M60008, M683XX ☐ Intel family: 8031/8051, 8096/8098, 80186/88, 80196/98 ☐ Philips Semiconductors: SC80C451, SC80552 ☐ TI: SC80C451, TMS320C14 ☐ **Zilog**: Z8, Z80, Z180 ☐ National: HPC16000, HPC46400 ☐ Echelon: NEURON® 3150™ Chip Please refer to the revision block at the end of this document for updated information. | Applications | Computers (Notebook and Portable PCs)Fixed Disk Control, Modem, Imaging, Laser Printer Control | |--------------|--| | | Telecommunications Modem, Cellular Phone, Digital PBX, Digital Speech, FAX, Digital Signal Processing | | | Portable Industrial EquipmentMeasurement Instruments, Data Recorders | ■ Medical Instrumentation Monitoring Equipment, Diagnostic Tools #### Introduction The PSD3XX family is the market's first single-chip solution for microcontroller-based applications where criteria such as fast time-to-market, small form factor, and low power consumption are essential. When combined in an 8- or 16-bit system, virtually any microcontroller (68HC11, 8031/8051, 80186, etc.) and the PSD3XX device work together to create a very powerful chip-set solution. PSD products provide all the required control and peripheral elements needed in a microcontroller-based system with no external discrete "glue" logic required. The PSD3XX family comes complete with simple system software development tools for interfacing the PSD3XX with a microcontroller. Hosted on an IBM PC platform or compatible, the easy to use PSDsoft software enables the designer to quickly configure the device and use it immediately. PSD3XX standard versions are ideal for general purpose embedded control applications. **PSD3XXR** (SRAM-less) versions are optimized for designs that either require no on-chip SRAM or require large off-chip SRAMs for data storage. (SRAM-less versions were formerly identified by a "C1" suffix to the part number.) **PSD3XX** mass-programmable versions deliver the lowest cost PSD3XX solution. See your WSI Sales Representative for full details. Combinations of the above versions are available. See the ordering information section at the end of this data sheet. References in this document to PSD3XX versions include PSD3XX and PSD3XXR. References to PSD3XXR include any SRAM-less product (PSD3XXR). #### Product Description The PSD3XX family integrates high performance user-configurable blocks of EPROM, SRAM, and programmable logic. The major functional blocks include two programmable logic arrays, PAD A and PAD B, 256K to 2Mbit of EPROM, 16K bits of SRAM (no SRAM on PSD3XXR versions), input latches, and output ports. The PSD3XX family is ideal for applications requiring low power and very small form factors. These include hard disk control, modems, cellular telephones, instrumentation, computer peripherals, military and similar applications. The PSD3XX family offers a unique single-chip solution for microcontrollers that need: I/O reconstruction (microcontrollers lose at least two I/O ports when accessing external resources). More EPROM and SRAM than the microcontroller's internal memory. Chip-select, control, or latched address lines that are otherwise implemented discretely. An interface to shared external resources. Expanded microcontroller address space. WSI's PSD3XX Family Architecture (Figure 1) can efficiently interface with, and enhance, any low-voltage 8- or 16-bit microcontroller system. This is the first solution that provides WSI's PSD3XX Family Architecture (Figure 1) can efficiently interface with, and enhance, any low-voltage 8- or 16-bit microcontroller system. This is the first solution that provides microcontrollers with port expansion, latched addresses, page logic, two programmable logic arrays (PAD A and PAD B), an interface to shared resources, 256K, 512K, 1M, or 2Mbit EPROM, and 16K bit SRAM on a single chip. The PSD3XX family does not require any glue logic for interfacing to any 8- or 16-bit microcontroller. The 8051 microcontroller family can take full advantage of the PSD3XX's separate program and data address spaces. Users of the 68HCXX microcontroller family can change the functionality of the control signals and directly connect the R/W and E, or the R/W and DS signals. (Users of 16-bit microcontrollers, including the 80186, 8096, 80196 and 16XXX, can use the PSD301/302/303 in a 16-bit configuration). Address and data buses can be configured as separate or multiplexed, whichever is required by the host processor. The flexibility of the PSD3XX I/O ports permits interfacing to shared resources. The arbitration can be controlled internally by PAD A outputs. The user can assign the following functions to these ports: standard I/O pins, chip-select outputs from PAD A and PAD B, or latched address or multiplexed low-order address/data byte. This enables users to design add-on systems such as disk drives, modems, etc., that easily interface to the host bus (e.g., IBM PC, SCSI). The page register extends the accessible address space of certain microcontrollers from 64 K to 1 M. There are 16 pages that can serve as base address inputs to the PAD, thereby enlarging the address space of 16 address line microcontrollers by a factor of 16. Figure 1. PSD3XX Family Architecture #### Table 1. PSD3XX Pin Descriptions | Name | Туре | Description | | | | | |---|------
--|--|--|--|--| | BHE/PSEN
(PSD30X
Devices) | I | When the data bus width is 8 bits (CDATA = 0), this pin is \overline{PSEN} . In this mode, \overline{PSEN} is the active low EPROM read pulse. The SRAM and $\overline{I/O}$ ports read signal is generated according to the description of the WR/V _{PP} or R/W and $\overline{RD/E/DS}$ pins. If the host processor is a member of the 8031 family, \overline{PSEN} must be connected to the corresponding host pin. In other 8-bit host processors that do not have a special EPROM-only read strobe, \overline{PSEN} should be tied to V _{CC} . In this case, \overline{RD} or E and $\overline{R/W}$ provide the read strobe for the SRAM, I/O ports, and EPROM. When the data bus width is configured as 16 (CDATA = 1), this pin is \overline{BHE} . When \overline{BHE} is low, data bus bits $\overline{D8-D15}$ are read from, or written into, the $\overline{PSD3XX}$, depending on the operation being read or write, respectively. In programming mode, this pin is pulsed between $\overline{V_{PP}}$ and 0. | | | | | | PSEN
(PSD31X
Devices
Only) | - | The PSEN is the active low EPROM read pulse. The SRAM and I/O ports read signal is generated according to the description of the WR/V _{PP} or R/W, and RD/E pins. If the host processor is a member of the 8031 family, PSEN must be connected to the correspondinbg host pin. In other 8-bit host processors that do not have a special EPROM-only read strobe, PSEN should be tied to V _{CC} . In this case, RD or E and R/W provide the read strobe for the SRAM, I/O ports, and EPROM. | | | | | | WR/V _{PP}
or
R/W/V _{PP} | - | In the operating mode this pin's function is \overline{WR} (CRRWR = 0) or R/W (CRRWR = 1). When configured as R/W, the following tables summarize the read and write operations (CRRWR = 1): | | | | | | RD/E/DS
(Note 2) | I | The pin function depends on the CRRWR and CEDS configuration bits. If CRRWR = 0, \overline{RD} is an active low read pulse. When CRRWR = 1, this pin and the R/W pin define the following cycle type: If CEDS = 0, E is an active high strobe. If CEDS = 1, \overline{DS} is an active low strobe. | | | | | | or
RD/E
(Note 3) | - | low strobe. When configured as \overline{RD} (CRRWR = 0), this pin provides an active low \overline{RD} strobe. When configured as E (CRRWR = 1), this pin becomes an active high pulse, which, together with R/W defines the cycle type. Then, if R/W = 1 and E = 1, a read operation is executed. If R/W = 0 and E = 1, a write operation is executed. | | | | | **Legend:** The I/O column abbreviations are: I = input; I/O = input/output; P = power. **NOTE**: 1. All the configuration bits mentioned in Table 1 appear in parentheses and are explained in the Configuration Register section. - 2. PSD3X2/3X3/3X4R only. - 3. PSD3X1 only. # Table 1. PSD3XX Pin Descriptions (Cont.) | Name | Type | Description | |--|------|--| | A19/CSI | I | This pin has two configurations. When it is \overline{CSI} (A19/ \overline{CSI} = 0) and the pin is asserted high, the device is deselected and powered down. (See Tables 12 and 13 for the chip state during power-down mode.) If the pin is asserted low, the chip is in normal operational mode. When it is configured as A19, (A19/ \overline{CSI} = 1), this pin can be used as an additional input to the PAD. CADLOG3 = 1 (CATD = 1 for PSD3X1) defines the pin as an address; CADLOG3 = 0 (CATD = 0 for PSD3X1) defines it as a logic input. If it is an address, A19 can be latched with ALE (CADDHLT = 1) or be a transparent logic input (CADDHLT = 0). In this mode, there is no power-down capability. | | RESET | I | This user-programmable pin can be configured to reset on high level (CRESET = 1) or on low level (CRESET = 0). It should remain active for at least 100 ns. See Tables 10 and 11 for reset details. | | ALE
or
AS | - | In the multiplexed modes, the ALE pin functions as an Address Latch Enable or as an Address strobe and can be configured as an active high or active low signal. The ALE or AS trailing edge latches lines AD15/A15–AD0/A0 and A16–A19 in 16-bit mode (AD7/A7–AD0/A0 and A16–A19 in 8-bit mode) and BHE, depending on the PSD3XX configuration. See Table 8. In the non-multiplexed modes (PSD3X2/3X3), it can be used as a general-purpose logic input to the PAD. | | PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0 | I/O | PA7–PA0 is an 8-bit port that can be configured to track AD7/A7–AD0/A0 from the input (CPAF2 = 1). Otherwise (CPAF2 = 0), each bit can be configured separately as an I/O or lower-order latched address line. When configured as an I/O (CPAF1 = 0), the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data bit (which resides in the data register) comes out. When it is configured as a low-order address line (CPAF1 = 1), A7–A0 can be made the corresponding output through this port (e.g., PA6 can be configured to be the A6 address line). Each port bit can be a CMOS output (CPACOD = 0) or an open drain output (CPACOD = 1). When the chip is in non-multiplexed mode (CADDRAT = 0), the port becomes the data bus lines (D0–D7). See Figure 4. | | PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0 | I/O | PB7–PB0 is an 8-bit port for which each bit can be configured as an I/O (CPBF = 1) or chip-select output (CPBF = 0). Each port bit can be a CMOS output (CPBCOD = 0) or an open drain output (CPBCOD = 1). When configured as an I/O, the direction of the pin is defined by its direction bit, which resides in the direction register. If a pin is an I/O output, its data (which resides in the data register) comes out. When configured as a chip-select output, CS0–CS3 are a function of up to four product terms of the inputs to the PAD B; CS4–CS7 then are each a function of up to two product terms. On the PSD301/302/303, when the chip is in non-multiplexed mode (CADDRAT = 0) and the data bus width is 16 (CDATA = 1), the port becomes the data bus (D8–D15). See Figure 6. | #### Table 1. PSD3XX Pin Descriptions (Cont.) | Name | Type | Description | |--|------|--| | PC0
PC1
PC2 | I/O | This is a 3-bit port for which each bit is configurable as a PAD A and B input or output. When configured as an input (CPCF = 0),a bit individually becomes an address (CADLOG = 1 for PSD3X2/3X3, CATD = 1 for PSD3X1) or a logic input (CADLOG = 0 for PSD3X2/3X3, CATD = 0 for PSD3X1). The addresses can be latched with ALE (CADDHLT = 1) or be transparent inputs to the PADs (CADDHLT = 0). When a pin is configured as an output (CPCF = 1), it is a function of one product term of all PAD inputs. See Figure 7. | | AD0/A0
AD1/A1
AD2/A2
AD3/A3
AD4/A4
AD5/A5
AD6/A6
AD7/A7 | I/O | In multiplexed mode, these pins are the multiplexed low-order address/data byte. After ALE latches the addresses, these pins input or output data, depending on the settings of the RD/E (RD/E/DS on the PSD302/312/303/313), WR/V _{PP} or R/W, and BHE/PSEN pins. In non-multiplexed mode, these pins are the low-order address input. | | AD8/A8
AD9/A9
AD10/A10
AD11/A11
AD12/A12
AD13/A13
AD14/A14
AD15/A15 | I/O | In 16-bit multiplexed mode, these pins are the multiplexed high-order address/data byte. After ALE latches the addresses, these pins input or output data, depending on the settings of the RD/E or RD/E/DS, WR/V _{PP} or R/W, and BHE/PSEN pins. In all other modes, these pins are the high-order address input. | | GND | Р | V
