Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ PD78074B, 78075B

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78074B and 78075B, which are members of the μ PD78075B Subseries of the 78K/0 Series, are ideal for AV products.

Compared to the existing μ PD78074 and 78075, EMI (Electro Magnetic Interference) noise generated inside the microcontroller is reduced.

Besides a high-speed, high-performance CPU, these microcontrollers have on-chip ROM, RAM, I/O ports, 8-bit resolution A/D converter, 8-bit resolution D/A converter, timer, serial interface, real-time output port, interrupt control, and various other peripheral hardware.

The μ PD78P078 including a one-time PROM version or an EPROM version can operate in the same power supply voltage range as a mask ROM version, and various development tools are available.

The details of the functions are described in the following user's manuals. Be sure to read the documents before starting design.

μPD78075B, 78075BY Subseries User's Manual : Planned 78K/0 Series User's Manual – Instructions : IEU-1372

FEATURES

Internal high-capacity ROM and RAM

Item	Program Memory	Data Mei	mory	Dealess
Part Number	(ROM)	Internal High-Speed RAM	Internal Buffer RAM	Package
μPD78074B	32 Kbytes	1024 bytes	32 bytes	100-pin plastic QFP (14 × 20 mm,
μPD78075B	40 Kbytes			resin thickness 2.7 mm)
				100-pin plastic QFP (14 × 14 mm,
				resin thickness 1.45 mm)

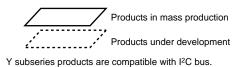
- External memory expansion space : 64 Kbytes
- Instruction execution time can be changed from high-speed (0.4 μs) to ultra-low-speed (122 μs)
- I/O ports: 88 (N-ch open-drain: 8)
- 8-bit resolution A/D converter: 8 channels
- 8-bit resolution D/A converter : 2 channels

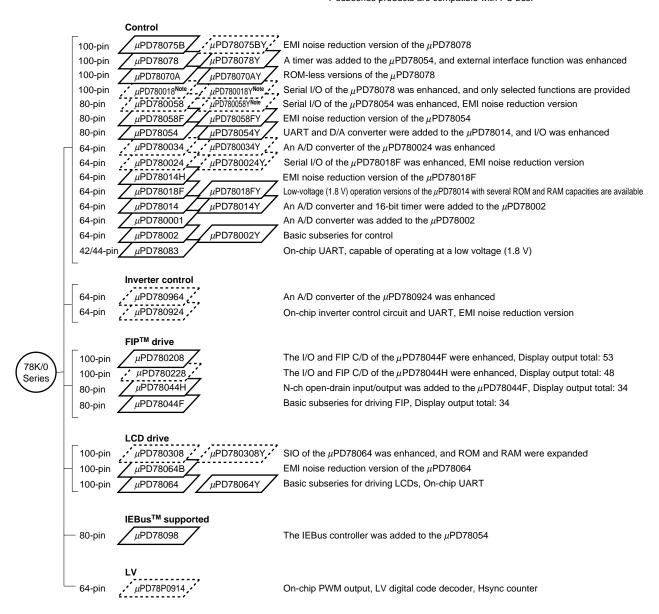
- · Serial interface: 3 channels
 - 3-wire serial I/O, SBI or 2-wire serial I/O mode:
 1 channel
 - 3-wire serial I/O mode: 1 channel
 - 3-wire serial I/O or UART mode: 1 channel
- Timer: 7 channels
- Supply voltage: VDD = 1.8 to 5.5 V

APPLICATIONS

Cellular telephones, cordless telephones, audio equipment, printers, VCRs, etc.

The information in this document is subject to change without notice.


ORDERING INFORMATION


Part Number	Package	
μPD78074BGF-×××-3BA	100-pin plastic QFP (14 \times 20 mm, resin thickness 2.7 mm)	
μ PD78074BGC- \times \times -7EA	100-pin plastic QFP (fine pitch) (14 \times 14 mm, resin thickness 1.45 mm)	
μ PD78075BGF-×××-3BA	100-pin plastic QFP (14 \times 20 mm, resin thickness 2.7 mm)	
μ PD78075BGC-×××-7EA	100-pin plastic QFP (fine pitch) (14 \times 14 mm, resin thickness 1.45 mm)	

Remark ××× indicates ROM code suffix.

78K/0 SERIES DEVELOPMENT

The 78K/0 Series products are developed as shown below. The designations appearing inside the boxes are subseries names.

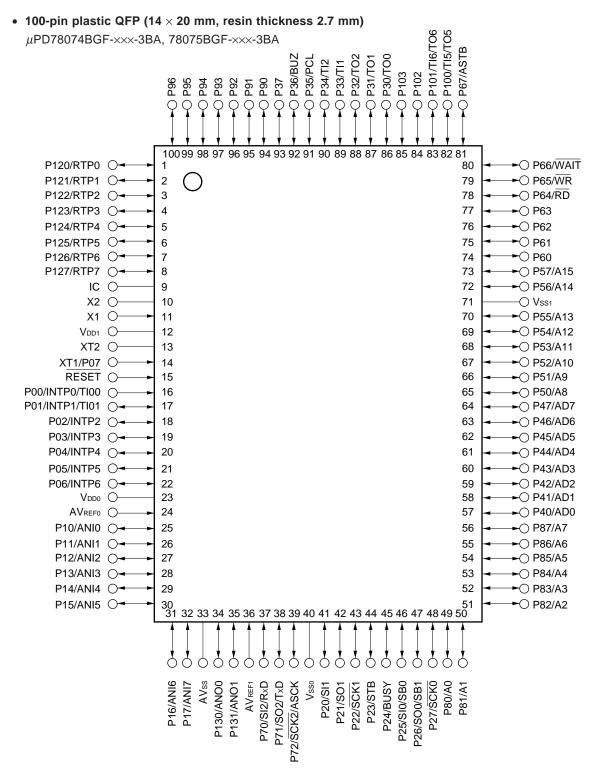
Note Under planning

The major functional differences among the subseries are shown below.

	Function	ROM		Tir	ner		8-bit	10-bit	8-bit	Serial Interface	I/O	V _{DD}	External
Subseries	s Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Senai interiace	1/0	Value	Expansion
Control	μPD78075B	32 K-40 K	4ch	1ch	1ch	1ch	8ch	-	2ch	3ch (UART: 1ch)	88	1.8 V	Available
	μPD78078	48 K-60 K											
	μPD78070A	-									61	2.7 V	
	μPD780018	48 K-60 K							_	2ch (time-division 3-wire: 1ch)	88		
	μPD780058	24 K-60 K	2ch	1					2ch	3ch (time-division UART: 1ch)	68	1.8 V	
	μPD78058F	48 K-60 K								3ch (UART: 1ch)	69	2.7 V	
	μPD78054	16 K-60 K										2.0 V	
	μPD780034	8 K-32 K					_	8ch	_	3ch (UART: 1ch,	51	1.8 V	
	μPD780024						8ch	-		time-division 3-wire: 1ch)			
	μPD78014H									2ch	53		
	μPD78018F	8 K-60 K											
	μPD78014	8 K-32 K										2.7 V	
	μPD780001	8 K		_	_					1ch	39		_
	μPD78002	8 K-16 K			1ch		_				53		Available
	μPD78083				-		8ch			1ch (UART: 1ch)	33	1.8 V	_
Inverter	μPD780964	8 K-32 K	3ch	Note	-	1ch	-	8ch	-	2ch (UART: 2ch)	47	2.7 V	Available
control	μPD780924						8ch	_					
FIP	μPD780208	32 K-60 K	2ch	1ch	1ch	1ch	8ch	-	-	2ch	74	2.7 V	-
drive	μPD780228	48 K-60 K	3ch	_	_					1ch	72	4.5 V	
	μPD78044H	32 K-48 K	2ch	1ch	1ch						68	2.7 V	
	μPD78044F	16 K-40 K								2ch			
LCD	μPD780308	48 K-60 K	2ch	1ch	1ch	1ch	8ch	_	_	3ch (time-division UART: 1ch)	57	2.0 V	_
drive	μPD78064B	32 K								2ch (UART: 1ch)			
	μPD78064	16 K-32 K											
IEBus	μPD78098	32 K-60 K	2ch	1ch	1ch	1ch	8ch	_	2ch	3ch (UART: 1ch)	69	2.7 V	Available
supported													
LV	μPD78P0914	32 K	6ch	-	-	1ch	8ch	-	-	2ch	54	4.5 V	Available
				1			1					1	

Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTION

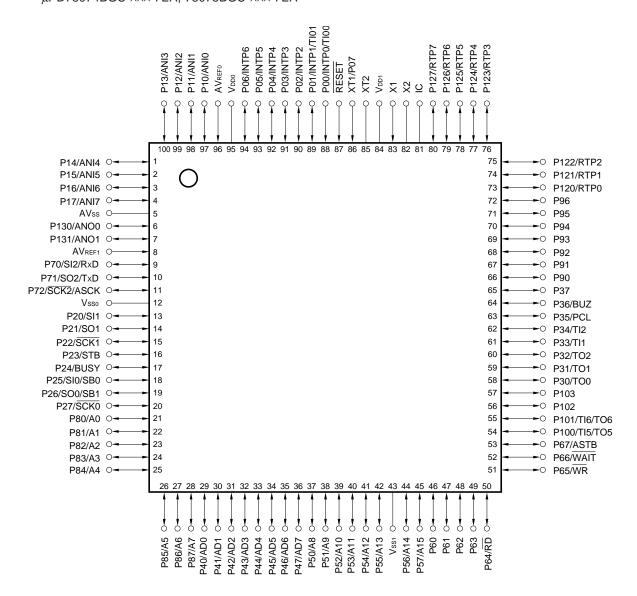

Item	Part Number	μPD78074B	μPD78075B				
Internal memory	ROM	32 Kbytes	40 Kbytes				
,	High-speed RAM	1024 bytes					
	Buffer RAM	32 bytes					
	Expansion RAM	None					
Memory space		64 Kbytes					
General registers		8 bits × 32 registers (8 bits × 8 registers × 4 banks)					
Instruction cycle		On-chip instruction execution time selective function					
.,	When main system clock selected	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs/12.8 μs					
	When subsystem clock selected	122 μs (at 32.768 kHz)					
Instruction set		16-bit operation					
		• Multiplication/division (8 bits × 8 bits, 16	bits ÷ 8 bits)				
		Bit manipulation (set, reset, test, boolean	operation)				
		BCD adjustment, etc.					
I/O ports		Total: 88					
		• CMOS input : 2					
		• CMOS I/O : 78					
		N-ch open-drain I/O : 8					
A/D converter		8-bit resolution × 8 channels					
D/A converter		8-bit resolution × 2 channels					
Serial interface		• 3-wire serial I/O, SBI, or 2-wire serial I/O					
		• 3-wire serial I/O mode (on-chip max. 32-l	byte automatic transmit/receive				
		function): 1 channel					
		3-wire serial I/O or UART mode selectable	le: 1 channel				
Timer		• 16-bit timer/event counter : 1 cha	innel				
		8-bit timer/event counter : 4 cha	innels				
		Watch timer : 1 cha	innel				
		Watchdog timer : 1 cha					
Timer output		5 (14-bit PWM output × 1, 8-bit PWM output	•				
Clock output		19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz,					
		5.0 MHz (at main system clock of 5.0 MHz					
		32.768 kHz (at subsystem clock of 32.768 kHz)					
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz, 9.8 kHz (at mai	n system clock of 5.0 MHz)				
Vectored	Maskable	Internal : 15, External : 7					
interrupt	Non-maskable	Internal: 1					
source	Software	1					
Test input		Internal: 1, External: 1					
Supply voltage		VDD = 1.8 to 5.5 V					
Package		• 100-pin plastic QFP (14 × 20 mm, resin t	,				
		• 100-pin plastic QFP (fine pitch) (14 × 14	mm, resin thickness 1.45 mm)				

5

CONTENTS

1.	PIN CONFIGURATION (Top View)	7
2.	BLOCK DIAGRAM	10
3.	PIN FUNCTIONS	11
	3.1 Port Pins	11
	3.2 Non-port Pins	
	3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	15
4.	MEMORY SPACE	19
5.	PERIPHERAL HARDWARE FUNCTIONS	
	5.1 Ports	
	5.2 Clock Generator	
	5.3 Timer/Event Counter	21
	5.4 Clock Output Control Circuit	
	5.5 Buzzer Output Control Circuit	
	5.6 A/D Converter	
	5.7 D/A Converter	
	5.8 Serial Interfaces	
	5.9 Real-Time Output Port	29
6.	INTERRUPT FUNCTIONS AND TEST FUNCTIONS	
	6.1 Interrupt Functions	
	6.2 Test Functions	33
7.	EXTERNAL DEVICE EXPANSION FUNCTIONS	34
8.	STANDBY FUNCTION	34
9.	RESET FUNCTION	35
10.	INSTRUCTION SET	36
11.	ELECTRICAL SPECIFICATIONS	38
12.	CHARACTERISTIC CURVES (FOR REFERENCE ONLY)	65
13.	PACKAGE DRAWINGS	67
14.	RECOMMENDED SOLDERING CONDITIONS	69
API	PENDIX A. DEVELOPMENT TOOLS	70
API	PENDIX B. RELATED DOCUMENTS	72

1. PIN CONFIGURATION (Top View)



Cautions 1. Connect IC (Internally Connected) pin directly to Vsso.

2. Connect AVss pin to Vsso.

Remark When the μ PD78074B and 78075B are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

• 100-pin plastic QFP (fine pitch) (14 \times 14 mm, resin thickness 1.45 mm) μ PD78074BGC- $\times\times$ -7EA, 78075BGC- $\times\times$ -7EA

Cautions 1. Connect IC (Internally Connected) pin directly to Vsso.

2. Connect AVss pin to Vsso.

Remark When the μPD78074B and 78075B are used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

AO to A15 : Address Bus
AD0 to AD7 : Address/Data Bus
ANI0 to ANI7 : Analog Input
ANO0, ANO1 : Analog Output

ASCK : Asynchronous Serial Clock

ASTB : Address Strobe

AVREF0, AVREF1 : Analog Reference Voltage

AVss : Analog Ground

BUSY : Busy

BUZ : Buzzer Clock
IC : Internally Connected

INTP0 to INTP6 : Interrupt from Peripherals

P00 to P07 : Port0 P10 to P17 : Port1 P20 to P27 : Port2 P30 to P37 : Port3 P40 to P47 : Port4 P50 to P57 : Port5 P60 to P67 : Port6 P70 to P72 : Port7 P80 to P87 : Port8

P80 to P87 : Port8
P90 to P96 : Port9
P100 to P103 : Port10
P120 to P127 : Port12
P130, P131 : Port13

PCL : Programmable Clock

RD : Read Strobe

RESET : Reset

RTP0 to RTP7 : Real-Time Output Port

RxD : Receive Data

SB0, SB1 : Serial Bus

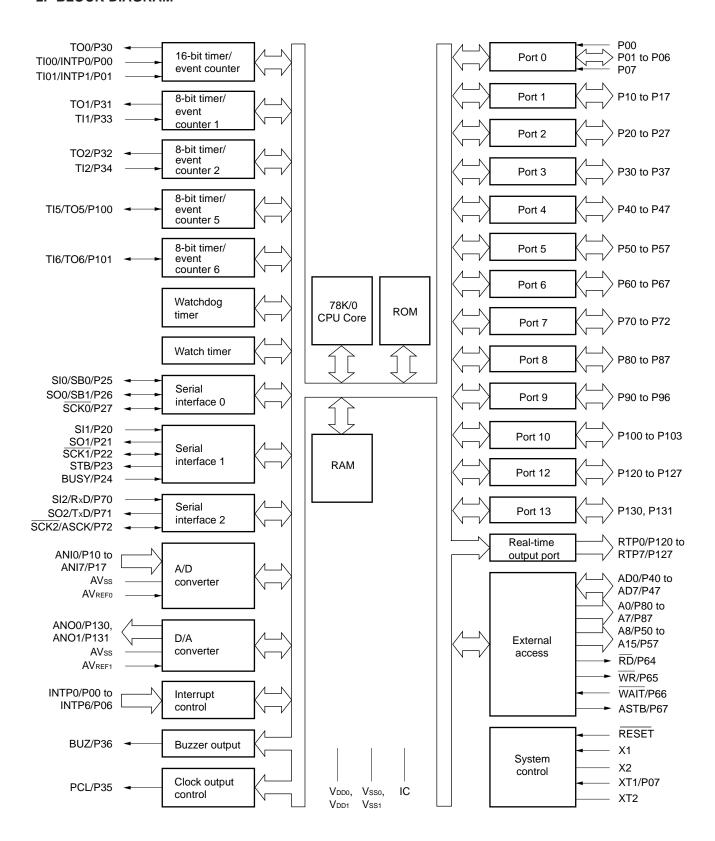
SCK0 to SCK2 : Serial Clock

SI0 to SI2 : Serial Input

SO0 to SO2 : Serial Output

STB : Strobe

TI00, TI01, TI1, TI2, TI5, TI6


: Timer Input

TO0 to TO2, TO5, TO6 : Timer Output TxD : Transmit Data V_{DD0}, V_{DD1} : Power Supply V_{SS0}, V_{SS1} : Ground \overline{WAIT} : Wait

WR : Write Strobe

X1, X2 : Crystal (Main System Clock)XT1, XT2 : Crystal (Subsystem Clock)

2. BLOCK DIAGRAM

Remark The internal ROM capacity depends on the product.

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Shared by:	
P00	Input	Port 0 Input only		Input	INTP0/TI00	
P01	Input/	8-bit input/output port	Input/output can be specified bit-wise.	Input	INTP1/TI01	
P02	output		When used as an input port, on-chip pull-up resistor can be used by software.		INTP2	
P03			pull-up resistor can be used by software.		INTP3	
P04					INTP4	
P05					INTP5	
P06					INTP6	
P07 ^{Note 1}	Input		Input only	Input	XT1	
P10 to P17	Input/ output	Port 1 8-bit input/output port Input/output can be spec When used as an input p by software. Note 2	cified bit-wise. port, on-chip pull-up resistor can be used	Input	ANI0 to ANI7	
P20	Input/	Port 2		Input	SI1	
P21	output	8-bit input/output port			SO1	
P22			Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used			
P23		by software.	port, on one pair up recietor can be accu		STB	
P24					BUSY	
P25					SI0/SB0	
P26					SO0/SB1	
P27					SCK0	
P30	Input/	Port 3		Input	TO0	
P31	output	8-bit input/output port	official his socio		TO1	
P32		Input/output can be spectified. When used as an input	port, on-chip pull-up resistor can be used		TO2	
P33		by software.			TI1	
P34					TI2	
P35					PCL	
P36					BUZ	
P37					_	
P40 to P47	Input/ output	Port 4 8-bit input/output port Input/output can be specified in 8-bit units. When used as an input port, on-chip pull-up resistor can be used by software. Test input flag (KRIF) is set to 1 by falling edge detection.			AD0 to AD7	

- **Notes 1.** When using the P07/XT1 pin as an input port, set 1 to bit 6 (FRC) of the processor clock control register (PCC). (Do not use the on-chip feedback resistor of the subsystem clock oscillator.)
 - 2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input, on-chip pull-up resistor is automatically disconnected.

3.1 Port Pins (2/2)

Pin Name	I/O		Function	After Reset	Shared by:	
P50 to P57	Input/ output	Port 5 8-bit input/output port LED can be driven directly. Input/output can be specified b When used as an input port, o by software.	Input	A8 to A15		
P60	Input/	Port 6	N-ch open-drain input/output port.	Input	_	
P61	output	8-bit input/output port	On-chip pull-up resistor can be			
P62		Input/output can be specified bit-wise.	specified by mask option. LED can be driven directly.			
P63			,			
P64			When used as an input port,	Input	RD	
P65			on-chip pull-up resistor can be used by software.		WR	
P66			used by software.		WAIT	
P67					ASTB	
P70	Input/	Port 7			SI2/RxD	
P71	output	3-bit input/output port	3-bit input/output port Input/output can be specified bit-wise.			
P72		When used as an input port, on-		SCK2/ASCK		
P80 to P87	Input/ output	Port 8 8-bit input/output port Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software.			A0 to A7	
P90	Input/	Port 9	N-ch open-drain input/output port.	Input	_	
P91	output	7-bit input/output port	On-chip pull-up resistor can be specified by mask option. LED can be driven			
P92		Input/output can be specified bit-wise.	directly.			
P93						
P94			When used as an input port, on-chip			
P95			pull-up resistor can be used by software.			
P96						
P100	Input/	Port 10		Input	TI5/TO5	
P101	output	4-bit input/output port Input/output can be specified bit-wise.			TI6/TO6	
P102, P103			chip pull-up resistor can be used by software.		_	
P120 to P127	Input/ output	Port 12 8-bit input/output port Input/output can be specified b When used as an input port, on-	Input	RTP0 to RTP7		
P130, P131	Input/ output	Port 13 2-bit input/output port Input/output can be specified b When used as an input port, on-	it-wise. chip pull-up resistor can be used by software.	Input	ANO0, ANO1	

3.2 Non-port Pins (1/2)

Pin Name	I/O	Function	After Reset	Shared by:
INTP0	Input	External interrupt request input by which the active edge (rising edge,	Input	P00/TI00
INTP1		falling edge, or both rising and falling edges) can be specified		P01/TI01
INTP2				P02
INTP3				P03
INTP4				P04
INTP5				P05
INTP6				P06
SI0	Input	Serial interface serial data input	Input	P25/SB0
SI1	1			P20
SI2				P70/RxD
SO0	Output	Serial interface serial data output	Input	P26/SB1
SO1	7			P21
SO2				P71/TxD
SB0	Input/output	Serial interface serial data input/output	Input	P25/SI0
SB1	1			P26/SO0
SCK0	Input/output	Serial interface serial clock input/output	Input	P27
SCK1				P22
SCK2				P72/ASCK
STB	Output	Serial interface automatic transmit/receive strobe output	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input	Input	P24
RxD	Input	Asynchronous serial interface serial data input	Input	P70/SI2
TxD	Output	Asynchronous serial interface serial data output	Input	P71/SO2
ASCK	Input	Asynchronous serial interface serial clock input	Input	P72/SCK2
TI00	Input	External count clock input to 16-bit timer (TM0)	Input	P00/INTP0
TI01		Capture trigger signal input to capture register (CR00)		P01/INTP1
TI1	_	External count clock input to 8-bit timer (TM1)		P33
TI2	1	External count clock input to 8-bit timer (TM2)		P34
TI5	1	External count clock input to 8-bit timer (TM5)		P100/TO5
TI6		External count clock input to 8-bit timer (TM6)		P101/TO6
TO0	Output	16-bit timer output (also used for 14-bit PWM output)	Input	P30
TO1	1	8-bit timer output		P31
TO2	1			P32
TO5	1	8-bit timer output (also used for 8-bit PWM output)		P100/TI5
TO6	1			P101/TI6
PCL	Output	Clock output (for main system clock, subsystem clock trimming)	Input	P35
BUZ	Output	Buzzer output	Input	P36