_{SS} (ground) pin. | | V _{cc} | Р | Supply voltage input. | #### Operating Modes The PSD3XX's four operating modes enable it to interface directly to 8- and 16-bit microcontrollers with multiplexed and non-multiplexed address/data buses. These operating modes are: ☐ Multiplexed 8-bit address/data bus ☐ Multiplexed 16-bit address/data bus (PSD30X) ☐ Non-multiplexed address/data, 8-bit data bus ☐ Non-multiplexed 16-bit address/data bus (PSD30X) #### Multiplexed 8-bit Address/Data Bus This mode is used to interface to microcontrollers with an 8-bit data bus and a 16-bit or larger address bus. The address/data bus (AD0/A0–AD7/A7) is bi-directional and permits the latching of the address when the ALE signal is active. On the same pins, the data is read from or written to the device; this depends on the state of the RD/E or RD/E/DS pin, BHE/PSEN or PSEN pin and WR/V_{PP} or R/W pins. The high-order address/data bus (AD8/A8–AD15/A15) contains the high-order address bus byte. Ports A and B can be configured as in Table 2. #### Multiplexed 16-bit Address/Data Bus This mode is used to interface to microcontrollers with a 16-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is bi-directional and permits the latching of the address when the ALE signal is active. On the same pins, the data is read from or written to the device; this depends on the state of the $\overline{\text{RD}/\text{E}/\text{DS}}$, $\overline{\text{BHE}/\text{PSEN}}$, and $\overline{\text{WR}/\text{V}_{PP}}$ or $\overline{\text{R/W}}$ pins. The high-order address/data bus (AD8/A8–AD15/A15) is bi-directional and permits latching of the high-order address when the ALE signal is active on the same pins. The high-order data bus is read from or written to the device, depending on the state of the $\overline{\text{RD}/\text{E}/\text{DS}}$, $\overline{\text{BHE}/\text{PSEN}}$, and $\overline{\text{WR}/\text{V}_{PP}}$ or $\overline{\text{R/W}}$ pins. Ports A and B can be configured as in Table 2. #### Non-Multiplexed Address/Data, 8-bit Data Bus This mode is used to interface to non-multiplexed 8-bit microcontrollers with an 8-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is the low-order address input bus. The high-order address/data bus (AD8/A8–AD15/A15) (A8–A15 on the PSD31X) is the high-order address bus byte. Port A is the low-order data bus. Port B can be configured as shown in Table 2. #### Non-Multiplexed Address/Data, 16-bit Data Bus This mode is used to interface to non-multiplexed 16-bit microcontrollers with a 16-bit data bus and a 16-bit or larger address bus. The low-order address/data bus (AD0/A0–AD7/A7) is the low-order address input bus. The high-order address/data bus (AD8/A8–AD15/A15) is the high-order address bus byte. Port A is the low-order data bus. Port B is the high-order data bus. Table 2 summarizes the effect of the different operating modes on ports A, B, and the address/data pins. The configuration of Port C is independent of the four operating modes. #### Figure 2a. PSD3XX Port Configurations (x8/x16) Figure 2b. PSD31X Port Configurations (x8 Only) **Legend:** AD8–AD15 = Addresses A8–A15 multiplexed with data lines D8–D15. AD0–AD7 = Addresses A0–A7 multiplexed with data lines D0–D7. * = \overline{DS} is available on PSD3X2/3X3/3X4R only. Table 2. PSD30X Bus and Port Configuration Options | | Multiplexed Address/Data | Non-Multiplexed Address/Data | |-----------------|--|------------------------------| | 8-bit Data βus | | | | Port A | I/O or low-order address lines or low-order multiplexed address/data byte D0-D7 data bus byte | | | Port B | I/O and/or CS0-CS7 | I/O and/or CS0-CS7 | | AD0/A0-AD7/A7 | Low-order multiplexed address/data byte Low-order address bus by | | | AD8/A8-AD15/A15 | High-order multiplexed address data byte | High-order address bus byte | | 16-bit Data βus | | | | Port A | I/O or low-order address A lines or low-order multiplexed Low-order data bus be address/data byte | | | Port B | I/O and/or CS0-CS7 | High-order data bus byte | | AD0/A0-AD7/A7 | Low-order multiplexed address/data byte Low-order address bus by | | | AD8/A8-AD15/A15 | High-order multiplexed address/data byte High-order address bus by | | Table 2a. PSD31X Bus and Port Configuration Options | | Multiplexed Address/Data | Non-Multiplexed Address/Data | |----------------|---|------------------------------| | 8-bit Data Bus | | | | Port A | I/O or low-order address
lines or low-order multiplexed
address/data byte | D0-D7 data bus byte | | Port B | I/O and/or CS0-CS7 | I/O and/or CS0-CS7 | | AD0/A0-AD7/A7 | Low-order multiplexed address/data byte | Low-order address bus byte | | A8-A15 | High-order address bus byte | High-order address bus byte | #### Programmable Address Decoder (PAD) The PSD3XX consists of two programmable arrays referred to as PAD A and PAD B (Figure 3). PAD A is used to generate chip select signals derived from the input address to the internal EPROM blocks, SRAM, I/O ports, and Track Mode signals. All its I/O functions are listed in Table 3 and shown in Figure 3. PAD B outputs to Ports B and C for off-chip usage. PAD B can also be used to extend the decoding to select external devices or as a random logic replacement. The input bus to both PAD A and PAD B is the same. By using the PSDsoft Development Tools software, each programmable bit in the PAD array can have one of three logic states of 0, 1, and don't care (X). In a user's logic design, both PADs can share the same inputs, using the X for input signals that are not supposed to affect other functions. The PADs use reprogrammable CMOS EPROM technology and can be programmed and erased (if using windowed packages) by the user. ## Figure 3. PAD Description **NOTES:** 4. CSI is a power-down signal. When high, the PAD is in stand-by mode and all its outputs become non-active. See Tables 12 and 13. - 5. RESET deselects all PAD output signals. See Tables 10 and 11. - 6. A18, A17, and A16 are internally multiplexed with CS10, CS9, and CS8, respectively. Either A18 or CS10, A17 or CS9, and A16 or CS8 can be routed to the external pins of Port C. Port C can be configured as either input or output. - 7. P₀-P₃ are not included on PSD3X1 devices. - 8. DS is not available on PSD3X1 devices. # Table 3. PSD3XX PAD A and PAD B Functions | Function | | | | | |------------------------|--|--|--|--| | PAD A and PAD 8 Inputs | | | | | | A19/CSI | In CSI mode (when high), PAD deselects all of its outputs and enters a power-down mode (see Tables 12 and 13). In A19 mode, it is another input to the PAD. | | | | | A16–A18 | These are general purpose inputs from Port C. See Figure 3, Note 6. | | | | | A11–A15 | These are address inputs. | | | | | P0–P3 | These are page number inputs (for the PSD302/312/303/313 only). | | | | | RD/E/DS | This is the read pulse or enable strobe input. (Note 10) | | | | | WR or R/W | This is the write pulse or R/W select signal. | | | | | ALE | This is the ALE input to the chip. | | | | | RESET | This deselects all outputs from the PAD; it can not be used in product term equations. See Tables 10 and 11. | | | | | PAD A Outputs | | | | | | ES0-ES7 | These are internal chip-selects to the 8 EPROM banks. Each bank can be located on any boundary that is a function of one product term of the PAD address inputs. | | | | | RS0 | This is an internal chip-select to the SRAM. Its base address location is a function of one term of the PAD address inputs. (Not available on PSD3XXR versions). | | | | | CSIOPORT | This internal chip-select selects the I/O ports. It can be placed on any boundary that is a function of one product term of the PAD inputs. See Tables 6 and 7. | | | | | CSADIN | This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the input direction of Port A. CSADIN is gated externally to the PAD by the internal read signal. When CSADIN and a read operation are active, data presented on Port A flows out of AD0/A0–AD7/A7. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5. | | | | | CSADOUT1 | This internal chip-select, when Port A is configured as a low-order address/data bus in track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT1 is gated externally to the PAD by the ALE signal. When CSADOUT1 and the ALE signal are active, the address presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5. | | | | | CSADOUT2 | This internal chip-select, when Port A is configured as a low-order address/data bus in the track mode (CPAF2 = 1), controls the output direction of Port A. CSADOUT2 must include the write-cycle control signals as part of its product term. When CSADOUT2 is active, the data presented on AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on any boundary that is a function of one product term of the PAD inputs. See Figure 5. | | | | | PAD B Outputs | | | | | | CS0-CS3 | These chip-select outputs can be routed through Port B. Each of them is a function of up to four product terms of the PAD inputs. | | | | | CS4-CS7 | These chip-select outputs can be routed through Port B.
Each of them is a function of up to two product terms of the PAD inputs. | | | | | CS8-CS10 | These chip-select outputs can be routed through Port C. See Figure 3, Note 6. Each of them is a function of one product term of the PAD inputs. | | | | #### Configuration Bits The configuration bits shown in Table 4 are non-volatile cells that let the user set the device, I/O, and control functions to the proper operational mode. Table 5 lists all configuration bits. The configuration bits are programmed and verified during the programming phase. In operational mode, they are not accessible. These tables are for information only since to implement to a specific mode, the PSDsoft Development software will automatically set the configuration bits by using simple interactive menus. #### Table 4. PSD3XX Non-Volatile Configuration Bits | Use This Bit | То | | | |--------------------|--|--|--| | CDATA | Set the data bus width to 8 or 16 bits (PSD30X only). | | | | CADDRDAT | Set the address/data buses to multiplexed or non-multiplexed mode. | | | | CEDS | Determine the polarity and functionality of read and write. (Note 10) | | | | CA19/CSI | Set A19/CSI to CSI (power-down) or A19 input. | | | | CALE | Set the ALE polarity. | | | | CPAF2 | Set Port A either to track the low-order byte of the address/data multiplexed bus or to select the I/O or address option. | | | | CSECURITY | Set the security on or off (a secured part can not be duplicated). | | | | CRESET | Set the RESET polarity. | | | | COMB/SEP | Set $\overline{\text{PSEN}}$ and $\overline{\text{RD}}$ for combined or separate address spaces (see Figures 9 and 10). | | | | CPAF1
(8 Bits) | Configure each pin of Port A in multiplexed mode to be an I/O or address out. | | | | CPACOD
(8 Bits) | Configure each pin of Port A as an open drain or active CMOS pull-up output. | | | | CPBF
(8 Bits) | Configure each pin of Port B as an I/O or a chip-select output | | | | CPBCOD
(8 Bits) | Configure each pin of Port B as an open drain or active CMOS pull-up output. | | | | CPCF
(3 Bits) | Configure each pin of Port C as an address input or a chip-select output. | | | | CADDHLT | Configure pins A16 – A19 to go through a latch or to have their latch transparent. | | | | CADLOG
(4 Bits) | Configure A16 – A19 individually as logic or address inputs. (Note 10) | | | | CATD | Configure pins A16–A19 as PAD logic inputs or high-order address inputs (Note 9). | | | | CLOT | Determine in non-multiplexed mode if address inputs are transparent or latched (Note 10). | | | | CRRWR | Set the \overline{RD}/E and \overline{WR}/V_{PP} or R/\overline{W} pins to \overline{RD} and \overline{WR} pulse, or to E strobe and R/\overline{W} status (Note 9). | | | | CRRWR | Configure the polarity and control methods of read and write cycles. (Note 10) | | | | CMISER | Controls the lower-power mode. | | | NOTES: 9. PSD3X1 only. 10. PSD302/312/303/313/304R/314R only. This data sheet provides a complete listing of the function of each configuration bit in all control registers. In general, you will not need to be concerned about the details of most of these bits. The development software will set the bits automatically using information from your design files. Table 5. PSD3XX Configuration Bits 11,12 | Configuration | No. | Function Page 1981 | |----------------------------|---------|---| | βits | of Bits | | | CDATA
(Note 13) | 1 | 8-bit or 16-bit Data Bus Width
CDATA = 0 eight bits
CDATA = 1 sixteen bits | | CADDRDAT | 1 | ADDRESS/DATA Multiplexed (separate buses) CADDRDAT = 0, non-multiplexed CADDRDAT = 1, multiplexed | | CA19/CSI | 1 | A19 or \overline{CSI}
CA19/ \overline{CSI} = 0, enable power-down
CA19/ \overline{CSI} = 1, enable A19 input to PAD | | CALE | 1 | Active HIGH or Active LOW CALE = 0, Active high CALE = 1, Active low | | CRESET | 1 | Active high or active low CRESET = 0, active low reset signal CRESET = 1, active high reset signal | | COMB/SEP | 1 | Combined or Separate Address Space
for SRAM and EPROM
0 = Combined, 1 = Separate | | CPAF1 | 8 | Port A I/Os or A0-A7
CPAF1 = 0, Port A pin = I/O
CPAF1 = 1, Port A pin = A0 - A7 | | CPAF2 | 1 | Port A AD0-AD7 (address/data multiplexed bus) CPAF2 = 0, address or I/O on Port A (according to CPAF1) CPAF2 = 1, address/data multiplexed on Port A (track mode) | | CATD
(Note 15) | 1 | A16-A19 address or logic inputs CATD = 0, logic inputs CATD = 1, address inputs | | CADDHLT | 1 | A16-A19 Transparent or Latched CADDHLT = 0, Address latch transparent CADDHLT = 1, Address latched (ALE dependent) | | CSECURITY | 1 | SECURITY On/Off CSECURITY = 0, off CSECURITY = 1, on | | CLOT
(Note 14) | 1 | A0-A15 Address Inputs are transparent or
ALE-dependent in non-multiplexed modes
CLOT = 0, transparent
CLOT = 1, ALE-dependent | | CRRWR
CEDS
(Note 14) | 2 | Determine the polarity and control methods of read and write cycles. CEDS CRRWR 0 0 RD and WR active low pulses 0 1 R/W status and high E pulse 1 1 R/W status and low DS pulse | | CRRWR
(Note 15) | 1 | CRRWR = 0, \overline{RD} and \overline{WR} active low strobes CRRWR = 1, R/\overline{W} status and E active high pulse | | CPACOD | 8 | Port A CMOS or Open Drain Output CPACOD = 0, CMOS output CPACOD = 1, open-drain output | #### Table 5. PSD3XX Configuration Bits (Cont.) | Configuration
Bits | No.