3.2 Non-port Pins (2/2)

Pin Name I/O Function Function Function After Reset Reset	P127 P47 P87 P57
AD0 to AD7 Input/output Low-order address/data bus at external memory expansion Input P40 to P4 A0 to A7 Output Low-order address bus at external memory expansion Input P80 to P4 A8 to A15 Output High-order address bus at external memory expansion Input P50 to P8 RD Output External memory read operation strobe signal output Input P64 WAIT Input Wait insertion at external memory access Input P65 ASTB Output Strobe output which externally latches the address information output to ports 4, 5 and 8 to access external memory ANI0 to ANI7 Input A/D converter analog input Input P10 to P6 ANO0, ANO1 Output D/A converter reference voltage input (also used for analog power supply) — —	P47 P87 P57
A0 to A7 Output Low-order address bus at external memory expansion Input P80 to P8 A8 to A15 Output High-order address bus at external memory expansion Input P50 to P8 RD Output External memory read operation strobe signal output Input P64 External memory write operation strobe signal output P65 WAIT Input Wait insertion at external memory access Input P66 ASTB Output Strobe output which externally latches the address information output to ports 4, 5 and 8 to access external memory ANI0 to ANI7 Input A/D converter analog input Input P10 to P7 ANO0, ANO1 Output D/A converter analog output Input P130, P1 AVREFO Input A/D converter reference voltage input (also used for analog power supply) — —	P87 P57
A8 to A15 Output High-order address bus at external memory expansion Input P50 to P8 RD	P57
RD	j
WR External memory write operation strobe signal output P65 WAIT Input Wait insertion at external memory access Input P66 ASTB Output Strobe output which externally latches the address information output to ports 4, 5 and 8 to access external memory Input P67 ANIO to ANI7 Input A/D converter analog input Input P10 to P ANO0, ANO1 Output D/A converter analog output Input P130, P1 AVREFO Input A/D converter reference voltage input (also used for analog power supply) — —	; ;
WAIT Input Wait insertion at external memory access Input P66	,
ASTB Output Strobe output which externally latches the address information output to ports 4, 5 and 8 to access external memory ANI0 to ANI7 Input A/D converter analog input Input P10 to PANO0, ANO1 Output D/A converter analog output Input P130, P1 AVREFO Input A/D converter reference voltage input (also used for analog power supply) — —	
ANIO to ANI7 Input A/D converter analog input Input P10 to P2 ANO0, ANO1 Output D/A converter analog output Input P130, P1 AVREFO Input A/D converter reference voltage input (also used for analog power supply) — —	,
ANO0, ANO1 Output D/A converter analog output Input P130, P1 AVREFO Input A/D converter reference voltage input (also used for analog power supply) — —	
AV _{REFO} Input A/D converter reference voltage input (also used for analog power supply) — —	P17
	131
AV _{REF1} Input D/A converter reference voltage input — —	
AVss — A/D converter ground potential. The same potential as Vsso. — — —	
RESET Input System reset input — —	
X1 Input Main system clock oscillation crystal connection — — —	
X2 — — — —	
XT1 Input Subsystem clock oscillation crystal connection Input P07	
XT2 — — — —	
V _{DD0} — Positive power supply of ports — —	
Vsso — Ground potential of ports — —	
V _{DD1} — Positive power supply (except ports and analog) — — —	
Vss1 — Ground potential (except ports and analog) — — —	
IC — Internal connection. Connect directly to Vsso. — — —	

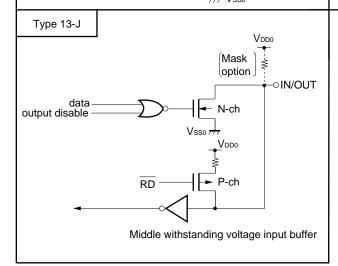
3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, see Figure 3-1.

Table 3-1. Types of Pin Input/Output Circuits (1/2)

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins
P00/INTP0/TI00	2	Input	Connect to Vsso.
P01/INTP1/TI01	8-C	Input/output	Connect to Vsso via a resistor individually.
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P06/INTP6			
P07/XT1	16	Input	Connect to VDDO.
P10/ANI0 to P17/ANI7	11-B	Input/output	Connect to V _{DD0} or V _{SS0} via a resistor individually.
P20/SI1	8-C		
P21/SO1	5-H		
P22/SCK1	8-C		
P23/STB	5-H		
P24/BUSY	8-C		
P25/SI0/SB0	10-B		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-H		
P31/TO1			
P32/TO2			
P33/TI1	8-C		
P34/TI2			
P35/PCL	5-H		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	5-N	Input/output	Connect to VDDO via a resistor individually.
P50/A8 to P57/A15	5-H	Input/output	Connect to V _{DD0} or V _{SS0} via a resistor individually.
P60 to P63	13-J	Input/output	Connect to VDD0 via a resistor individually.
P64/RD	5-H	Input/output	Connect to V _{DD0} or V _{SS0} via a resistor individually.
P65/WR			
P66/WAIT			
P67/ASTB			

Table 3-1. Types of Pin Input/Output Circuits (2/2)


Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins
P70/SI2/RxD	8-C	Input/output	Connect to VDD0 or VSS0 via a resistor individually.
P71/SO2/TxD	5-H		
P72/SCK2/ASCK	8-C		
P80/A0 to P87/A7	5-H		
P90 to P93	13-J	Input/output	Connect to VDDO via a resistor individually.
P94 to P96	5-H	Input/output	Connect to VDD0 or VSS0 via a resistor individually.
P100/TI5/TO5	8-C		
P101/TI6/TO6			
P102, P103	5-H		
P120/RTP0 to			
P127/RTP7			
P130/ANO0,	12-C	Input/output	Connect to Vsso via a resistor individually.
P131/ANO1			
RESET	2	Input	_
XT2	16	_	Leave open.
AV _{REF0}	_		Connect to Vsso.
AVREF1			Connect to V _{DD0} .
AVss			Connect to Vsso.
IC			Connect directly to Vsso.

Type 2 Type 8-C V_{DD0} pullup enable IN O V_{DD0} data -○ IN/OUT output - N-ch Schmitt-triggered input with hysteresis characteristic disable Vsso /// V_{DD0} Type 5-H Type 10-B V_{DD0} pullup pullup enable enable V_{DD0} V_{DD0} data data → IN/OUT -○ IN/OUT output open drain output disable <mark>⊸</mark>N-ch disable Vsso /// Vsso /// input enable V_{DD0} Type 5-N VDD0 Type 11-B pullup enable pullup enable $-V_{DD0}$ V_{DD0} data data -○IN/OUT output disable N-ch → IN/OUT P-ch ///Vsso output disable Comparator VREF input enable

Figure 3-1. Pin Input/Output Circuits (1/2)

V_{DD0} Type 12-C Type 16 pullup feedback cut-off P-ch enable V_{DD0} data -○ IN/OUT output disable Vsso / XT2 XT1 input P-ch enable Analog output voltage

Figure 3-1. Pin Input/Output Circuits (2/2)

4. MEMORY SPACE

The memory map of the μ PD78074B and 78075B is shown in Figure 4-1.

FFFFH Special function registers (SFR) 256×8 bits FF00H FEFFH General-purpose registers 32×8 bits FEE0H **FEDFH** Internal high-speed RAM 1024×8 bits FB00H **FAFFH** Use prohibited F3FFH FAE0H Use prohibited Data memory space **FADFH Buffer RAM** F000H $32 \times 8 \text{ bits}$ FAC0H nnnnH **FABFH** Program area 1000H Use prohibited 0FFFH CALLF entry area F400H F3FFH 0800H 07FFH External memory Program area 0080H Program nnnnH+1 memory nnnnH space 007FH CALLT table area 0040H 003FH Internal ROMNote Vector table area 0000H 0000H

Figure 4-1. Memory Map

Note The internal ROM capacity depends on the product (see the following table).

Part Number	Internal ROM Last Address nnnnH
μPD78074B	7FFFH
μPD78075B	9FFFH

: 88

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 Ports

Total

Input/output ports are classified into three types.

• CMOS input (P00, P07) : 2

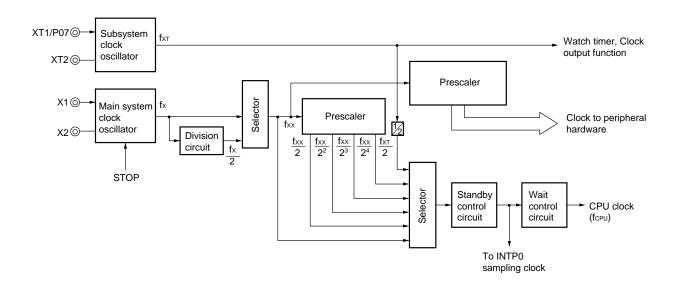
 CMOS input/output (P01 to P06, Ports 1 to 5, P64 to P67, Port 7, Port 8, P94 to P96, Port 10, Port 12, Port 13)

Port 8, P94 to P96, Port 10, Port 12, Port 13) : 78

• N-ch open-drain input/output (P60 to P63, P90 to P93) : 8

Table 5-1. Functions of Ports

Pin Name	Function
P00, P07	Input only


5.2 Clock Generator

There are two kinds of clock generators: main system and subsystem clock generators.

It is possible to change the instruction execution time.

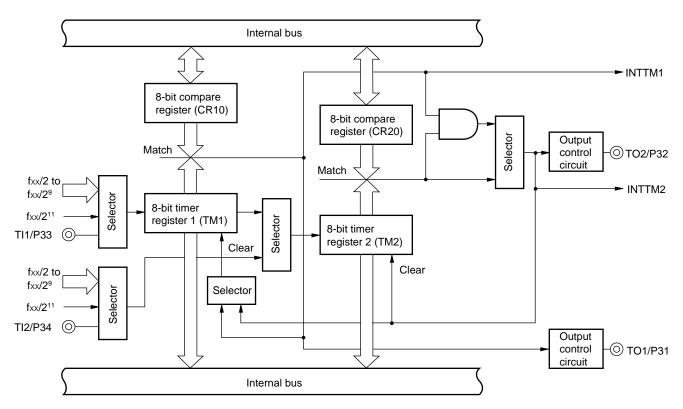
- 0.4 μ s/0.8 μ s/1.6 μ s/3.2 μ s/6.4 μ s/12.8 μ s (at main system clock frequency of 5.0 MHz)
- 122 μs (at subsystem clock frequency of 32.768 kHz)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer/Event Counter

There are the following seven timer/event counter channels:

16-bit timer/event counter
8-bit timer/event counter
Watch timer
Watchdog timer
1 channel
1 channel
2 channel
3 channel
4 channel
5 channel
6 channel
7 channel


Table 5-2. Types and Functions of Timer/Event Counters

		16-bit Timer/Event Counter	8-bit Timer/Event Counter 1, 2	8-bit Timer/Event Counter 5, 6	Watch Timer	Watchdog Timer
Туре	Interval timer	1 channel	2 channels	2 channels	1 channel	1 channel
	External event counter	1 channel	2 channels	2 channels	_	_
Function	Timer output	1 output	2 outputs	2 outputs	_	_
	PWM output	1 output	_	2 outputs	_	_
	Pulse width measurement	2 inputs	_	_	_	_
	Square wave output	1 output	2 outputs	2 outputs	_	_
	One-shot pulse output	1 output	_	_	_	_
	Interrupt request	2	2	2	1	1
	Test input	_	_	_	1 input	_

Internal bus ► INTP1 TI01/P01/ 16-bit capture/ INTP1 compare register ► INTTM00 (CR00) PWM pulse Match Output output Watch timer control circuit control output circuit 2fxx Selector fxx 16-bit timer register (TM0) fxx/2 $f_{XX}/2^2$ Clear Selector TI00/P00/ Edge INTP0 Match detector - INTTM01 - INTP0 16-bit capture/ compare register (CR01) Internal bus

Figure 5-2. 16-Bit Timer/Event Counter Block Diagram

Figure 5-3. 8-Bit Timer/Event Counter 1, 2 Block Diagram

Internal bus 8-bit compare register (CRn0) Match **→** INTTMn TO5/P100/TI5, TO6/P101/TI6 $2 f \times x \text{ to } f \times x / 2^9$ Output control Selector OVF 8-bit timer register n circuit fxx/2¹¹ (TMn) TI5/P100/TO5, TI6/P101/TO6 Clear Internal bus

Figure 5-4. 8-Bit Timer/Event Counter 5, 6 Block Diagram

n = 5, 6

Figure 5-5. Watch Timer Block Diagram

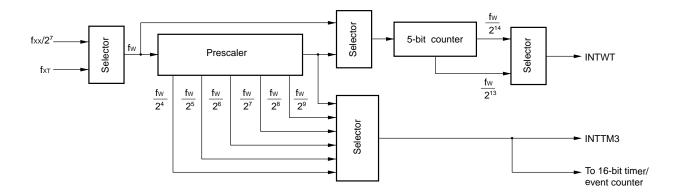
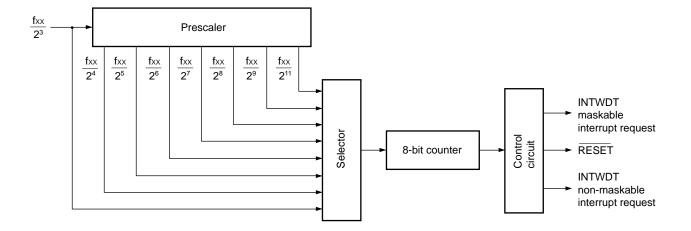
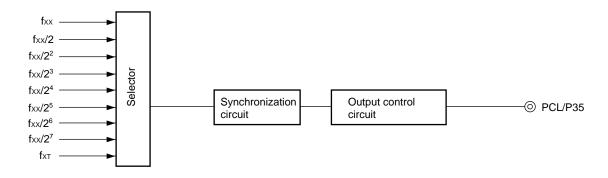



Figure 5-6. Watchdog Timer Block Diagram

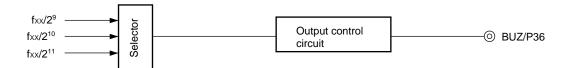


5.4 Clock Output Control Circuit

This circuit can output clocks of the following frequencies:

- 19.5 kHz/39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz/2.5 MHz/5.0 MHz (at main system clock frequency of 5.0 MHz)
- 32.768 kHz (at subsystem clock frequency of 32.768 kHz)

Figure 5-7. Clock Output Control Circuit Block Diagram

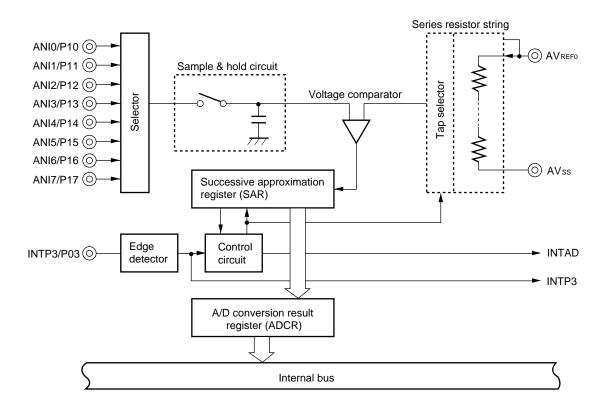


5.5 Buzzer Output Control Circuit

This circuit can output clocks of the following frequencies that can be used for driving buzzers:

• 1.2 kHz/2.4 kHz/4.9 kHz/9.8 kHz (at main system clock frequency of 5.0 MHz)

Figure 5-8. Buzzer Output Control Circuit Block Diagram


5.6 A/D Converter

The A/D converter consists of eight 8-bit resolution channels.