of Bits | Function | |-----------------------|----------------|--| | CPBF | 8 | Port B is I/O or $\overline{\text{CS0}}$ – $\overline{\text{CS7}}$
CPBF = 0, Port B pin is $\overline{\text{CS0}}$ – $\overline{\text{CS7}}$
CPBF = 1, Port B pin is I/O | | CPBCOD | 8 | Port B CMOS or Open Drain
CPBCOD = 0, CMOS output
CPBCOD = 1, open-drain output | | CPCF | 3 | Port C A16–A18 or $\overline{CS8}$ – $\overline{CS10}$
CPCF = 0, Port C pin is A16–A18
CPCF = 1, Port C pin is $\overline{CS8}$ – $\overline{CS10}$ | | CADLOG
(Note 14) | 4 | Port C: A16-A19 Address or Logic Input
CADLOG = 0, Port C pin or A19/CSI is logic input
CADLOG = 1, Port C pin or A19/CSI is address input | | CMISER | 1 | Default: CMISER = 0
CMISER = 1, lower-power mode | NOTES: 11. The PSD Development software will guide the user to the proper configuration choice. - 12. In an unprogrammed or erased part, all configuration bits are 0. - 13. PSD30X only. - 14. PSD3X2/3X3 only. - 15. PSD3X1 only. #### **Port Functions** The PSD3XX has three I/O ports (Ports A, B, and C) that are configurable at the bit level. This permits great flexibility and a high degree of customization for specific applications. The following is a description of each port. Figure 4 shows the pin structure of Port A. #### Port A in Multiplexed Address/Data Mode The default configuration of Port A is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 4). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 4). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port A pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Tables 6 and 7. Alternatively, each bit of Port A can be configured as a low-order latched address bus bit. The address is provided by the port address latch, which latches the address on the trailing edge of ALE. PA0—PA7 can become A0—A7, respectively. This feature enables the user generate low-order address bits to access external peripherals or memory that require several low-order address lines. Another mode of Port A, i.e., Track Mode (CPAF2 = 1) sets the entire port to track the inputs AD0/A0–AD7/A7, depending on specific address ranges defined by the PAD's CSADIN, CSADOUT1, and CSADOUT2 signals. This feature lets the user interface the microcontroller to shared external resources without requiring external buffers and decoders. In this mode, the port is effectively a bi-directional buffer. The direction is controlled by using the input signals ALE, RD/E or RD/E/DS, WR/V_{PP} or R/W, and the internal PAD outputs CSADOUT1, CSADOUT2 and CSADIN (see Figure 5). When CSADOUT1 and ALE are true, the address on the input AD0/A0–AD7/A7 pins is output through Port A. (Carefully check the generation of CSADOUT1, and ensure that it is stable during the ALE pulse. When CSADOUT2 is active, a write operation is performed (see note to Figure 5). The data on the input AD0/A0–AD7/A7 pins flows out through Port A. When CSADIN and a read operation is performed (depending on the mode of the RD/E or RD/E/DS, and WR/V_{PP} or R/W pins), the data on Port A flows out through the AD0/A0–AD7/A7 pins. In this operational mode, Port A is tri-stated when none of the above-mentioned three conditions exist. #### Figure 4. Port A Pin Structure NOTE: 16. CMOS/OD determines whether the output is open drain or CMOS. #### Figure 5. Port A Track Mode **NOTE:** 17. The expression for CSADOUT2 must include the following write operation cycle signals: For CRRWR = 0, CSADOUT2 must include \overline{WR} = 0. For CRRWR = 1, CSADOUT2 must include E = 1 and R/W = 0. ## Port
Functions (Cont.) #### Port A in Non-Multiplexed Address/Data Mode In this mode, Port A becomes the low order data bus byte of the chip. When reading an internal location, data is presented on Port A pins. When writing to an internal location, data present on Port A pins is written to that location. #### Port B in Multiplexed Address/Data and in 8-Bit Non-Multiplexed Modes The default configuration of Port B is I/O. In this mode, every pin can be set as an input or output by writing into the respective pin's direction flip flop (DIR FF, in Figure 6). As an output, the pin level can be controlled by writing into the respective pin's data flip flop (DFF, in Figure 6). When DIR FF = 1, the pin is configured as an output. When DIR FF = 0, the pin is configured as an input. The controller can read the DIR FF bits by accessing the READ DIR register; it can read the DFF bits by accessing the READ DATA register. Port B pin levels can be read by accessing the READ PIN register. Individual pins can be configured as CMOS or open drain outputs. Open drain pins require external pull-up resistors. For addressing information, refer to Tables 6 and 7. Alternately, each bit of Port B can be configured to provide a chip-select output signal from PAD B. PB0–PB7 can provide CS0–CS7, respectively. Each of the signals CS0–CS3 is comprised of four product terms. Thus, up to four ANDed expressions can be ORed while deriving any of these signals. Each of the signals CS4–CS7 is comprised of two product terms. Thus, up to two ANDed expressions can be ORed while deriving any of these signals. #### Port B in 16-Bit Non-Multiplexed Address/Data Mode (PSD30X) In this mode, Port B becomes the high-order data bus byte of the chip. When reading an internal high-order data bus byte location, the data is presented on Port B pins. When writing to an internal high-order data bus byte location, data present on Port B is written to that location. See Table 9. #### Accessing the I/O Port Registers Tables 6 and 7 show the offset values with the respect to the base address defined by the CSIOPORT. They let the user access the corresponding registers. #### Port C in All Modes Each pin of Port C (shown in Figure 7) can be configured as an input to PAD A and PAD B or output from PAD B. As inputs, the pins are named A16–A18. Although the pins are given names of the high-order address bus, they can be used for any other address lines or logic inputs to PAD A and PAD B. For example, A8–A10 can also be connected to those pins, improving the boundaries of CS0–CS7 resolution to 256 bytes. As inputs, they can be individually configured to be logic or address inputs. A logic input uses the PAD only for Boolean equations that are implemented in any or all of the CS0–CS10 PAD B outputs. Port C addresses can be programmed to latch the inputs by the trailing edge ALE or to be transparent. Alternately, PC0–PC2 can become $\overline{CS8}-\overline{CS10}$ outputs, respectively, providing the user with more external chip-select PAD outputs. Each of the signals CS8–CS10 is comprised of one product term. #### ALE/AS and A0 – A15 in Non-Multiplexed Modes (PSD3X2/3X3) In non-multiplexed modes, A0-A15 are address inputs only and can become transparent (CLOT = 0) or ALE dependent (CLOT = 1). In transparent mode, the ALE/AS pin can be used as an additional logic input to the PADs. The non-multiplexed ALE dependent mode is useful in applications for which the host processor has a multiplex address/data bus and AD0/A0-AD7/A7 are not multiplexed with A0-A7 but rather are multiplexed with other address lines. In these applications, Port A serves as a data bus and each of its pins can be directly connected to the corresponding host's multiplexed pin, where that data bit is expected. (See Table 8.) Figure 6. Port & Pin Structure NOTE: 18. CMOS/OD determines whether the output is open drain or CMOS. Table 6. I/O Port Addresses in an 8-bit Data Bus Mode | Register Name | Byte Size Access of the I/O Port Registers Offset from the CSIOPORT | |------------------------------|---| | Pin Register of Port A | + 2 (accessible during read operation only) | | Direction Register of Port A | + 4 | | Data Register of Port A | + 6 | | Pin Register of Port B | + 3 (accessible during read operation only) | | Direction Register of Port B | + 5 | | Data Register of Port B | + 7 | | Page Register | +18 | Table 7. I/O Port Addresses in a 16-bit Data Bus Mode^{19,20} (PSD3OX) | Register Name | Word Size Access of the I/O Port Registers Offset from the CSIOPORT | |-------------------------------------|---| | Pin Register of Ports B and A | + 2 (accessible during read operation only) | | Direction Register of Ports B and A | + 4 | | Data Register of Ports B and A | + 6 | **NOTES:** 19. When the data bus width is 16, Port B registers can only be accessed if the BHE signal is low. I/O Ports A and B are still byte-addressable, as shown in Table 6. For I/O Port B register access, BHE must be low. ## Figure 7. Port C Structure **NOTES:** 21. The CADDHLT configuration bit determines if A18–A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe. - 22. PSD3X2/3X3/3X4R: Individual pins can be configured independently as address or logic inputs (CADLOG, bits 0-2). - PSD3X1: All Port C pins are either address or logic inputs (CATD). #### A16-A19 Inputs If one or more of the pins PC0, PC1 PC2 and $\overline{\text{CSI}}/\text{A19}$ are configured as inputs, the configuration bits CADDHLT and CATD define their functionality inside the part. CADDHLT determines if these inputs are to be latched by the trailing edge of the ALE or AS signal (CADDHLT = 1), or enabled into the PSD3XX at all times (CADDHLT = 0, transparent mode). CATD determines whether these lines are high-order address lines, that take part in the derivation of EPROM select signals inside the chip (CATD = 1), or logic input lines that have no impact on memory or I/O selections (CATD = 0). Logic input lines typically participate in the Boolean expressions implemented in the PAD B. Unused input pins should be tied to V_{CC} or GND. #### **EPROM** The EPROM has 8 banks of memory. Each bank can be placed in any address location by programming the PAD. Bank0–Bank7 is selected by PAD outputs ES0–ES7, respectively. | Device | EPROM
Size | | ROM
tecture | EPRON
Archit
(8) | · · | |---------|---------------|----------|----------------|-------------------------|---------| | | | х8 | x16 | х8 | x16 | | PSD301 | 256Kb | 32K x 8 | 16K x 16 | 4K x 8 | 2K x 16 | | PSD311 | 256Kb | 32K x 8 | _ | 4K x 8 | _ | | PSD302 | 512Kb | 64K x 8 | 32K x 16 | 8K x 8 | 4K x 16 | | PSD312 | 512Kb | 64K x 8 | _ | 8K x 8 | _ | | PSD303 | 1Mb | 128K x 8 | 64K x 16 | 16K x 8 | 8K x 16 | | PSD313 | 1Mb | 128K x 8 | _ | 16K x 8 | _ | | PSD304R | 2Mb | 256K x 8 | 128K x 16 | 32K x 8 | 16K x 8 | | PSD314R | 2Mb | 256K x 8 | _ | 32K x 8 | _ | #### **SRAM** Each PSD3XX device has 16K bits of SRAM (except the PSD3XXR versions which have no SRAM). Depending on the configuration of the data bus, the SRAM organization can be 2K x 8 (8-bit data bus) or 1K x 16 (16-bit data bus). The SRAM is selected by the RSO output of the PAD. Table 8. Signal Latch Status in All Operating Modes | Signal
Name | Configuration
Bits | Configuration
Mode | Signal Latch
Status | |---------------------|-----------------------------------|---|------------------------| | | CDATA , CADDRDAT, CLOT = 0 | 8-bit data, | Transparent | | | CDATA, CADDRDAT = 0, CLOT = 1 | non-multiplexed | ALE
Dependent | | | CDATA = 1, CADDRDAT, CLOT = 0 | 16-bit data, | Transparent | | AD8/A8–
AD15/A15 | CDATA = 1, CADDRDAT = 0, CLOT = 1 | non-multiplexed | ALE
Dependent | | | CDATA = 0, CADDRDAT = 1 | 8-bit data,
multiplexed | Transparent | | | CDATA = 1, CADDRDAT = 1 | 16-bit data,
multiplexed | ALE
Dependent | | | CADDRDAT = 0, CLOT = 0 | non-multiplexed | Transparent | | AD0/A0- | CADDRDAT = 0, CLOT = 1 | modes | ALE
Dependent | | AD7/A7 | CADDRDAT = 1 | multiplexed modes | ALE
Dependent | | | CDATA = 0 | 8-bit data,
PSEN is active | Transparent | | BHE/
PSEN | CDATA = 1, CADDRDAT = 0 | 16-bit data,
non-multiplexed
mode,
BHE is active | Transparent | | | CDATA = 1, CADDRDAT = 1 | 16-bit data,
multiplexed mode,
BHE is active | ALE
Dependent | | A19 and
PC2-PC0 | CADDHLT = 0 | A16-A19 can
become logic inputs | Transparent | | | CADDHLT = 1 | A16-A19 can
become
multiplexed
address lines | ALE
Dependent | Memory Paging (PSD3X2/3X3/ 3X4R) The page register consists of four flip-flops, which can be read from, or written to, through the I/O address space (CSIOPORT). The page register is connected to the D3–D0 lines. The Page Register address is CSIOPORT + 18H. The page register outputs are P3–P0, which are fed into the PAD. This enables the host microcontroller to enlarge its address space by a factor of 16 (there can be a maximum of 16 pages). See Figure 8. Figure 8. Page Register (PSD3X2/3X3/ 3X4R) #### **Control Signals** The PSD3XX control signals are WR/V_{PP} or R/W, RD/E or RD/E/DS, ALE or AS, BHE/PSEN or PSEN, RESET, and A19/CSI. Each of these signals can be configured to meet the output control signal requirements of various microcontrollers. #### WR/V_{PP} or R/W In operational mode, this signal can be configured as \overline{WR} or R/\overline{W} . As \overline{WR} , all write operations are activated by an active low signal on this pin. As R/\overline{W} , the pin operates with the E strobe of the $\overline{RD}/E/\overline{DS}$ or \overline{RD}/E pin. When R/\overline{W} is high, an active high signal on the $\overline{RD}/E/\overline{DS}$ or \overline{RD}/E pin performs a read operation. When
R/\overline{W} is low, an active high signal on the $\overline{RD}/E/\overline{DS}$ or \overline{RD}/E pin performs a write operation. #### RD/E/DS (or RD/E on PSD3X1) In operational mode, this signal can be configured as RD, E, or DS. As RD, all read operations are activated by an active low signal on this pin. As E, the pin operates with the R/\overline{W} signal of the \overline{WR}/V_{PP} or R/\overline{W} pin. When R/\overline{W} is high, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a read operation. When R/\overline{W} is low, an active high signal on the $\overline{RD}/E/\overline{DS}$ pin performs a write operation. As \overline{DS} , the pin functions with the R/ \overline{W} signal as an active low data strobe signal. As \overline{DS} , the R/ \overline{W} defines the mode of operation (Read or Write). #### ALE or AS ALE polarity is programmable. When programmed to be active high, a high on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The falling edge of ALE locks the information into the latches. When ALE is programmed to be active low, a low on the pin causes the input address latches, Port A address latches, Port C, and A19 address latches to be transparent. The rising edge of ALE locks the appropriate information into the latches. #### BHE/PSEN This pin's function depends on the PSD3XX data bus width. If it is 8 bits, the pin is \overline{PSEN} ; if it is 16 bits, the pin is \overline{BHE} . In 8-bit mode, the \overline{PSEN} function enables the user to work with two address spaces: program memory and data memory (if COMB/SEP = 1). In this mode, an active low signal on the \overline{PSEN} pin causes the EPROM to be read if selected. The SRAM and I/O ports read operation are done by \overline{RD} low (CRRWR = 0), or by E high and $\overline{R/W}$ high (CRRWR, CEDS = 0) or by DS low and $\overline{R/W}$ high (CRRWR, CEDS = 1). Whenever a member of the 8031 family (or any other similar microcontroller) is used, the PSEN pin must be connected to the PSEN pin of the microcontroller. If COMB/SEP = 0, the address spaces of the program and the data are combined. In this configuration (except for the 8031-type case mentioned above), the \overline{PSEN} pin must be tied high to V_{CC} , and the EPROM, SRAM, and I/O ports are read by \overline{RD} low (CRRWR = 0), or by E high and R/ \overline{W} high (CRRWR = 1, CEDS = 0) or by \overline{DS} low and R/ \overline{W} high (CRRWR, CEDS = 1). See Figures 9 and 10. In BHE mode, this pin enables accessing of the upper-half byte of the data bus. A low on this pin enables a write or read operation to be performed on the upper half of the data bus (see Table 9). Figure 9. Combined Address Space Figure 10. 8031-Type Separate Code and Data Address Spaces Table 9. High/Low Byte Selection Truth Table (in 16-Bit Configuration Only) | βHE ⁻ | A ₀ | <i>Operation</i> | |--------------|----------------|---------------------------------| | 0 | 0 | Whole Word | | 0 | 1 | Upper Byte From/To Odd Address | | 1 | 0 | Lower Byte From/To Even Address | | 1 | 1 | None | ## Control Signals (Cont.) #### RESET This is an asynchronous input pin that clears and initializes the PSD3XX. Reset polarity is programmable (active low or active high). Whenever the PSD3XX reset input is driven active for at least 100 ns, the chip is reset. The PSD3XX must be reset at power up before it can be used. Tables 10 and 11 indicate the state of the part during and after reset. #### A19/CSI When configured as $\overline{\text{CSI}}$, a high on this pin deselects, and powers down, the chip. A low on this pin puts the chip in normal operational mode. For PSD3XX states during the power-down mode, see Tables 12 and 13, and Figure 11. In A19 mode, the pin is an additional input to the PAD. It can be used as an address line (CADLOG3 = 1) or as a general-purpose logic input (CADLOG3 = 0). A19 can be configured as ALE dependent or as transparent input (see Table 8). In this mode, the chip is always enabled. #### Table 10. Signal States During Reset Active (RESET) | Signal | Configuration Mode | Condition | |----------------------|---|-----------------------------| | AD0/A0-AD7/A7 | All | Input | | A8-A15 | All | Input | | PA0-PA7)
(Port A) | I/O
Tracking AD0/A0-AD7
Address outputs A0-A7 | Input
Input
Low | | PB0-PB7
(Port B) | I/O CS7-CS0 CMOS outputs CS7-CS0 open drain outputs | Input
High
Tri-stated | | PC0-PC2
(Port C) | Address inputs A16–A18 CS8–CS10 CMOS outputs | Input
High | #### Table 11. Internal States During and After Reset Cycle | Component | Signals | Contents | |----------------------|--|-------------------| | | CS0-CS10 | All = 1 (Note 23) | | PAD | CSADIN, CSADOUT1,
CSADOUT2, CSIOPORT,
RS0, ES0 – ES7 | All = 0 (Note 23) | | Data register A | n/a | 0 | | Direction register A | n/a | 0 | | Data register B | n/a | 0 | | Direction register B | n/a | 0 | NOTE: 23. All PAD outputs are in a non-active state. Table 12a. Signal States During Power-Down Mode (PSD30X) | Signal | Configuration Mode | Condition | |-----------------|--|------------------------------------| | AD0/A0-AD15/A15 | All | Input | | PA0-PA7 | I/O
Tracking AD0/A0-AD7/A7
Address outputs A0-A7 | Unchanged
Input
All 1's | | PB0-PB7 | VO CS0–CS7 CMOS outputs CS0–CS7 open drain outputs | Unchanged
All 1's
Tri-stated | | PC0-PC2 | Address inputs A18–A16 CS8–CS10 CMOS outputs | Input
All 1's | Table 12b. Signal States During Power-Down Mode (PSD31X) | Signal | Configuration Mode | Condition | |---------------|--|------------------------------------| | AD0/A0-AD7/A7 | All | Input | | A8-A15 | All | Input | | PA0-PA7 | I/O
Tracking AD0/A0-AD7/A7
Address outputs A0-A7 | Unchanged
Input
All 1's | | PB0-PB7 | I/O CS0-CS7 CMOS outputs CS0-CS7 open drain outputs | Unchanged
All 1's
Tri-stated | | PC0-PC2 | Address inputs A18–A16
CS8–CS10 CMOS outputs | Input
All 1's | #### Figur<u>e 1</u>1. A19/CSI Cell Structure **NOTES:** 24. The CADDHLT configuration bit determines if A19–A16 are transparent via the latch, or if they must be latched by the trailing edge of the ALE strobe. 25. In the PSD3X1, the CATD configuration bit performs this function for all the A16–A19 lines. Table 13. Internal States During Power-Down | Component | Signals | Contents | |---|--|----------------------| | | <u>CS0</u> – <u>CS10</u> | All 1's (deselected) | | PAD | CSADIN, CSADOUT1,
CSADOUT2, CSIOPORT,
RS0, ES0-ES7 | All 0's (deselected) | | Data register A Direction register A Data register B Direction register B | n/a
n/a
n/a
n/a | All
unchanged | Figure 12. PSD3XX Interface With Intel's 80C31 The configuration bits for Figure 12 are: | CALE | 0 | COMB/SEP | 0 or 1 (both valid) | |----------|---|----------|---------------------| | CDATA | 0 | CRRWR | 0 | | CADDRDAT | 1 | CEDS | 0 | | CRESET | 1 | | | All other configuration bits may vary according to the application requirements. #### System Applications In Figure 12, the PSD3XX is configured to interface with Intel's 80C31, which is a 16-bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the low-order address byte. The 80C31 uses signals RD to read from data memory and PSEN to read from code memory. It uses WR to write into the data memory. It also uses active high reset and ALE signals. The rest of the configuration bits as well as the unconnected signals (not shown) are application specific and, thus, user dependent. In Figure 13, the PSD3XX is configured to interface with Motorola's 68HC11, which is a 16-bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the low-order address byte. The 68HC11 uses E and R/W signals to derive the read and write strobes. It uses the term AS (address strobe) for the address latch pulse. RESET is an active low signal. The rest of the configuration bits as well as the unconnected signals (not shown) are specific and, thus, user dependent. Figure 13. PSD3XX Interface With Motorola's 68HC11 The configuration bits for Figure 13 are: | CALE | 0 | COMB/SEP | 0 | |----------|---|----------|---| | CDATA | 0 | CRRWR | 1 | | CADDRDAT | 1 | CEDS | 0 | | CRESET | 0 | | | All other configuration bits may vary according to the application requirements. ## System Applications (Cont.) In Figure 14, the PSD3XX is configured to work directly with Intel's 80C196KB microcontroller, which is a 16-bit address/16-bit data bus processor. Address and data lines multiplexed. In the example shown, all configuration bits are set. The PSD3XX is configured to use PC0, PC1, PC2, and \overline{CS} I/A19 as A16, A17, A18, and A19 inputs, respectively. These signals are independent of the ALE pulse (latch-transparent). They are used as four general-purpose logic inputs that take part in the PAD equations implementation. Port A is configured to work in the special track mode, in which (for certain conditions) PA0–PA7 tracks lines AD0/A0–AD7/A7. Port B is configured to generate $\overline{CS0}$ – $\overline{CS7}$. In this example, PB2 serves as a WAIT signal that slows down the 80C196KB during the access of external peripherals. These 8-bit wide peripherals are connected to the shared bus of Port A. The WAIT signal also drives the buswidth input of the microcontroller, so that every external peripheral cycle becomes an 8-bit data bus cycle. PB3 and PB4 are open-drain output signals; thus, they are pulled up externally. Figure 14. PŠD3XX Interface With Intel's 80C196KB. The
configuration bits for Figure 14 are: | 3 | | | | |----------|------------|---------------------|----------| | CALE | 0 | CSECURITY | Don't ca | | CDATA | 1 | CPCF2, CPCF1, CPCF0 | 0, 0, 0 | | CADDRDAT | 1 | CPACOD7-CPACOD0 | 00H | | CPAF1 | Don't care | CPBF7-CPBF0 | 00H | | CPAF2 | 1 | CPBCOD7-CPBCOD0 | 18H | | CA19/CSI | 1 | CEDS | 0 | | CRRWR | 0 | CADLOG3—CADLOG0 | 0H | | COMB/SEP | 0 | | | | CADDHLT | 0 | | | | CRESET | 0 | | | Don't care #### Security Mode Security Mode in the PSD3XX locks the contents of the PAD A, PAD B and all the configuration bits. The EPROM, SRAM, and I/O contents can be accessed only through the PAD. The Security Mode can be set by the PSD Development or Programming software. In window packages, the mode is erasable through UV full part erasure. In the security mode, the PSD3XX contents cannot be copied on a programmer. #### **EPROM** The EPROM power consumption in the PSD is controlled by bit 3 in the PMMR0 – EPROM CMiser. Upon reset the CMiser bit is OFF. This will cause the EPROM to be ON at all times as long as CSI is enabled (low). The reason this mode is provided is to reduce the access time of the EPROM by 10 ns relative to the low power condition when CMiser is ON. If CSI is disabled (high) the EPROM will be deselected and will enter standby mode (OFF) overriding the state of the CMiser. If CMiser is set (ON) then the EPROM will enter the standby mode when not selected. This condition can take place when CSI is high or when CSI is low and the EPROM is not accessed. For example, if the MCU is accessing the SRAM, the EPROM will be deselected and will be in low power mode. An additional advantage of the CMiser is achieved when the PSD is configured in the by 8 mode (8 bit data bus). In this case an additional power savings is achieved in the EPROM (and also in the SRAM) by turning off 1/2 of the array even when the EPROM is accessed (the array is divided internally into odd and even arrays). The power consumption for the different EPROM modes is given in the DC Characteristics table under I_{CC} (DC) EPROM Adder. #### Absolute Maximum Ratings²⁶ | Symbol | Parameter Parame | Min | Max | Unit | | |------------------|--|---------------------|-------------|-------|----------| | _ | Storago Tomporaturo | CERDIP | – 65 | + 150 | °C | | T _{STG} | Storage Temperature | PLASTIC | - 65 | + 125 | °C | | | Voltage on any Pin | With Respect to GND | - 0.6 | + 7 | V | | V _{PP} | Programming