A/D conversion can be started by the following two methods:

- · Hardware starting
- · Software starting

Figure 5-9. A/D Converter Block Diagram

5.7 D/A Converter

The D/A converter consists of two 8-bit resolution channels.

The conversion method is the R-2R resistor ladder method.

Figure 5-10. D/A Converter Block Diagram

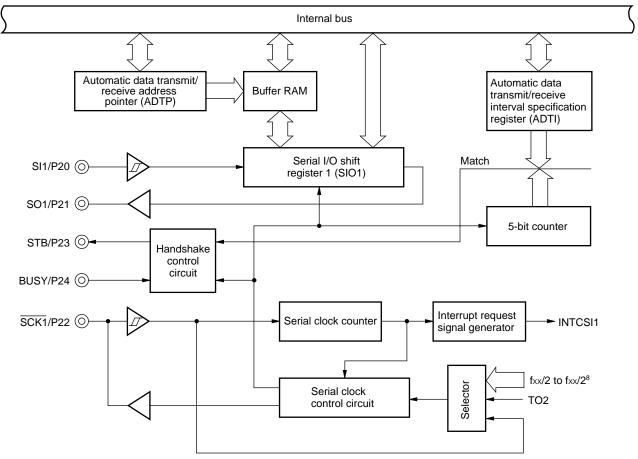
m = 4, 5

x = 1, 2

5.8 Serial Interfaces

There are the following three on-chip serial interface channels synchronous with the clock:

- · Serial interface channel 0
- Serial interface channel 1
- Serial interface channel 2


Table 5-3. Types and Functions of Serial Interfaces

Function	Serial Interface Channel 0	Serial Interface Channel 1	Serial Interface Channel 2
3-wire serial I/O mode	Available (MSB/LSB-first switching possible)	Available (MSB/LSB-first switching possible)	Available (MSB/LSB-first switching possible)
3-wire serial I/O mode with automatic transmit/receive function	_	Available (MSB/LSB-first switching possible)	_
2-wire serial I/O mode	Available (MSB first)	_	_
SBI mode	Available (MSB first)	_	_
Asynchronous serial interface (UART) mode	_	_	Available (On-chip dedicated baud rate generator)

Internal bus SI0/SB0/P25 Selector Serial I/O shift register 0 (SIO0) Output latch SO0/SB1/P26 Busy/acknowledge Selector output circuit Bus release/command/ acknowledge detector Interrupt request signal ► INTCSI0 SCK0/P27 Serial clock counter generator fxx/2 to fxx/28 Selector Serial clock TO2 control circuit

Figure 5-11. Serial Interface Channel 0 Block Diagram

Figure 5-12. Serial Interface Channel 1 Block Diagram

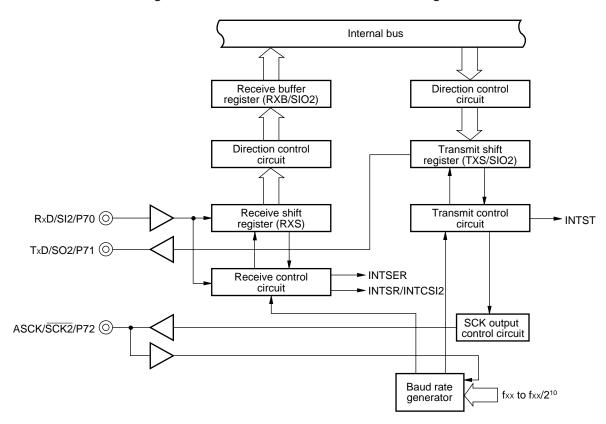


Figure 5-13. Serial Interface Channel 2 Block Diagram

5.9 Real-Time Output Port

Data set previously in the real-time output buffer register is transferred to the output latch by hardware concurrently with timer interrupt request or external interrupt request generation in order to output to off-chip. This is a real-time output function. Pins used to output to off-chip are called real-time output ports.

By using a real-time output port, a signal which has no jitter can be output. This is most applicable to control of stepping motor, etc.

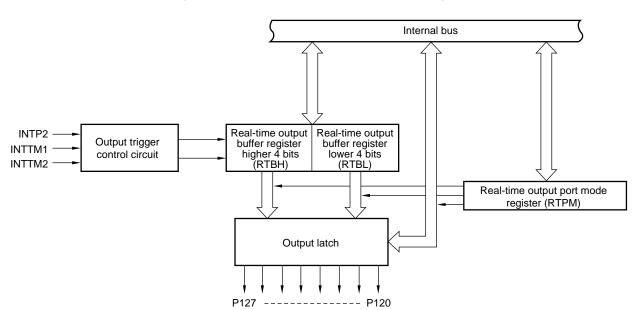


Figure 5-14. Real-Time Output Port Block Diagram

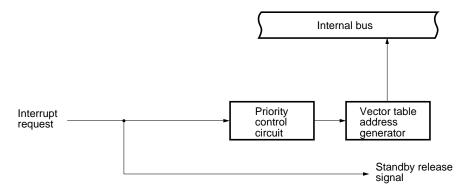
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

6.1 Interrupt Functions

A total of 24 interrupt functions are provided, divided into the following three types.

Non-maskable : 1Maskable : 22Software : 1

Table 6-1. List of Interrupt Sources


Interrupt	Default Priority	Interrupt Source			Vector	Basic Note 2
Туре		Name	Trigger	Internal/ External	Table Address	Configuration Type
Non-	_	INTWDT	Overflow of watchdog timer (When the watchdog	Internal	0004H	(A)
maskable		INITIAIDE	timer mode 1 is selected)			(D)
Maskable	0	INTWDT	Overflow of watchdog timer (When the interval timer mode is selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTP6			0012H	
	8	INTCSI0	Completion of serial interface channel 0 transfer	Internal	0014H	(B)
	9	INTCSI1	Completion of serial interface channel 1 transfer		0016H	
	10	INTSER	Occurrence of serial interface channel 2 UART reception error		0018H	
	11	INTSR	Completion of serial interface channel 2 UART reception		001AH	
		INTCSI2	Completion of serial interface channel 2 3-wire transfer			
	12	INTST	Completion of serial interface channel 2 UART transmission		001CH	
	13	INTTM3	Reference interval signal from watch timer		001EH	
	14	INTTM00	Generation of matching signal of 16-bit timer register and capture/compare register (CR00)		0020H	
-	15	INTTM01	Generation of matching signal of 16-bit timer register and capture/compare register (CR01)		0022H	
	16	INTTM1	Generation of matching signal of 8-bit timer/event counter 1		0024H	
	17	INTTM2	Generation of matching signal of 8-bit timer/event counter 2		0026H	
	18	INTAD	Completion of A/D conversion		0028H	1
	19	INTTM5	Generation of matching signal of 8-bit timer/event counter 5		002AH	1
	20	INTTM6	Generation of matching signal of 8-bit timer/event counter 6		002CH	
Software		BRK	Execution of BRK instruction	_	003EH	(E)

Notes 1. Default priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 20 is the lowest order.

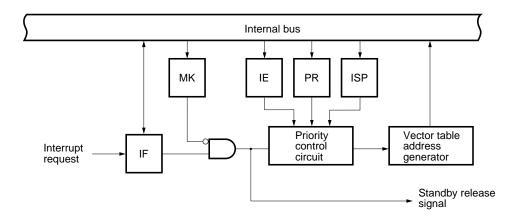

2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1.