Supply Voltage | With Respect to GND | - 0.6 | + 14 | > | | V _{CC} | Supply Voltage | With Respect to GND | - 0.6 | + 7 | V | | | ESD Protection | | >2000 | | V | NOTE: 26. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability. #### Operating Range | Range | <i>Temperature</i> | V _{CC} | Speeds (ns) | V _{CC} Tolerance | |------------|---------------------------|-----------------|-------------|---------------------------| | Commercial | 0° C to +70°C | + 5 V | 70, 150 | ± 10% | | Industrial | −40° C to +85°C | + 5 V | 90 | ± 10% | | Military | Military -55° C to +125°C | | 200 | ± 10% | #### Recommended Operating Conditions | Symbol Parameter | | Conditions | Min | Typ | Max | Unit | |------------------|----------------|-------------------|-----|-----|-----|------| | V _{CC} | Supply Voltage | All Speeds | 4.5 | 5 | 5.5 | ٧ | #### DC Characteristics - PSD3XX Versions (5V ± 10%) | Symbol | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | Min | Тур | Max | Unit | |-----------------------------------|--|---------|---|------|------|----------------------|-----------------| | V _{CC} | Supply Voltage | | All Speeds | 4.5 | 5 | 5.5 | ٧ | | V _{IH} | High-Level Input Voltage Low-Level Input Voltage Output High Voltage Output Low Voltage | | 4.5 V < V _{CC} < 5.5 V | 2 | | V _{CC} +0.1 | V | | V _{IL} | Low-Level Input \ | /oltage | 4.5 V < V _{CC} < 5.5 V | -0.5 | | 0.8 | V | | V | Outout High Volta | | | 4.4 | 4.49 | | V | | V _{OH} | Output High Voltage | | | 2.4 | 3.9 | | V | | V | Standby Supply Current (Note 27) Input Leakage Current | | | | 0.01 | 0.1 | ٧ | | VOL | | | | | 0.15 | 0.45 | ٧ | | I _{SB1} | | | CSI > V _{CC} -0.3 V | | 50 | 200 | μΑ | | ILI | | | V _{SS} < V _{IN} < V _{CC} | -1 | ±0.1 | 1 | μΑ | | I _{LO} | | | $0.45 < V_{IN} < V_{CC}$ | -10 | ±5 | 10 | μΑ | | I (DC) | On anating | PLD | f = 0 MHz | | 0.5 | 1 | m A /PT | | I _{CC} (DC)
(Note 28) | . • | EPROM | f = 0 MHz | | 0 | | μΑ | | , | | SRAM | f = 0 MHz | | 0 | | μΑ | | | ZPLD AC Base | | | | 0.5 | 0.8 | m A /MHz | | | EPROM Access AC Adder | | CMiser = ON and 8-Bit
Bus Mode | | 0.8 | 2 | m A /MHz | | I (AC) | | | All Other Cases (Note 29) | | 1.8 | 4 | m A /MHz | | I _{CC} (AC)
(Note 28) | | | CMiser = ON and 8-Bit
Bus Mode | | 1.4 | 2.7 | m A /MHz | | | SRAM Access AC | C Adder | CMiser = ON and 16-Bit
Bus Mode | | 2 | 4 | mH/MHz | | | | | CMiser = OFF | | 3.8 | 7.5 | m A /MHz | **NOTES:** 27. CSI is high and the part is in power down configuration mode. ^{28.} $I_{OUT} = 0 \text{ mA}$ ^{29.} All other cases include CMiser = ON and 16-bit bus mode and CMiser = OFF and 8 or 16-bit bus mode. #### Typical Power Calculation #### Example of PSD3XX Typical Power Calculation at $V_{CC} = 5.0 \text{ V}$ #### **Conditions** Highest PLD input frequency (Freq PLD) = 8 MHz MCU ALE frequency (Freq ALE) = 4 MHz % EPROM Access = 80% % SRAM Access = 80% % SRAM Access = 15% % I/O access = 5% (no additional power above base) Operational Modes % Normal = 10% % Standby = 90% Number of product terms used (from fitter report) = 45 PT % of total product terms = 10/40 = 25% CMiser = on 8-bit bus mode #### Calculation (typical numbers used) I_{CC} total = Istandby x %standby + %normal x (I_{CC} (ac) + I_{CC} (dc)) = Istandby x %standby + % normal x (%EPROM x 0.8 mA/MHz x Freq ALE + %SRAM x 1.4 mA/MHz x Freq ALE + %PLD x 0.5 mA/MHz x Freq PLD) + #PT x 0.5 mA/PT $= 50 \mu A \times 0.90 + 0.1 \times (0.8 \times 0.8 \text{ mA/MHz} \times 4 \text{ MHz})$ + 0.15 x 1.4 mA/MHz x 4 MHz + 0.95 x 0.5 mA/MHz x 8 MHz + 10 x 0.5 mA/PT)) $= 45 \mu A + 0.1 \times (2.56 + 0.84 + 3.8 + 5 mA)$ $= 45 \mu A + 0.1 \times 12.2$ $= 45 \mu A + 1.22 mA$ = 1.26 mA Standby current consumption is handled similarly to sleep mode shown above. #### AC Characteristics – PSD3XX Versions (5V \pm 10%) | | | -7 | 70 | -9 | 0* | -15 | | -20** | | CMiser | | |--------|---|-----|-----|-----|-----|-----|-----|-------|-----|---------------|------| | Symbol | <i>Parameter</i> | Min | Max | Min | Max | Min | Max | Min | Max | On =
Add | Unit | | T1 | ALE or AS Pulse Width | 18 | | 20 | | 40 | | 50 | | 0 | ns | | T2 | Address Set-up Time | 5 | | 5 | | 12 | | 15 | | 0 | ns | | T3 | Address Hold Time | 7 | | 8 | | 10 | | 15 | | 0 | ns | | T4 | Leading Edge of Read to Data Active | 0 | | 0 | | 0 | | 0 | | 0 | ns | | T5 | ALE Valid to Data Valid | | 80 | | 100 | | 170 | | 200 | 10 | ns | | T6 | Address Valid to Data Valid | | 70 | | 90 | | 150 | | 210 | 10 | ns | | T7 | CSI Active to Data Valid | | 80 | | 100 | | 160 | | 200 | 10 | ns | | T8 | Leading Edge of Read to Data Valid | | 20 | | 32 | | 45 | | 50 | 0 | ns | | T8A | Leading Edge of Read to Data Valid
in 8031-Based Architecture Operating
with PSEN and RD in Separate Mode | | 32 | | 32 | | 55 | | 60 | 0 | ns | | Т9 | Read Data Hold Time | 0 |
 0 | | 0 | | 0 | | 0 | ns | | T10 | Trailing Edge of Read to Data High-Z (PSD3X1) | | 20 | | 35 | | 40 | | 45 | 0 | ns | | | Trailing Edge of Read to Data High-Z (PSD3X2/3X3/3X4R) | | 20 | | 30 | | 40 | | 45 | 0 | ns | | T11 | Trailing Edge of ALE or AS to
Leading Edge of Write | 0 | | 0 | | 0 | | 0 | | 0 | ns | | T12 | RD, E, PSEN, or DS Pulse Width | 35 | | 40 | | 60 | | 75 | | 0 | ns | | T12A | WR Pulse Width | 18 | | 20 | | 35 | | 45 | | 0 | ns | | T13 | Trailing Edge of Write or Read to
Leading Edge of ALE or AS | 5 | | 5 | | 5 | | 5 | | 0 | ns | | T14 | Address Valid to Trailing Edge of Write | 70 | | 90 | | 150 | | 200 | | 0 | ns | | T15 | CSI Active to Trailing Edge of Write | 80 | | 100 | | 160 | | 200 | | 0 | ns | | T16 | Write Data Set-up Time | 18 | | 20 | | 30 | | 40 | | 0 | ns | | T17 | Write Data Hold Time | 5 | | 5 | | 10 | | 15 | | 0 | ns | | T18 | Port to Data Out Valid Propagation
Delay | | 25 | | 28 | | 35 | | 45 | 0 | ns | | T19 | Port Input Hold Time | 0 | | 0 | | 0 | | 0 | | 0 | ns | | T20 | Trailing Edge of Write to Port
Output Valid | | 30 | | 35 | | 50 | | 60 | 0 | ns | | T21 | ADi or Control to CSOi Valid | 6 | 20 | 6 | 25 | 6 | 35 | 5 | 45 | 10 | ns | | T22 | ADi or Control to CSOi Invalid
Invalid | 5 | 20 | 5 | 25 | 4 | 35 | 4 | 45 | 10 | ns | ^{*}Available only on industrial temperature versions. **Available only on military temperature versions. #### AC Characteristics - PSD3XX Versions (5V ± 10%) (Cont.) | | _ | -70 | | -90* | | -15 | | -20** | | CMiser | | |--------|--|-----|-----|------|-----|-----|-----|-------|-----|-------------|------| | Symbol | <i>Parameter</i> | Min | Max | Min | Max | Min | Мах | Min | Max | 0n =
Add | Unit | | T23 | Track Mode Address Propagation
Delay: CSADOUT1 Already True | | 22 | | 22 | | 22 | | 28 | 0 | ns | | | Latched Address Outputs, Port A | | 22 | | 22 | | 22 | | 28 | 0 | ns | | T23A | Track Mode Address Propagation
Delay: CSADOUT1 Becomes
True During ALE or AS | | 33 | | 33 | | 40 | | 50 | 10 | ns | | T24 | Track Mode Trailing Edge of ALE or AS to Address High-Z | | 30 | | 32 | | 35 | | 40 | 0 | ns | | T25 | Track Mode Read Propagation Delay | | 27 | | 29 | | 29 | | 35 | 0 | ns | | T26 | Track Mode Read Hold Time | 5 | 29 | 11 | 29 | 11 | 29 | 11 | 35 | 0 | ns | | T27 | Track Mode Write Cycle, Data
Propagation Delay | | 18 | | 20 | | 20 | | 30 | 0 | ns | | T28 | Track Mode Write Cycle, Write to Data Propagation Delay | 6 | 30 | 8 | 30 | 9 | 40 | 9 | 55 | 0 | ns | | T29 | Hold Time of Port A Valid During Write
CSOi Trailing Edge | 2 | | 2 | | 2 | | 2 | | 0 | ns | | | CSI Active to CSOi Active (PSD3X1) | 8 | 37 | 9 | 40 | 9 | 45 | 8 | 60 | 0 | ns | | T30 | CSI Active to CSOi Active (PSD3X2/3X3/3X4R) | 8 | 37 | 9 | 40 | 9 | 50 | 8 | 60 | 0 | ns | | T31 | CSI Inactive to CSOi Inactive | 8 | 37 | 9 | 40 | 9 | 45 | 8 | 60 | 0 | ns | | T32 | Direct PAD Input as Hold Time | 0 | | 0 | | 0 | | 0 | | 0 | ns | | | R/W Active to E High
(PSD3X1) | 18 | | 20 | | 30 | | 40 | | 0 | ns | | T33 | R/W Active to E or DS
Start (PSD3X2/3X3/3X4R) | 18 | | 20 | | 30 | | 40 | | 0 | ns | | | E End to R/W
(PSD3X1) | 18 | | 20 | | 30 | | 40 | | 0 | ns | | T34 | E or DS End to R/W
(PSD3X2/3X3/3X4R) | 18 | | 20 | | 30 | | 40 | | 0 | ns | | T35 | AS Inactive to E high | 0 | | 0 | | 0 | | 0 | | 0 | ns | | T36 | Address to Leading Edge of Write | 18 | | 20 | | 25 | | 30 | | 0 | ns | **NOTES:** 30. ADi = any address line. ^{31.} $\overline{\text{CSOi}}$ = any of the chip-select output signals coming through Port B ($\overline{\text{CSO}}$ – $\overline{\text{CS7}}$) or through Port C ($\overline{\text{CS8}}$ – $\overline{\text{CS10}}$). ^{32.} Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E/DS, WR or R/W, transparent PC0–PC2, ALE (or AS). ^{33.} Control signals RD/E/DS or WR or R/W. ^{*}Available only on industrial temperature versions. ^{**}Available only on military temperature versions. Figure 15. PSD3XX I_{OL} vs. V_{OL} Figure 16. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 0 (PSD3X1) Figure 17. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 0 (PSD3X2/3X3/3X4R) Figure 18. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 1 (PSD3X1) Figure 19. Timing of 8-Bit Multiplexed Address/Data Bus, CRRWR = 1 (PSD3X2/3X3/3X4R) Figure 20. Timing of 16-Bit Multiplexed Address/Data Bus, CRRWR = 0 (PSD3X1) Figure 21. Timing of 16-Bit Multiplexed Address/Data Bus, CRRWR = 0 (PSD3X2/3X3/3X4R) Figure 22. Timing of 16-Bit Multiplexed Address/Data Bus, CRRWR = 1 (PSD3X1) Figure 23. Timing of 16-Bit Multiplexed Address/Data Bus, CRRWR = 1 (PSD3X2/3X3/3X4R) Figure 24. Timing of 8-Bit Non-Multiplexed Address/Data Bus, CRRWR = 0 (PSD3X1) Figure 25. Timing of 8-Bit Non-Multiplexed Address/Data Bus, CRRWR = 0 (PSD3X2/3X3/3X4R) Figure 26. Timing of 8-Bit Non-Multiplexed Address/Data Bus, CRRWR = 1 (PSD3X1) Figure 27. Timing of 8-Bit Non-Multiplexed Address/Data Bus, CRRWR = 1 (PSD3X2/3X3/3X4R) Figure 28. Timing of 16-Bit Non-Multiplexed Address/Data Bus, CRRWR = 0 (PSD3X1) Figure 29. Timing of 16-Bit Non-Multiplexed Address/Data Bus, CRRWR = 0 (PSD3X2/3X3/3X4R) Figure 30. Timing of 16-Bit Non-Multiplexed Address/Data Bus, CRRWR = 1 (PSD3X1) Figure 31. Timing of 16-Bit Non-Multiplexed Address/Data Bus, CRRWR = 1 (PSD3X2/3X3/3X4R) Figure 32. Chip-Select Output Timing (PSD30X) Figure 33. Port A as ADO—AD7 Timing (Track Mode), CRRWR = 0 (PSD3X1) Figure 34. Port A as ADO-AD7 Timing (Track Mode), CRRWR = 0 (PSD3X2/3X3/3X4R) Figure 35. Port A as ADO—AD7 Timing (Track Mode), CRRWR = 1 (PSD3X1) Figure 36. Port A as ADO-AD7 Timing (Track Mode), CRRWR = 1 (PSD3X2/3X3/3X4R) ### Notes for Timing Diagrams - 34. Direct PAD input = any of the following direct PAD input lines: \overline{CSI} /A19 as transparent A19, \overline{RD} /E/ \overline{DS} , \overline{WR} or R/ \overline{W} , transparent PC0–PC2, ALE in non-multiplexed modes. - 35. Multiplexed inputs: any of the following inputs that are latched by the ALE (or AS): A0/AD0–A15/AD15, \overline{CSI} /A19 as ALE dependent A19, ALE dependent PC0–PC2. - 36. CSOi = any of the chip-select output signals coming through Port B (CSO-CS7) or through Port C (CS8-CS10). - 37. CSADOUT1, which internally enables the address transfer to Port A, should be derived only from direct PAD input signals, otherwise the address propagation delay is slowed down. - 38. CSADIN and CSADOUT2, which internally enable the data-in or data-out transfers, respectively, can be derived from any combination of direct PAD inputs and multiplexed PAD inputs. - 39. The write operation signals are included in the CSOi expression. - 40. Multiplexed PAD inputs: any of the following PAD inputs that are latched by the ALE (or AS) in the multiplexed modes: A11/AD11–A15/AD15, CSI/A19 as ALE dependent A19, ALE dependent PC0–PC2. - 41. CSOi product terms can include any of the PAD input signals shown in Figure 3, except for reset and CSI. ### *Table 14. Pin Capacitance*⁴² | Symbol | Parameter | Conditions | Typical ⁴³ | Max | Unit | |------------------|--|------------------------|-----------------------|-----|------| | C _{IN} | Capacitance (for input pins only) | $V_{IN} = 0 V$ | 4 | 6 | pF | | C _{OUT} | Capacitance (for input/output pins) | V _{OUT} = 0 V | 8 | 12 | рF | | C _{VPP} | Capacitance (for WR/V _{PP} or R/W/V _{PP}) | $V_{PP} = 0 V$ | 18 | 25 | pF | NOTES: 42. This parameter is only sampled and is not 100% tested. 43. Typical values are for T_A = 25 ° C and nominal supply voltages. Figure 37. AC Testing Input/Output Waveform (PSD3XX Versions) Figure 38. AC Testing Load Circuit (PSD3XX Versions) ### Erasure and Programming To clear all locations of their programmed contents, expose the window packaged device to an ultra-violet light source. A dosage of 30 W second/cm² is required. This dosage can be obtained with exposure to a wavelength of 2537 Å and intensity of 12000 μ W/cm² for 40 to 45 minutes. The device should be about 1 inch from the source, and all filters should be removed from the UV light source prior to erasure. The PSD3XX and similar devices will erase with light sources having wavelengths shorter than 4000 Å. Although the erasure times will be much longer than with UV sources at 2537 Å, exposure to fluorescent light and sunlight eventually erases the device. For maximum system reliability, these sources should be avoided. If used in such an environment, the package window should be covered by an opaque substance. Upon delivery from WSI, or after each erasure, the PSD3XX device has all bits in the PAD and EPROM in the "1" or high state. The configuration bits are in the "0" or low state. The code, configuration, and PAD MAP data are loaded through the procedure of programming Information for programming the device is available directly from WSI. Please contact your local sales representative. # **Programmable Peripheral** *PSD301/301R* # Field-Programmable Microcontroller Peripheral | <i>(ey Features</i> | ☐ Single Chip Programmable Peripheral for Microcontroller-based Applications | |---------------------|--| | | 19 Individually Configurable I/O pins that can be used as: Microcontroller I/O port expansion Programmable Address Decoder (PAD) I/O Latched address output Open drain or CMOS | | | Two Programmable Arrays (PAD A and PAD
B) Total of 40 Product Terms and up to 12 Inputs and 24 Outputs Address Decoding up to 1 MB Logic replacement | | | "No Glue" Microcontroller Chip-Set Built-in address latches for multiplexed address/data bus Non-multiplexed address/data bus mode Selectable 8 or 16 bit data bus width ALE and Reset polarity programmable Selectable modes for read and write control bus as RD/WR or R/W/E BHE pin for byte select in 16-bit mode PSEN pin for 8051 users | | | 256 Kbits of UV EPROM Configurable as 32K x 8 or as 16K x 16 Divides into 8 equal mappable blocks for optimized mapping Block resolution is 4K x 8 or 2K x 16 70 ns EPROM access time, including input latches and PAD address decoding. | | | 16 Kbit Static RAM (only on PSD301) Configurable as 2K x 8 or as 1K x 16 70 ns SRAM access time, including input latches and PAD address decoding | | | Address/Data Track Mode Enables easy Interface to Shared Resources (e.g., Mail Box SRAM) with other Microcontrollers or a Host Processor | | | □ Built-In Security─ Locks the PSD301 and PAD Decoding Configuration | | | Available in a Choice of Packages 44 Pin PLDCC, CLDCC, TQFP, and PQFP 44 Pin CPGA | | | Simple Menu-Driven Software: Configure the PSD301 on an IBM PC | | | ☐ Pin and Function Compatible with the PSD302, PSD303 and PSD304R | ## PSD301/301R Pin Assignments | BHE/PSEN 1 A ₅ 39 39 WR/V _{PP} or R/W 2 A ₄ 40 40 RESET 3 B ₄ 41 41 PB7 4 A ₃ 42 42 PB6 5 B ₃ 43 43 PB5 6 A ₂ 44 44 PB4 7 B ₂ 1 1 PB3 8 B ₁ 2 2 PB4 7 B ₂ 1 1 PB3 8 B ₁ 2 2 2 PB4 7 B ₂ 1 1 4 <t< th=""><th>Pin Name</th><th>44-Pin
PLDCC/CLDCC
Package</th><th>44-Pin
CPGA
Package</th><th>44-Pin
TQFP
Package</th><th>44-Pin
PQFP
Package</th></t<> | Pin Name | 44-Pin
PLDCC/CLDCC
Package | 44-Pin
CPGA
Package | 44-Pin
TQFP
Package | 44-Pin
PQFP
Package | |--|---------------------------|----------------------------------|---------------------------|---------------------------|---------------------------| | WR/V _{PP} or R/W 2 A4 40 40 RESET 3 B4 41 41 PB7 4 A3 42 42 PB6 5 B3 43 43 PB5 6 A2 44 44 PB4 7 B2 1 1 1 PB3 8 B1 2 2 2 PB4 7 B2 1 1 1 PB9 1 2 2 2 3 3 3 3 | BHE/PSEN | 1 | A ₅ | 39 | 39 | | RESET 3 B4 41 41 PB7 PB7 4 A3 42 42 42 PB6 5 B3 43 43 43 44 PB6 6 6 A2 44 44 PB4 PB5 6 A2 44 44 A4 PB4 PB3 8 B1 2 2 2 PB2 9 C2 3 3 3 PB1 10 C1 4 4 PB0 T1 D2 5 5 5 GND T1 D2 T1 T1 T2 T3 T4 T4 T5 T5 T5 T5 T5 T5 | WR/V _{PP} or R/W | 2 | I - | 40 | 40 | | PB7 | | 3 | | 41 | 41 | | PB6 5 B3 43 43 PB4 7 B2 1 1 PB3 8 B1 2 2 PB2 9 C2 3 3 PB1 10 C1 4 4 PB0 11 D2 5 5 GND 12 D1 6 6 ALE or AS 13 E1 7 7 PA7 14 E2 8 8 PA6 15 F1 9 9 PA5 16 F2 10 10 PA4 17 G1 11 11 PA3 18 G2 12 12 PA2 19 H2 13 13 PA1 20 G3 14 14 PA0 21 H3 15 15 RD/E 22 G4 16 16 <t< td=""><td>PB7</td><td>4</td><td></td><td>42</td><td>42</td></t<> | PB7 | 4 | | 42 | 42 | | PB4 | PB6 | 5 | _ | 43 | 43 | | PB3 | PB5 | 6 | A ₂ | 44 | 44 | | PB2 9 C2 3 3 3 4 4 4 PB0 11 D2 5 5 5 5 GND 12 D1 6 6 6 6 6 ALE or AS 13 E1 7 7 7 7 AT 14 E2 8 8 8 PA6 15 F1 9 9 9 PA5 16 F2 10 10 PA4 17 G1 11 11 PA3 18 G2 12 PA2 19 H2 13 13 PA1 PA0 21 H3 15 T5 RD/E 22 G4 16 16 AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 AD4/A4 27 G6 21 AD3/A3 26 AD15/A5 28 AD7/A7 30 G8 24 AD15/A13 37 C8 AD15/A15 39 B8 BB AD15/A15 39 B8 BB AD15/A15 39 B8 AD15/A15 39 B8 BB AD15/A15 39 B8 BB AD15/A15 39 B8 BB AD15/A15 39 BB AD15/A | PB4 | 7 | B ₂ | 1 | 1 | | PB1 | PB3 | 8 | B ₁ | 2 | 2 | | PB0 | PB2 | 9 | C ₂ | 3 | 3 | | GND ALE or AS ALE or AS ALE or AS BACTER ALE or AS BACTER | PB1 | 10 | C ₁ | 4 | 4 | | ALE or AS PA7 PA7 14 E2 8 8 8 PA6 PA6 15 F1 9 9 PA5 16 F2 10 10 PA4 17 G1 11 11 PA3 18 G2 12 PA2 19 PA1 PA0 20 G3 14 14 PA0 21 PA0 21 PA1 PA1 PA1 PA0 21 23 H4 17 AD1/A1 AD1/A1 AD2/A2 AD5/A5 AB AD6/A6 AB AD7/A7 AD6/A6 AB AD7/A7 AD6/A6 AB AD7/A7 AD7 AD7 AD7 AD7 AD7 AD7 AD7 AD7 AD7 A | PB0 | 11 | D ₂ | 5 | 5 | | PA7 14 E2 8 8 PA6 15 F1 9 9 PA5 16 F2 10 10 PA4 17 G1 11 11 PA3 18 G2 12 12 PA2 19 H2 13 13 PA1 20 G3 14 14 PA0 21 H3 15 15 RD/E 22 G4 16 16 16 AD0/A0 23 H4 17 17 17 AD1/A1 24 H5 18 <t< td=""><td>GND</td><td>12</td><td>D₁</td><td>6</td><td>6</td></t<> | GND | 12 | D ₁ | 6 | 6 | | PA6 15 F1 9 9 PA5 16 F2 10 10 PA4 17 G1 11 11 PA3 18 G2 12 12 PA2 19 H2 13 13 PA1 20 G3 14 14 PA0 21 H3 15 15 RD/E 22 G4 16 16 AD0/A0 23 H4 17 17 AD1/A1 24 H5 18 18 AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 20 AD4/A4 27 G6 21 21 AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD9/A9 32 F8 26 | ALE or AS | 13 | E ₁ | 7 | 7 | | PA5 16 F2 10 10 PA4 17 G1 11 11 PA3 18 G2 12 12 PA2 19 H2 13 13 PA1 20 G3 14 14 PA0 21 H3 15 15 RD/E 22 G4 16 16 AD0/A0 23 H4 17 17 AD1/A1 24 H5 18 18 AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 20 AD4/A4 27 G6 21 21 AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD8/A8 31 F7 25 25 AD10/A10 33 E7 27 | PA7 | 14 | E ₂ | 8 | 8 | | PA4 17 G1 11 11 PA3 18 G2 12 12 PA2 19 H2 13 13 PA1 20 G3 14 14 PA0 21 H3 15 15 RD/E 22 G4 16 16 AD0/A0 23 H4 17 17 AD1/A1 24 H5 18 18 AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 20 AD4/A4 27 G6 21 21 AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD8/A8 31 F7 25 25 AD9/A9 32 F8 26 26 AD10/A10 33 E7 27 27 GND 34 E8 28 28 <td< td=""><td>PA6</td><td>15</td><td>F₁</td><td>9</td><td>9</td></td<> | PA6 | 15 | F ₁ | 9 | 9 | | PA3 18 G2 12 12 PA2 19 H2 13 13 PA1 20 G3 14 14 PA0 21 H3 15 15 RD/E 22 G4 16 16 AD0/A0 23 H4 17 17 AD1/A1 24 H5 18 18 AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 20 AD4/A4 27 G6 21 21 AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD8/A8 31 F7 25 25 AD9/A9 32 F8 26 26 AD10/A10 33 E7 27 27 GND 34 E8 28 <td>PA5</td> <td>16</td> <td>F₂</td> <td>10</td> <td>10</td> | PA5 | 16 | F ₂ | 10 | 10 | | PA2 19 H2 13 13 PA1 20 G3 14 14 PA0 21 H3 15 15 RD/E 22 G4 16 16 AD0/A0 23 H4 17 17 AD1/A1 24 H5 18 18 AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 20 AD4/A4 27 G6 21 21 AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD8/A8 31 F7 25 25 AD9/A9 32 F8 26 26 AD10/A10 33 E7 27 27 GND 34 E8 28 28 AD11/A11 35 D8 29 29 AD13/A13 37 C8 31 31 | PA4 | 17 | G ₁ | 11 | 11 | | PA1 20 G3 14 14 PA0 21 H3 15 15 RD/E 22 G4 16 16 AD0/A0 23 H4 17 17 AD1/A1 24 H5 18 18 AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 20 AD4/A4 27 G6 21 21 AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD8/A8 31 F7 25 25 AD9/A9 32 F8 26 26 AD10/A10 33 E7 27 27 GND 34 E8 28 28 AD11/A11 35 D8 29 29 AD12/A12 36 D7 30 30 AD13/A13 37 C8 31 31 | PA3 | 18 | G ₂ | 12 | 12 | | PA0 21 H3 15 15 RD/E 22 G4 16 16 AD0/A0 23 H4 17 17 AD1/A1 24 H5 18 18 AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 20 AD4/A4 27 G6 21 21 AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD8/A8 31 F7 25 25 AD9/A9 32 F8 26 26 AD10/A10 33 E7 27 27 GND 34 E8 28 28 AD11/A11 35 D8 29 29 AD12/A12 36 D7 30 30 AD14/A14 38 C7 | PA2 | 19 | H ₂ | 13 | 13 | | RD/E 22 G4 16 16 AD0/A0 23 H4 17 17 AD1/A1 24 H5 18 18 AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 20 AD4/A4 27 G6 21 21 AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD8/A8 31 F7 25 25 AD9/A9 32 F8 26 26 AD10/A10 33 E7 27 27 GND 34 E8 28 28 AD11/A11 35 D8 29 29 AD12/A12 36 D7 30 30 AD13/A13 37 C8 31 31 AD15/A15 39 B8 <td>PA1</td> <td></td> <td>G₃</td> <td>14</td> <td>14</td> | PA1 | | G ₃ | 14 | 14 | | ADO/A0 23 H4 17 17 AD1/A1 24 H5 18 18 AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 20 AD4/A4 27 G6 21 21 AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD8/A8 31 F7 25 25 AD9/A9 32 F8 26 26 AD10/A10 33 E7 27 27 GND 34 E8 28 28 AD11/A11 35 D8 29 29 AD12/A12 36 D7 30 30 AD13/A13 37 C8 31 31 AD14/A14 38 C7 32 32 AD15/A15 39 B8 33 33 PC0 40 B7 34 34
 | 21 | _ | 1 | | | AD1/A1 24 H5 18 18 AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 20 AD4/A4 27 G6 21 21 AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD8/A8 31 F7 25 25 AD9/A9 32 F8 26 26 AD10/A10 33 E7 27 27 GND 34 E8 28 28 AD11/A11 35 D8 29 29 AD12/A12 36 D7 30 30 AD13/A13 37 C8 31 31 AD15/A15 39 B8 33 33 PC0 40 B7 34 34 PC1 41 A7 35 35 PC2 42 B6 36 36 | | 22 | G_4 | 1 | 16 | | AD2/A2 25 G5 19 19 AD3/A3 26 H6 20 20 AD4/A4 27 G6 21 21 AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD8/A8 31 F7 25 25 AD9/A9 32 F8 26 26 AD10/A10 33 E7 27 27 GND 34 E8 28 28 AD11/A11 35 D8 29 29 AD12/A12 36 D7 30 30 AD13/A13 37 C8 31 31 AD14/A14 38 C7 32 32 AD15/A15 39 B8 33 33 PC0 40 B7 34 34 PC1 41 A7 35 35 PC2 42 B6 36 36 | | | | 1 | | | AD3/A3 26 H ₆ 20 20 AD4/A4 27 G ₆ 21 21 AD5/A5 28 H ₇ 22 22 AD6/A6 29 G ₇ 23 23 AD7/A7 30 G ₈ 24 24 AD8/A8 31 F ₇ 25 25 AD9/A9 32 F ₈ 26 26 AD10/A10 33 E ₇ 27 GND 34 E ₈ 28 28 AD11/A11 35 D ₈ 29 29 AD12/A12 36 D ₇ 30 30 AD13/A13 37 C ₈ 31 31 AD14/A14 38 C ₇ 32 32 AD15/A15 39 B ₈ 33 33 PC0 40 B ₇ 34 34 PC1 41 A ₇ 35 35 PC2 42 B ₆ 36 | | | _ | 1 | | | AD4/A4 27 G ₆ 21 21 AD5/A5 28 H ₇ 22 22 AD6/A6 29 G ₇ 23 23 AD7/A7 30 G ₈ 24 24 AD8/A8 31 F ₇ 25 25 AD9/A9 32 F ₈ 26 26 AD10/A10 33 E ₇ 27 27 GND 34 E ₈ 28 28 AD11/A11 35 D ₈ 29 29 AD12/A12 36 D ₇ 30 30 AD13/A13 37 C ₈ 31 31 AD14/A14 38 C ₇ 32 32 AD15/A15 39 B ₈ 33 33 PC0 40 B ₇ 34 34 PC1 41 A ₇ 35 35 PC2 42 B ₆ 36 36 | | | _ | 1 | | | AD5/A5 28 H7 22 22 AD6/A6 29 G7 23 23 AD7/A7 30 G8 24 24 AD8/A8 31 F7 25 25 AD9/A9 32 F8 26 26 AD10/A10 33 E7 27 27 GND 34 E8 28 28 AD11/A11 35 D8 29 29 AD12/A12 36 D7 30 30 AD13/A13 37 C8 31 31 AD14/A14 38 C7 32 32 AD15/A15 39 B8 33 33 PC0 40 B7 34 34 PC1 41 A7 35 35 PC2 42 B6 36 36 | | | | | | | AD6/A6 29 G ₇ 23 23 AD7/A7 30 G ₈ 24 24 AD8/A8 31 F ₇ 25 25 AD9/A9 32 F ₈ 26 26 AD10/A10 33 E ₇ 27 27 GND 34 E ₈ 28 28 AD11/A11 35 D ₈ 29 29 AD12/A12 36 D ₇ 30 30 AD13/A13 37 C ₈ 31 31 AD14/A14 38 C ₇ 32 32 AD15/A15 39 B ₈ 33 33 PC0 40 B ₇ 34 34 PC1 41 A ₇ 35 35 PC2 42 B ₆ 36 36 | | | | | | | AD7/A7 30 G ₈ 24 24 AD8/A8 31 F ₇ 25 25 AD9/A9 32 F ₈ 26 26 AD10/A10 33 E ₇ 27 27 GND 34 E ₈ 28 28 AD11/A11 35 D ₈ 29 29 AD12/A12 36 D ₇ 30 30 AD13/A13 37 C ₈ 31 31 AD14/A14 38 C ₇ 32 32 AD15/A15 39 B ₈ 33 33 PC0 40 B ₇ 34 34 PC1 41 A ₇ 35 35 PC2 42 B ₆ 36 36 | | | l ' | | | | AD8/A8 31 F7 25 25 AD9/A9 32 F8 26 26 AD10/A10 33 E7 27 27 GND 34 E8 28 28 AD11/A11 35 D8 29 29 AD12/A12 36 D7 30 30 AD13/A13 37 C8 31 31 AD14/A14 38 C7 32 32 AD15/A15 39 B8 33 33 PC0 40 B7 34 34 PC1 41 A7 35 35 PC2 42 B6 36 36 | | | | | | | AD9/A9 32 F ₈ 26 26 AD10/A10 33 E ₇ 27 27 GND 34 E ₈ 28 28 AD11/A11 35 D ₈ 29 29 AD12/A12 36 D ₇ 30 30 AD13/A13 37 C ₈ 31 31 AD14/A14 38 C ₇ 32 32 AD15/A15 39 B ₈ 33 33 PC0 40 B ₇ 34 34 PC1 41 A ₇ 35 35 PC2 42 B ₆ 36 36 | | | | 1 | | | AD10/A10 33 E7 27 27 GND 34 E8 28 28 AD11/A11 35 D8 29 29 AD12/A12 36 D7 30 30 AD13/A13 37 C8 31 31 AD14/A14 38 C7 32 32 AD15/A15 39 B8 33 33 PC0 40 B7 34 34 PC1 41 A7 35 35 PC2 42 B6 36 36 | | | · · | | | | GND 34 E ₈ 28 28 AD11/A11 35 D ₈ 29 29 AD12/A12 36 D ₇ 30 30 AD13/A13 37 C ₈ 31 31 AD14/A14 38 C ₇ 32 32 AD15/A15 39 B ₈ 33 33 PC0 40 B ₇ 34 34 PC1 41 A ₇ 35 35 PC2 42 B ₆ 36 36 | | | | 1 | | | AD11/A11 35 D ₈ 29 29 AD12/A12 36 D ₇ 30 30 AD13/A13 37 C ₈ 31 31 AD14/A14 38 C ₇ 32 32 AD15/A15 39 B ₈ 33 33 PC0 40 B ₇ 34 34 PC1 41 A ₇ 35 35 PC2 42 B ₆ 36 36 | | | | 1 | | | AD12/A12 36 D ₇ 30 30 AD13/A13 37 C ₈ 31 31 AD14/A14 38 C ₇ 32 32 AD15/A15 39 B ₈ 33 33 PC0 40 B ₇ 34 34 PC1 41 A ₇ 35 35 PC2 42 B ₆ 36 36 | | | | 1 | | | AD13/A13 37 C ₈ 31 31
AD14/A14 38 C ₇ 32 32
AD15/A15 39 B ₈ 33 33
PC0 40 B ₇ 34 34
PC1 41 A ₇ 35 35