Figure 6-1. Interrupt Function Basic Configuration (1/2)

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTP0)

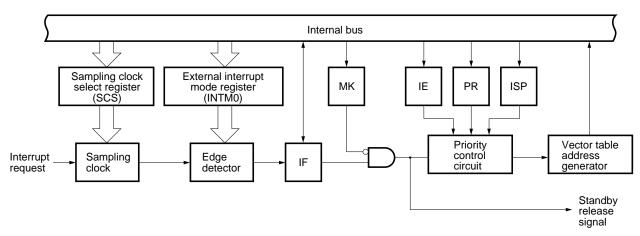
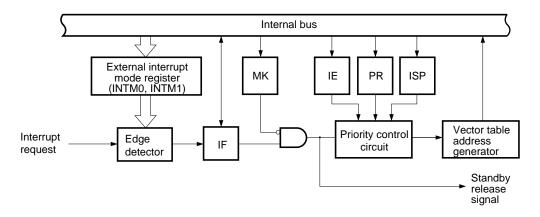
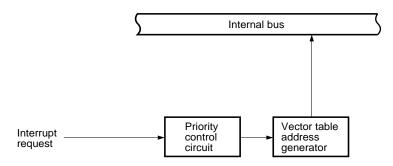




Figure 6-1. Interrupt Function Basic Configuration (2/2)

(D) External maskable interrupt (except INTP0)

(E) Software interrupt

IF : Interrupt request flag
 IE : Interrupt enable flag
 ISP : In-service priority flag
 MK : Interrupt mask flag
 PR : Priority specification flag

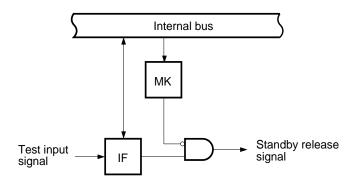

6.2 Test Functions

Table 6-2 shows the two test functions available.

Table 6-2. List of Test Input Sources

	Internal/		
Name	Name Trigger		
INTWT	Overflow of watch timer	Internal	
INTPT4	Detection of falling edge of port 4	External	

Figure 6-2. Basic Configuration of Test Function

IF : Test input flag MK : Test mask flag

33

7. EXTERNAL DEVICE EXPANSION FUNCTIONS

The external device expansion functions connect external devices to areas other than the internal ROM, RAM and SFR.

External devices connection uses ports 4 to 6 and port 8.

The external device expansion function has the following two modes:

• Separate bus mode : External devices are connected by using an independent address bus and data

bus. Because an external latch circuit is not necessary, this mode is effective for reducing the number of components and the mounting area on a printed wiring

board.

• Multiplexed bus mode : External devices are connected by using a time-division multiplexed address/data

bus. This mode is useful for reducing the number of ports used when external

devices are connected.

8. STANDBY FUNCTION

The standby function intends to reduce current consumption. It has the following two modes:

HALT mode: In this mode, the CPU operation clock is stopped. The average current consumption can be

reduced by intermittent operation by combining this mode with the normal operation mode.

• STOP mode: In this mode, oscillation of the main system clock is stopped. All the operations performed on the main system clock are suspended, and only the subsystem clock is used for extremely

small power consumption.

CSS = 1Main system clock operation Subsystem clock operation Not CSS = 0STOP **HALT** instruction HALT instruction instruction Interrupt Interrupt Interrupt request request request HALT mode HALT mode[№] STOP mode (Supply of clock to CPU is (Supply of clock to CPU is (Oscillation of the main system stopped although oscillation stopped although oscillation clock is stopped.) is generated.) is generated.)

Figure 8-1. Standby Function

Note Current consumption is reduced by stopping the main system clock.

If the CPU is operating on the subsystem clock, stop the main system clock by setting MCC (bit 7 in the processor clock control register (PCC)). The STOP instruction cannot be used.

Caution When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

9. RESET FUNCTION

There are the following two reset methods.

- External reset by $\overline{\text{RESET}}$ pin
- Internal reset by watchdog timer runaway time detection

10. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand	#byte	А	rNote	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B]	\$addr16	1	None
1st Operand	#byte		'	311	Jadui	:addi 10	1 000	[DL]	[112]	[HL + C]	φασαίτο		IVOIIC
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand								
	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
1st Operand								
AX	ADDW		MOVW	MOVW	MOVW	MOVW	MOVW	
	SUBW		XCHW					
	CMPW							
rp	MOVW	MOVW ^{Note}						INCW, DECW
								PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand								
	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
1st Operand								
A.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
sfr.bit						MOV1	ВТ	SET1
							BF	CLR1
							BTCLR	
saddr.bit						MOV1	ВТ	SET1
							BF	CLR1
							BTCLR	
PSW.bit						MOV1	ВТ	SET1
							BF	CLR1
							BTCLR	
[HL].bit						MOV1	ВТ	SET1
							BF	CLR1
							BTCLR	
CY	MOV1	MOV1	MOV1	MOV1	MOV1			SET1
	AND1	AND1	AND1	AND1	AND1			CLR1
	OR1	OR1	OR1	OR1	OR1			NOT1
	XOR1	XOR1	XOR1	XOR1	XOR1			

(4) Call instructions/Branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand					
	AX	!addr16	!addr11	[addr5]	\$addr16
1st Operand					
Basic instruction	BR	CALL	CALLF	CALLT	BR, BC
		BR			BNC
					BZ, BNZ
Compound instruction					BT, BF
					BTCLR
					DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

11. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Parameter	Symbol	Condi	tions		Rating	Unit
Supply voltage	V _{DD}				-0.3 to +7.0	V
	AV _{REF0}				-0.3 to V _{DD} + 0.3	V
	AV _{REF1}				-0.3 to V _{DD} + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	Vıı	P00 to P07, P10 to P17, P20 P50 to P57, P64 to P67, P70 P100 to P103, P120 to P127, F	to P72, P80 to	P87, P94 to P96,	-0.3 to V _{DD} + 0.3	V
	V _{I2}	P60 to P63, P90 to P93	N-ch open-	drain	-0.3 to +16	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	Analog inp	ut pin	AVss - 0.3 to AVREF0 + 0.3	V
High-level output	Іон	1 pin			-10	mA
current		P30 to P37, P56, P57, P60 P103, P120 to P127 total	to P37, P56, P57, P60 to P67, P90 to P96, P100 to		-15	mA
		P01 to P06, P10 to P17, P2 P50 to P55, P70 to P72, P6	,	,	-15	mA
Low-level output	louNote	1 pin		Peak value	30	mA
current				RMS	15	mA
		P20 to P27, P40 to P47, P5	50 to P57,	Peak value	100	mA
		P60 to P63, P80 to P87 tot	al	RMS	70	mA
		P01 to P06, P10 to P17, P3 P64 to P67, P70 to P72, P3	•	Peak value	100	mA
		P100 to P103, P120 to P12 P130, P131 total	27,	RMS	70	mA
Operating ambient temperature	Та				-40 to +85	°C
Storage temperature	T _{stg}				-65 to +150	°C

Note RMS should be calculated as follows: [RMS] = [Peak value] $\times \sqrt{\text{duty}}$

Caution Product quality may suffer if the absolute maximum ratings are exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Remark The characteristics of the shared pins are the same as those of the port pins unless otherwise specified.

CAPACITANCE (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz, Unmeasured pins returned to 0 V	P01 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131			15	pF
			P60 to P63, P90 to P93			20	pF
Output capacitance	Соит		P01 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131			15	pF
			P60 to P63, P90 to P93			20	pF
Input/output capacitance	Сю		P01 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131			15	pF
			P60 to P63, P90 to P93			20	pF

Remark The characteristics of the shared pins are the same as those of the port pins unless otherwise specified.