PC2 42 B ₆ 36 36 | | | _ | 1 | | | AD14/A14 38 C ₇ 32 32 AD15/A15 39 B ₈ 33 33 PC0 40 B ₇ 34 34 PC1 41 A ₇ 35 35 PC2 42 B ₆ 36 36 | | | · · | 1 | | | AD15/A15 39 B ₈ 33 33 PC0 40 B ₇ 34 34 PC1 41 A ₇ 35 35 PC2 42 B ₆ 36 36 | | | | 1 | | | PC0 40 B ₇ 34 34 PC1 41 A ₇ 35 35 PC2 42 B ₆ 36 36 | | | | | | | PC1 41 A7 35 35 PC2 42 B6 36 36 | | | | 1 | | | PC2 42 B ₆ 36 36 | | | I | 1 | | | | | | | 1 | | | | | | | 1 | | | V _{CC} 44 B ₅ 38 38 | | | _ | 1 | | | | ***** | 77 | | | | #### PSD301/301R Package Information Figure 39. Drawing L4 – 44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window (Package Type L) OR Drawing J2 – 44 Pin Plastic Leaded Chip Carrier (PLDCC) without Window (Package Type J) Figure 40. Drawing M1 — 44 Pin Plastic Quad Flatpack (PQFP) (Package Type M) OR Drawing U1 — 44 Pin Plastic Thin Quad Flatpack (TQFP) (Package Type U) PSD301/301R Package Information Figure 41. Drawing X2 – 44 Pin CPGA (Package Type X) (TOP VIEW, THROUGH PACKAGE) # **Programmable Peripheral** *PSD311/PSD311R* # Field-Programmable Microcontroller Peripheral | <i>(ey Features</i> | ☐ Single Chip Programmable Peripheral for Microcontroller-based Applications | |---------------------|---| | | 19 Individually Configurable I/O pins that can be used as: Microcontroller I/O port expansion Programmable Address Decoder (PAD) I/O Latched address output Open drain or CMOS | | | Two Programmable Arrays (PAD A and PAD B) Total of 40 Product Terms and up to 12 Inputs and 24 Outputs Address Decoding up to 1 MB Logic replacement | | | "No Glue" Microcontroller Chip-Set Built-in address latches for multiplexed address/data bus Non-multiplexed address/data bus mode 8-bit data bus width ALE and Reset polarity programmable Selectable modes for read and write control bus as RD/WR or R/W/E PSEN pin for 8051 users | | | 256 Kbits of UV EPROM Configurable as 32K x 8 Divides into 8 equal mappable blocks for optimized mapping Block resolution is 4K x 8 70 ns EPROM access time, including input latches and PAD address decoding. | | | 16 Kbit Static RAM (only on PSD311) Configurable as 2K x 8 70 ns SRAM access time, including input latches and PAD address decoding | | | Address/Data Track Mode Enables easy Interface to Shared Resources (e.g., Mail Box SRAM) with other Microcontrollers or a Host Processor | | | □ Built-In Security─ Locks the PSD311 and PAD Decoding Configuration | | | Available in a Choice of Packages44 Pin PLDCC, CLDCC, TQFP, and PQFP | | | ☐ Simple Menu-Driven Software: Configure the PSD311 on an IBM PC | | | ☐ Pin and Function Compatible with the PSD312, PSD313 and PSD314R | ### *PSD311/311R Pin Assignments* | Pin Name | 44-Pin
PLDCC/CLDCC
Package | 44-Pin
TQFP
Package | 44-Pin
PQFP
Package | |---------------------------|----------------------------------|---------------------------|---------------------------| | PSEN | 1 | 39 | 39 | | WR/V _{PP} or R/W | 2 | 40 | 40 | | RESET | 3 | 41 | 41 | | PB7 | 4 | 42 | 42 | | PB6 | 5 | 43 | 43 | | PB5 | 6 | 44 | 44 | | PB4 | 7 | 1 | 1 | | PB3 | 8 | 2 | 2 | | PB2 | 9 | 3 | 3 | | PB1 | 10 | 4 | 4 | | PB0 | 11 | 5 | 5 | | GND | 12 | 6 | 6 | | ALE or AS | 13 | 7 | 7 | | PA7 | 14 | 8 | 8 | | PA6 | 15 | 9 | 9 | | PA5 | 16 | 10 | 10 | | PA4 | 17 | 11 | 11 | | PA3 | 18 | 12 | 12 | | PA2 | 19 | 13 | 13 | | PA1 | 20 | 14 | 14 | | PA0 | 21 | 15 | 15 | | RD/E | 22 | 16 | 16 | | AD0/A0 | 23 | 17 | 17 | | AD1/A1 | 24 | 18 | 18 | | AD2/A2 | 25 | 19 | 19 | | AD3/A3 | 26 | 20 | 20 | | AD4/A4 | 27 | 21 | 21 | | AD5/A5 | 28 | 22 | 22 | | AD6/A6 | 29 | 23 | 23 | | AD7/A7 | 30 | 24 | 24 | | A8 | 31 | 25 | 25 | | A9 | 32 | 26 | 26 | | A10 | 33 | 27 | 27 | | GND | 34 | 28 | 28 | | A11 | 35 | 29 | 29 | | A12 | 36 | 30 | 30 | | A13 | 37 | 31 | 31 | | A14 | 38 | 32 | 32 | | A15 | 39 | 33 | 33 | | PC0 | 40 | 34 | 34 | | PC1 | 41 | 35 | 35 | | PC2 | 42 | 36 | 36 | | A19/CSI | 43 | 37 | 37 | | V _{CC} | 44 | 38 | 38 | #### PSD311/311R Package Information Figure 42. Drawing L4 – 44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window (Package Type L) OR Drawing J2 – 44 Pin Plastic Leaded Chip Carrier (PLDCC) without Window (Package Type J) Figure 43. Drawing M1 – 44 Pin Plastic Quad Flatpack (PQFP) (Package Type M) OR Drawing U1 – 44 Pin Plastic Thin Quad Flatpack (TQFP) (Package Type U) # **Programmable Peripheral** *PSD302/302R* ## Field-Programmable Microcontroller Peripheral | <i>(ey Features</i> | ☐ Single Chip Programmable Peripheral for Microcontroller-based Applications | |---------------------|---| | | 19 Individually Configurable I/O pins that can be used as: Microcontroller I/O port expansion Programmable Address Decoder (PAD) I/O Latched address output Open drain or CMOS | | | Two Programmable Arrays (PAD A & PAD B) Total of 40 Product Terms and up to 16 Inputs and 24 Outputs Direct Address Decoding up to 1 Meg address space and up to 16 Meg with paging Logic replacement | | | "No Glue" Microcontroller Chip-Set Built-in address latches for multiplexed address/data bus Non-multiplexed address/data bus mode Selectable 8 or 16 bit data bus width ALE and Reset polarity
programmable Selectable modes for read and write control bus as RD/WR, R/W/E, or R/W/DS BHE pin for byte select in 16-bit mode PSEN pin for 8051 users | | | Built-In Page Logic To Expand the Address Space of Microcontrollers with Limited Address Space Capabilities Up to 16 pages | | | 512 Kbits of UV EPROM Configurable as 64K x 8 or as 32K x 16 Divides into 8 equal mappable blocks for optimized mapping Block resolution is 8K x 8 or 4K x 16 70 ns EPROM access time, including input latches and PAD address decoding. | | | 16 Kbit Static RAM (only on PSD302) Configurable as 2K x 8 or as 1K x 16 70 ns SRAM access time, including input latches and PAD address decoding | | | Address/Data Track Mode Enables easy Interface to Shared Resources (e.g., Mail Box SRAM) with other Microcontrollers or a Host Processor | | | CMiser-BitProgrammable option to further reduce power consumption | | | Built-In SecurityLocks the PSD302 and PAD Decoding Configuration | | | Available in a Choice of Packages 44 Pin PLDCC, CLDCC, TQFP, and PQFP 44 Pin CPGA | | | Simple Menu-Driven Software: Configure the PSD302 on an IBM PC Pin and Function Compatible with the PSD301, PSD303 and PSD304R | # *PSD302/302R Pin Assignments* | Pin Name | 44-Pin
PLDCC/CLDCC
Package | 44-Pin
CPGA
Package | 44-Pin
TQFP
Package | 44-Pin
PQFP
Package | |---------------------------|----------------------------------|---------------------------|---------------------------|---------------------------| | BHE/PSEN | 1 | A ₅ | 39 | 39 | | WR/V _{PP} or R/W | 2 | A_4 | 40 | 40 | | RESET | 3 | B ₄ | 41 | 41 | | PB7 | 4 | A ₃ | 42 | 42 | | PB6 | 5 | B ₃ | 43 | 43 | | PB5 | 6 | A ₂ | 44 | 44 | | PB4 | 7 | B ₂ | 1 | 1 | | PB3 | 8 | B ₁ | 2 | 2 | | PB2 | 9 | C ₂ | 3 | 3 | | PB1 | 10 | C ₁ | 4 | 4 | | PB0 | 11 | D_2 | 5 | 5 | | GND | 12 | D ₁ | 6 | 6 | | ALE or AS | 13 | E ₁ | 7 | 7 | | PA7 | 14 | E ₂ | 8 | 8 | | PA6 | 15 | F ₁ | 9 | 9 | | PA5 | 16 | F ₂ | 10 | 10 | | PA4 | 1 7 | G ₁ | 11 | 11 | | PA3 | 18 | G ₂ | 12 | 12 | | PA2 | 19 | H ₂ | 13 | 13 | | PA1 | 20 | G ₃ | 14 | 14 | | PA0 | 21 | H ₃ | 15 | 15 | | RD/E/DS | 22 | G_4 | 16 | 16 | | AD0/A0 | 23 | H_4 | 17 | 17 | | AD1/A1 | 24 | H ₅ | 18 | 18 | | AD2/A2 | 25 | G ₅ | 19 | 19 | | AD3/A3 | 26 | H ₆ | 20 | 20 | | AD4/A4 | 27 | G ₆ | 21 | 21 | | AD5/A5 | 28 | H ₇ | 22 | 22 | | AD6/A6 | 29 | G ₇ | 23 | 23 | | AD7/A7 | 30 | G ₈ | 24 | 24 | | AD8/A8 | 31 | F ₇ | 25 | 25 | | AD9/A9 | 32 | F ₈ | 26 | 26 | | AD10/A10 | 33 | E ₇ | 27 | 27 | | GND | 34 | E ₈ | 28 | 28 | | AD11/A11 | 35 | D ₈ | 29 | 29 | | AD12/A12 | 36 | D ₇ | 30 | 30 | | AD13/A13 | 37 | C ₈ | 31 | 31 | | AD14/A14 | 38 | C ₇ | 32 | 32 | | AD15/A15 | 39 | B ₈ | 33 | 33 | | PC0 | 40 | В ₇ | 34 | 34 | | PC1 | 41 | A ₇ | 35 | 35 | | PC2 | 42 | В ₆ | 36 | 36 | | A19/CSI | 43 | A ₆ | 37 | 37 | | V _{CC} | 44 | B ₅ | 38 | 38 | | | | | | | #### PSD302/302R Package Information Figure 44. Drawing L4 — 44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window (Package Type L) OR Drawing J2 — 44 Pin Plastic Leaded Chip Carrier (PLDCC) without Window (Package Type J) Figure 45. Drawing M1 — 44 Pin Plastic Quad Flatpack (PQFP) (Package Type M) OR Drawing U1 — 44 Pin Plastic Thin Quad Flatpack (TQFP) (Package Type U) PSD302/302R Package Information Figure 46. Drawing X2 – 44 Pin CPGA (Package Type X) (TOP VIEW, THROUGH PACKAGE) # **Programmable Peripheral** *PSD312/312R* ## Field-Programmable Microcontroller Peripheral | Key Features | ☐ Single Chip Programmable Peripheral for Microcontroller-based Applications | |--------------|--| | | 19 Individually Configurable I/O pins that can be used as: Microcontroller I/O port expansion Programmable Address Decoder (PAD) I/O Latched address output Open drain or CMOS | | | Two Programmable Arrays (PAD A & PAD B) Total of 40 Product Terms and up to 16 Inputs and 24 Outputs Direct Address Decoding up to 1 Meg address space and up to 16 Meg with paging Logic replacement | | | "No Glue" Microcontroller Chip-Set Built-in address latches for multiplexed address/data bus Non-multiplexed address/data bus mode 8-bit data bus width ALE and Reset polarity programmable Selectable modes for read and write control bus as RD/WR, R/W/E, or R/W/DS PSEN pin for 8051 users | | | Built-In Page Logic To Expand the Address Space of Microcontrollers with Limited Address Space Capabilities Up to 16 pages | | | 512 Kbits of UV EPROM Configured as 64K x 8 Divides into 8 equal mappable blocks for optimized mapping Block resolution is 8K x 8 70 ns EPROM access time, including input latches and PAD address decoding. | | | 16 Kbit Static RAM (only on PSD312) Configured as 2K x 8 70 ns SRAM access time, including input latches and PAD address decoding | | | Address/Data Track Mode Enables easy Interface to Shared Resources (e.g., Mail Box SRAM) with other Microcontrollers or a Host Processor | | | CMiser-BitProgrammable option to further reduce power consumption | | | □ Built-In Security─ Locks the PSD312 and PAD Decoding Configuration | | | Available in a Choice of Packages44 Pin PLDCC, CLDCC, TQFP, and PQFP | | | ☐ Simple Menu-Driven Software: Configure the PSD312 on an IBM PC | | | Pin and Function Compatible with the PSD311, PSD313 and PSD314R | ### *PSD312/312R Pin Assignments* | Pin Name | 44-Pin
PLDCC/CLDCC
Package | 44-Pin
TQFP
Package | 4-Pin
PQFP
Package | |--|----------------------------------|---------------------------|--------------------------| | PSEN | 1 | 39 | 39 | | \overline{WR}/V_{PP} or R/\overline{W} | 2 | 40 | 40 | | RESET | 3 | 41 | 41 | | PB7 | 4 | 42 | 42 | | PB6 | 5 | 43 | 43 | | PB5 | 6 | 44 | 44 | | PB4 | 7 | 1 | 1 | | PB3 | 8 | 2 | 2 | | PB2 | 9 | 3 | 3 | | PB1 | 10 | 4 | 4 | | PB0 | 11 | 5 | 5 | | GND | 12 | 6 | 6 | | ALE or AS | 13 | 7 | 7 | | PA7 | 14 | 8 | 8 | | PA6 | 15 | 9 | 9 | | PA5 | 16 | 10 | 10 | | PA4 | 17 | 11 | 11 | | PA3 | 18 | 12 | 12 | | PA2 | 19 | 13 | 13 | | PA1 | 20 | 14 | 14 | | PA0 | 21 | 15 | 15 | | RD/E/DS | 22 | 16 | 16 | | AD0/A0 | 23 | 17 | 17 | | AD1/A1 | 24 | 18 | 18 | | AD2/A2 | 25 | 19 | 19 | | AD3/A3 | 26 | 20 | 20 | | AD4/A4 | 27 | 21 | 21 | | AD5/A5 | 28 | 22 | 22 | | AD6/A6 | 29 | 23 | 23 | | AD7/A7 | 30 | 24 | 24 | | A8 | 31 | 25 | 25 | | A9 | 32 | 26 | 26 | | A10 | 33 | 27 | 27 | | GND | 34 | 28 | 28 | | A11 | 35 | 29 | 29 | | A12 | 36 | 30 | 30 | | A13
A14 | 37
38 | 31 | 31
32 | | A14
A15 | 39 | 32
33 | 32 | | PC0 | 40 | 33 | 33 | | PC1 | 40 | 35 | 35 | | PC2 | 42 | 36 | 36 | | A19/CSI | 43 | 37 | 37 | | V _{CC} | 44 | 38 | 38 | | *00 | T-T | | 50 | ### PSD312/312R Package Information Figure 47. Drawing L4 — 44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window (Package Type L) OR Drawing J2 — 44 Pin Plastic Leaded Chip Carrier (PLDCC) without Window (Package Type J) Figure 48. Drawing M1 — 44 Pin Plastic Quad Flatpack (PQFP) (Package Type M) OR Drawing U1 — 44 Pin Plastic Thin Quad Flatpack (TQFP) (Package Type U) # **Programmable Peripheral** *PSD303/303R* | Key Features | ☐ Single Chip Programmable Peripheral for Microcontroller-based Applications | |--------------|---| | | 19 Individually Configurable I/O pins that can be used as: Microcontroller I/O port expansion Programmable Address Decoder (PAD) I/O Latched address output Open drain or CMOS | | | Two Programmable Arrays (PAD A & PAD B) Total of 40 Product Terms and up to 16 Inputs and 24 Outputs Direct Address Decoding up to 1 Meg address space and up to 16 Meg with paging Logic replacement | | | "No Glue" Microcontroller Chip-Set Built-in address latches for multiplexed address/data bus Non-multiplexed address/data bus mode Selectable 8 or 16 bit data bus width ALE and Reset polarity programmable Selectable modes for read and write control bus as RD/WR, R/W/E, or R/W/DS BHE pin for byte select in 16-bit mode PSEN pin for 8051 users | | | Built-In Page Logic To Expand the Address Space of Microcontrollers with Limited Address Space Capabilities Up to 16 pages | | | 1 M bit of UV EPROM Configurable as 128K x 8 or as 64K x 16 Divides into 8 equal mappable blocks for optimized mapping Block resolution is 16K x 8 or 8K x 16 70 ns EPROM access time, including input
latches and PAD address decoding. | | | 16 Kbit Static RAM (only on PSD303) Configurable as 2K x 8 or as 1K x 16 70 ns SRAM access time, including input latches and PAD address decoding | | | Address/Data Track Mode Enables easy Interface to Shared Resources (e.g., Mail Box SRAM) with other Microcontrollers or a Host Processor | | | Built-In Security Locks the PSD303 and PAD Decoding Configuration | | | Available in a Choice of Packages 44 Pin PLDCC, CLDCC, TQFP, and PQFP 44 Pin CPGA | | | Simple Menu-Driven Software: Configure the PSD303 on an IBM PC | | | Pin and Function Compatible with the PSD301, PSD302 and PSD304R | ## PSD303/303R Pin Assignments | Pin Name | 44-Pin
PLDCC/CLDCC
Package | 44-Pin
CPGA
Package | 44-Pin
PQFP and TQFP
Package | |---------------------------|----------------------------------|---------------------------|------------------------------------| | BHE/PSEN | 1 | A ₅ | 39 | | WR/V _{PP} or R/W | 2 | A ₄ | 40 | | RESET | 3 | B ₄ | 41 | | PB7 | 4 | A ₃ | 42 | | PB6 | 5 | B ₃ | 43 | | PB5 | 6 | A ₂ | 44 | | PB4 | 7 | B ₂ | 1 | | PB3 | 8 | B ₁ | 2 | | PB2 | 9 | C ₂ | 3 | | PB1 | 10 | C ₁ | 4 | | PB0 | 11 | D ₂ | 5 | | GND | 12 | D ₁ | 6 | | ALE or AS | 13 | E ₁ | 7 | | PA7 | 14 | E ₂ | 8 | | PA6 | 15 | F ₁ | 9 | | PA5 | 16 | F ₂ | 10 | | PA4 | 17 | G ₁ | 11 | | PA3 | 18 | G ₂ | 12 | | PA2 | 19 | H ₂ | 13 | | PA1 | 20 | G ₃ | 14 | | PA0 | 21 | H ₃ | 15 | | RD/E/DS | 22 | G ₄ | 16 | | AD0/A0 | 23 | H ₄ | 17 | | AD1/A1 | 24 | H ₅ | 18 | | AD2/A2 | 25 | G ₅ | 19 | | AD3/A3 | 26 | H ₆ | 20 | | AD4/A4 | 27 | G ₆ | 21 | | AD5/A5 | 28 | H ₇ | 22 | | AD6/A6 | 29 | G ₇ | 23 | | AD7/A7 | 30 | G ₈ | 24 | | AD8/A8 | 31 | F ₇ | 25 | | AD9/A9 | 32 | F ₈ | 26 | | AD10/A10 | 33 | E ₇ | 27 | | GND | 34 | E ₈ | 28 | | AD11/A11 | 35 | D ₈ | 29 | | AD12/A12 | 36 | D ₇ | 30 | | AD13/A13 | 37 | C ₈ | 31 | | AD14/A14 | 38 | C ₇ | 32 | | AD15/A15 | 39 | B ₈ | 33 | | PC0 | 40 | B ₇ | 34 | | PC1 | 41 | A ₇ | 35 | | PC2 | 42 | B ₆ | 36 | | A19/CSI | 43 | A ₆ | 37 | | V _{cc} | 44 | B ₅ | 38 | #### PSD303/303R Package Information Figure 49. Drawing L4 — 44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window (Package Type L) OR Drawing J2 – 44 Pin Plastic Leaded Chip Carrier (PLDCC) without Window (Package Type J) Figure 50. Drawing M1 — 44 Pin Plastic Quad Flatpack (PQFP) (Package Type M) OR Drawing U1 — 44 Pin Plastic Thin Quad Flatpack (TQFP) (Package Type U) PSD303/303R Package Information Figure 51. Drawing X2 – 44 Pin CPGA (Package Type X) (TOP VIEW, THROUGH PACKAGE) # **Programmable Peripheral** *PSD313/313R* | Key Features | ☐ Single Chip Programmable Peripheral for Microcontroller-based Applications | |--------------|--| | | 19 Individually Configurable I/O pins that can be used as: Microcontroller I/O port expansion Programmable Address Decoder (PAD) I/O Latched address output Open drain or CMOS | | | Two Programmable Arrays (PAD A & PAD B) Total of 40 Product Terms and up to 16 Inputs and 24 Outputs Direct Address Decoding up to 1 Meg address space and up to 16 Meg with paging Logic replacement | | | "No Glue" Microcontroller Chip-Set Built-in address latches for multiplexed address/data bus Non-multiplexed address/data bus mode 8-bit data bus width ALE and Reset polarity programmable Selectable modes for read and write control bus as RD/WR, R/W/E, or R/W/DS PSEN pin for 8051 users | | | Built-In Page Logic To Expand the Address Space of Microcontrollers with Limited Address Space Capabilities Up to 16 pages | | | 1 M bit of UV EPROM Configurable as 128K x 8 Divides into 8 equal mappable blocks for optimized mapping Block resolution is 16K x 8 70 ns EPROM access time, including input latches and PAD address decoding. | | | 16 Kbit Static RAM (only on PSD313) Configurable as 2K x 8 70 ns SRAM access time, including input latches and PAD address decoding | | | Address/Data Track Mode Enables easy Interface to Shared Resources (e.g., Mail Box SRAM) with other Microcontrollers or a Host Processor | | | ☐ Built-In Security─ Locks the PSD313 and PAD Decoding Configuration | | | Available in a Choice of Packages44 Pin PLDCC, CLDCC, TQFP, and PQFP | | | ☐ Simple Menu-Driven Software: Configure the PSD313 on an IBM PC | | | ☐ Pin and Function Compatible with the PSD311, PSD312 and PSD314R | ## PSD313/313R Pin Assignments | Pin Name | 44-Pin
PLDCC/CLDCC
Package | 44-Pin
TQFP
Package | 44-Pin
PQFP
Package | |---------------------------|----------------------------------|---------------------------|---------------------------| | PSEN | 1 | 39 | 39 | | ₩R/V _{PP} or R/₩ | 2 | 40 | 40 | | RESET | 3 | 41 | 41 | | PB7 | 4 | 42 | 42 | | PB6 | 5 | 43 | 43 | | PB5 | 6 | 44 | 44 | | PB4 | 7 | 1 | 1 | | PB3 | 8 | 2 | 2 | | PB2 | 9 | 3 | 3 | | PB1 | 10 | 4 | 4 | | PB0 | 11 | 5 | 5 | | GND | 12 | 6 | 6 | | ALE or AS | 13 | 7 | 7 | | PA7 | 14 | 8 | 8 | | PA6 | 15 | 9 | 9 | | PA5 | 16 | 10 | 10 | | PA4 | 17 | 11 | 11 | | PA3 | 18 | 12 | 12 | | PA2 | 19 | 13 | 13 | | PA1 | 20 | 14 | 14 | | PA0 | 21 | 15 | 15 | | RD/E/DS | 22 | 16 | 16 | | AD0/A0 | 23 | 17 | 17 | | AD1/A1 | 24 | 18 | 18 | | AD2/A2 | 25 | 19 | 19 | | AD3/A3 | 26 | 20 | 20 | | AD4/A4 | 27 | 21 | 21 | | AD5/A5 | 28 | 22 | 22 | | AD6/A6 | 29 | 23 | 23 | | AD7/A7 | 30 | 24 | 24 | | A8 | 31 | 25 | 25 | | A9 | 32 | 26 | 26 | | A10 | 33 | 27 | 27 | | GND | 34 | 28 | 28 | | A11 | 35 | 29 | 29 | | A12 | 36 | 30 | 30 | | A13 | 37 | 31 | 31 | | A14 | 38 | 32 | 32 | | A15 | 39 | 33 | 33 | | PC0 | 40 | 34 | 34 | | PC1 | 41 | 35 | 35 | | PC2 | 42 | 36 | 36 | | A19/CSI | 43 | 37 | 37 | | V _{cc} | 44 | 38 | 38 | PSD313/313R Package Information Figure 52. Drawing L4 – 44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window (Package Type L) OR Drawing J2 – 44 Pin Plastic Leaded Chip Carrier (PLDCC) without Window (Package Type J) Figure 53. Drawing M1 — 44 Pin Plastic Quad Flatpack (PQFP) (Package Type M) OR Drawing U1 — 44 Pin Plastic Thin Quad Flatpack (TQFP) (Package Type U) # **Programmable Peripheral** *PSD304R* | <i>(ey Features</i> | ☐ Single Chip Programmable Peripheral for Microcontroller-based Applications | |---------------------|---| | | 19 Individually Configurable I/O pins that can be used as: Microcontroller I/O port expansion Programmable Address Decoder (PAD) I/O Latched address output Open drain or CMOS | | | Two Programmable Arrays (PAD A & PAD B) Total of 40 Product Terms and up to 16 Inputs and 24 Outputs Direct Address Decoding up to 1 Meg address space and up to 16 Meg with paging Logic replacement | | | "No Glue" Microcontroller Chip-Set Built-in address latches for multiplexed address/data bus Non-multiplexed address/data bus mode Selectable 8 or 16 bit data bus width ALE and Reset polarity programmable Selectable modes for read and write control bus as RD/WR, R/W/E, or R/W/DS BHE pin for byte select in 16-bit mode PSEN pin for 8051 users | | | Built-In Page Logic To Expand the Address Space of Microcontrollers with Limited Address Space Capabilities Up to 16 pages | | | 2 M bit of UV EPROM Configurable as 256K x 8 or as 128K x 16 Divides into 8 equal mappable blocks for optimized mapping Block resolution is 32K x 8 or 16K x 16 70 ns EPROM access time, including input latches and PAD address decoding. | | | Address/Data Track Mode Enables easy Interface to Shared Resources (e.g., Mail Box SRAM) with other Microcontrollers or a Host Processor | | | □ Built-In Security─ Locks the PSD304R and PAD Decoding Configuration | | | Available in a Choice of Packages44 Pin PLDCC, CLDCC and TQFP44 Pin CPGA | | | ☐ Simple Menu-Driven Software: Configure the PSD304R on an IBM PC | | | ☐ Pin and Function Compatible with the PSD301, PSD302 and PSD303 | ### *PSD304R Pin Assignments* | | Pin Name | 44-Pin
PLDCC/CLDCC
Package | 44-Pin
CPGA
Package | 44-Pin
TQFP
Package | |---|---------------------------|----------------------------------|---------------------------|---------------------------| | ſ | BHE/PSEN | 1 | A ₅ | 39 | | | WR/V _{PP} or R/W | 2 | A ₄ | 40 | | | RESET | 3 | B ₄ | 41 | | | PB7 | 4 | A ₃ | 42 | | | PB6 | 5 | B ₃ | 43 | | | PB5 | 6 | A ₂ | 44 | | | PB4 | 7 | B ₂ | 1 | | | PB3 | 8 | B ₁ | 2 | | | PB2 | 9 | C ₂ | 3 | | | PB1 | 10 | C ₁ | 4 | | | PB0 | 11 | D ₂ | 5 | | | GND | 12 | D ₁ | 6 | | | ALE or AS | 13 | E ₁ | 7 | | | PA7 | 14 | E ₂
 8 | | | PA6 | 15 | F ₁ | 9 | | | PA5 | 16 | F ₂ | 10 | | | PA4 | 17 | G ₁ | 11 | | | PA3 | 18 | G ₂ | 12 | | | PA2 | 19 | H ₂ | 13 | | | PA1 | 20 | G ₃ | 14 | | | PA0 | 21 | H ₃ | 15 | | | RD/E/DS | 22 | G ₄ | 16 | | | AD0/A0 | 23 | H ₄ | 17 | | | AD1/A1 | 24 | H ₅ | 18 | | | AD2/A2 | 25 | G ₅ | 19 | | | AD3/A3 | 26 | H ₆ | 20 | | | AD4/A4 | 27 | G ₆ | 21 | | | AD5/A5 | 28 | H ₇ | 22 | | | AD6/A6 | 29 | G ₇ | 23 | | | AD7/A7 | 30 | G ₈ | 24 | | | AD8/A8 | 31 | F ₇ | 25 | | | AD9/A9 | 32 | F ₈ | 26 | | | AD10/A10 | 33 | E ₇ | 27 | | | GND | 34 | E ₈ | 28 | | | AD11/A11 | 35 | D ₈ | 29 | | | AD12/A12 | 36 | D ₇ | 30 | | | AD13/A13 | 37 | C ₈ | 31 | | | AD14/A14 | 38 | C ₇ | 32 | | | AD15/A15 | 39 | B ₈ | 33 | | | PC0 | 40 | B ₇ | 34 | | | PC1 | 41 | A ₇ | 35 | | | PC2 | 42 | B ₆ | 36 | | | A19/CSI | 43 | A ₆ | 37 | | | V _{CC} | 44 | B ₅ | 38 | | L | | | I. | I | #### PSD304R Package Information Figure 54. Drawing L4 — 44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window (Package Type L) OR Drawing J2 – 44 Pin Plastic Leaded Chip Carrier (PLDCC) without Window (Package Type J) Figure 55. Drawing U1 – 44 Pin Plastic Thin Quad Flatpack (TQFP) (Package Type U) PSD304R Package Information Figure 56. Drawing X2 – 44 Pin CPGA (Package Type X) (TOP VIEW, THROUGH PACKAGE) # **Programmable Peripheral** *PSD314R* | <i>(ey Features</i> | ☐ Single Chip Programmable Peripheral for Microcontroller-based Applications | |---------------------|--| | | 19 Individually Configurable I/O pins that can be used as: Microcontroller I/O port expansion Programmable Address Decoder (PAD) I/O Latched address output Open drain or CMOS | | | Two Programmable Arrays (PAD A & PAD B) Total of 40 Product Terms and up to 16 Inputs and 24 Outputs Direct Address Decoding up to 1 Meg address space and up to 16 Meg with paging Logic replacement | | | "No Glue" Microcontroller Chip-Set Built-in address latches for multiplexed address/data bus Non-multiplexed address/data bus mode 8-bit data bus width ALE and Reset polarity programmable Selectable modes for read and write control bus as RD/WR, R/W/E, or R/W/DS PSEN pin for 8051 users | | | Built-In Page Logic To Expand the Address Space of Microcontrollers with Limited Address Space Capabilities Up to 16 pages | | | 2 M bit of UV EPROM Configurable as 256K x 8 Divides into 8 equal mappable blocks for optimized mapping Block resolution is 32K x 8 70 ns EPROM access time, including input latches and PAD address decoding. | | | Address/Data Track Mode Enables easy Interface to Shared Resources (e.g., Mail Box SRAM) with other Microcontrollers or a Host Processor | | | Built-In SecurityLocks the PSD314R and PAD Decoding Configuration | | | Available in a Choice of Packages44 Pin PLDCC, CLDCC and TQFP | | | ☐ Simple Menu-Driven Software: Configure the PSD314R on an IBM PC | | | Pin and Function Compatible with the PSD311 PSD312 and PSD313 | ### *PSD314R Pin Assignments* | Pin Name | 44-Pin
PLDCC/CLDCC
Package | 44-Pin
TQFP
Package | |---------------------------|----------------------------------|---------------------------| | PSEN | 1 | 39 | | ₩R/V _{PP} or R/₩ | 2 | 40 | | RESET | 3 | 41 | | PB7 | 4 | 42 | | PB6 | 5 | 43 | | PB5 | 6 | 44 | | PB4 | 7 | 1 | | PB3 | 8 | 2 | | PB2 | 9 | 3 | | PB1 | 10 | 4 | | PB0 | 11 | 5 | | GND | 12 | 6 | | ALE or AS | 13 | 7 | | PA7 | 14 | 8 | | PA6 | 15 | 9 | | PA5 | 16 | 10 | | PA4 | 17 | 11 | | PA3 | 18 | 12 | | PA2 | 19 | 13 | | PA1 | 20 | 14 | | PA0 | 21 | 15 | | RD/E/DS | 22 | 16 | | AD0/A0 | 23 | 17 | | AD1/A1 | 24 | 18 | | AD2/A2 | 25 | 19 | | AD3/A3 | 26 | 20 | | AD4/A4 | 27 | 21 | | AD5/A5 | 28 | 22 | | AD6/A6 | 29 | 23 | | AD7/A7 | 30 | 24 | | A8 | 31 | 25 | | A9 | 32 | 26 | | A10 | 33 | 27 | | GND | 34 | 28 | | A11 | 35 | 29 | | A12 | 36 | 30 | | A13 | 37 | 31 | | A14 | 38 | 32 | | A15 | 39 | 33 | | PC0 | 40 | 34 | | PC1 | 41 | 35 | | PC2 | 42 | 36 | | A19/CSI | 43 | 37 | | V _{CC} | 44 | 38 | #### PSD314R Package Information Figure 57. Drawing L4 — 44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window (Package Type L) OR Drawing J2 — 44 Pin Plastic Leaded Chip Carrier (PLDCC) without Window (Package Type J) Figure 58. Drawing U1 – 44 Pin Plastic Thin Quad Flatpack (TQFP) (Package Type U) ### PSD3XX Product Ordering Information PSD3XX family devices are available in a wide range of product selections. Options and combinations include: Architecture Speed (Access Time) Memory Size Configuration SRAM/no SRAM Mass Programmability Operating Temperature Range Supply Voltages Packages Please contact your local WSI Sales Representative or Distributor for the PSD3XX product selection that best fits your application and objectives. ### Product Revisions | Date | Revision
Reason | Data Sheet
Changes | |--------------------------------|---|---| | May, 1995 | Initial release | _ | | Revision A
PSD3XX-A
1996 | Design changed for improved manufacturability and improved margin to specification. | None | | May, 1998 | | M1 PQFP package added; page 33 – DC Characteristics table updated; PSD3XXL product discontinued; pages 36, 37 and and 38 – AC Characteristics speeds changed from 70/90/120/150/200 ns to 70/90/150/200 ns. |