MAIN SYSTEM CLOCK OSCILLATION CIRCUIT CHARACTERISTICS (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	IC X2 X1	Oscillation frequency (fx)Note 1	V _{DD} = Oscillation voltage range	1.0		5.0	MHz
	C2= C1=	Oscillation stabilization time Note 2	After V _{DD} reaches oscillation voltage range MIN.			4	ms
Crystal resonator	IC X2 X1	Oscillation frequency (fx)Note 1		1.0		5.0	MHz
		Oscillation stabilization time ^{Note 2}	V _{DD} = 4.5 to 5.5 V			10	ms
	/// /// /// /// /// /// /// /// /// //	Stabilization time				30	
External clock	X2 X1	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
	μPD74HCU04	X1 input high/low-level width (txH, txL)		85		500	ns

Notes 1. Indicates only oscillation circuit characteristics. Refer to AC CHARACTERISTICS for instruction execution time

2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillation circuit, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- · Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillation circuit capacitor ground should always be the same as that
 of Vss.
- Do not ground wiring to a ground pattern in which a high current flows.
- Do not fetch a signal from the oscillation circuit.
- When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

SUBSYSTEM CLOCK OSCILLATION CIRCUIT CHARACTERISTICS (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	IC XT1 XT2	Oscillation frequency (f _{XT})Note 1		32	32.768	35	kHz
	C3= C4=	Oscillation stabilization time ^{Note 2}	V _{DD} = 4.5 to 5.5 V		1.2	2	S
	///	Stabilization time				10	
External clock	XT2 XT1	XT1 input frequency (fxT)Note 1		32		100	kHz
	μPD74HCU04Δ	XT1 input high/low-level width (txth, txtl)		5		15	μs

- **Notes 1.** Indicates only oscillation circuit characteristics. Refer to **AC CHARACTERISTICS** for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.
- Cautions 1. When using the subsystem clock oscillation circuit, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - · Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillation circuit capacitor ground should always be the same as that
 of Vss.
 - Do not ground wiring to a ground pattern in which a high current flows.
 - · Do not fetch a signal from the oscillation circuit.
 - The subsystem clock oscillation circuit is designed to be a circuit with a low amplification level, for low current consumption more prone to misoperation due to noise than that of the main system clock. Therefore, when using the subsystem clock, take special cautions for wiring methods.

DC CHARACTERISTICS (TA = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-level input voltage	V _{IH1}	P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P71, P80 to P87,	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		V _{DD}	V
		P94 to P96, P102, P103, P120 to P127, P130, P131		0.8V _{DD}		V _{DD}	V
	V _{IH2}	P00 to P06, P20, P22, P24 to P27, P33, P34, P70, P72, P100, P101,	V _{DD} = 2.7 to 5.5 V	0.8V _{DD}		V _{DD}	V
		RESET		0.85V _{DD}		V _{DD}	V
	Vінз	P60 to P63, P90 to P93	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0.7V _{DD}		15	V
		(N-ch open-drain)		0.8V _{DD}		15	V
	V _{IH4}	X1, X2	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	V _{DD} - 0.5		V _{DD}	V
				V _{DD} - 0.2		V _{DD}	V
	V _{IH5}	XT1/P07, XT2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.8V _{DD}		V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0.9V _{DD}		V _{DD}	V
			Note	0.9V _{DD}		V _{DD}	V
Low-level input voltage	V _{IL1}	P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P71, P80 to P87,	V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
		P94 to P96, P102, P103, P120 to P127, P130, P131		0		0.2VDD	V
V	V _{IL2}	P00 to P06, P20, P22, P24 to P27, P33, P34, P70, P72, P100, P101,	V _{DD} = 2.7 to 5.5 V	0		0.2Vdd	V
		RESET		0		0.15V _{DD}	V
	V _{IL3}	P60 to P63, P90 to P93	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.3Vpd	V
		(N-ch open-drain)	2.7 V ≤ V _{DD} < 4.5 V	0		0.2V _{DD}	V
				0		0.1V _{DD}	V
	VIL4	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	V
				0		0.2	V
	V _{IL5}	XT1/P07, XT2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.2V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0		0.1V _{DD}	V
			Note	0		0.1V _{DD}	V
High-level output	Vон	V _{DD} = 4.5 to 5.5 V, I _{OH} = -1 mA		V _{DD} - 1.0			V
voltage		Іон = -100 μΑ		V _{DD} - 0.5			V
Low-level output voltage	V _{OL1}	P50 to P57, P60 to P63, P90 to P93	V _{DD} = 4.5 to 5.5 V, I _{OL} = 1.6 mA		0.4	2.0	V
		P01 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131				0.4	V
	Vol2	SB0, SB1, SCK0	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$ open-drain, at pulled-up (R = 1 k Ω)			0.2V _{DD}	V
	Vol3	IoL = 400 μA				0.5	V

Note For use as P07, use an inverter to input the inverted phase of P07 to the XT2 pin.

Remark The characteristics of the shared pins are the same as those of the port pins unless otherwise specified.

DC CHARACTERISTICS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
High-level input leakage current	Ішн1	Vin = Vdd	P00 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131, RESET			3	μΑ
	I _{LIH2}		X1, X2, XT1/P07, XT2			20	μΑ
	Ішнз	V _{IN} = 15 V	P60 to P63, P90 to P93			80	μΑ
Low-level input leakage current	ILIL1	V _{IN} = 0 V	P00 to P06, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131, RESET			-3	μΑ
	ILIL2		X1, X2, XT1/P07, XT2			-20	μΑ
	Ішіз		P60 to P63, P90 to P93			_3Note 1	μΑ
High-level output leakage current	Ісон	Vout = Vdd				3	μΑ
Low-level output leakage current	Ісос	Vout = 0 V				-3	μΑ
Mask option pull- up resistor	R ₁	V _{IN} = 0 V, P60 to F	P63, P90 to P93	20	40	90	kΩ
Software pull- up resistor ^{Note 2}	R ₂	V _{IN} = 0 V, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57,	4.5 V ≤ V _{DD} ≤ 5.5 V	15	33	90	kΩ
		P64 to P67, P70 to P72, P80 to P87, P94 to P96, P100 to P103, P120 to P127, P130, P131	2.7 V ≤ V _{DD} < 4.5 V	20		500	kΩ

Notes 1. When the pull-up resistors are not connected to P60 to P63 and P90 to P93 (specified by mask option), a low-level input leakage current of $-200 \mu A$ (MAX.) flows only for 1.5 clocks (without wait) after a read instruction has been executed to port 6 (P6), port mode register 6 (PM6), port 9 (P9), or port mode register 9 (PM9).

The current is $-3 \mu A$ (MAX.) when other than 1.5 clocks after the read instruction has been executed.

2. A software pull-up resistor can be used only in the range of $V_{DD} = 2.7$ to 5.5 V.

Remark The characteristics of the shared pins are the same as those of the port pins unless otherwise specified.

DC CHARACTERISTICS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

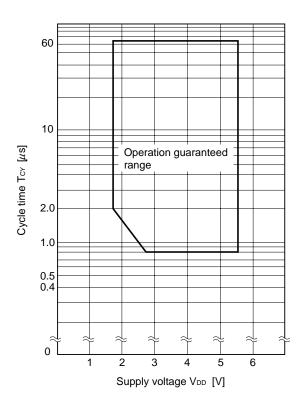
Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Power supply	IDD1	5.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10 \text{ %Note 5}$		3.4	13.5	mA
current ^{Note 1}		operating mode	$V_{DD} = 3.0 \text{ V} \pm 10 \text{ %Note 6}$		0.7	2.1	mA
		(fxx = 2.5 MHz)Note 2	$V_{DD} = 2.0 \text{ V} \pm 10 \text{ %}^{\text{Note 6}}$		0.4	1.2	mA
		5.0 MHz crystal oscillation operating mode	$V_{DD} = 5.0 \text{ V} \pm 10 \%^{\text{Note 5}}$		5.6	24.0	mA
		$(fxx = 5.0 \text{ MHz})^{\text{Note 3}}$	$V_{DD} = 3.0 \text{ V} \pm 10 \text{ %}^{\text{Note 6}}$		0.9	2.7	mA
	I _{DD2}	5.0 MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		1.4	4.2	mA
		HALT mode	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		0.6	1.5	mA
		(fxx = 2.5 MHz)Note 2	$V_{DD} = 2.0 \text{ V} \pm 10 \%$		270	840	μΑ
		5.0 MHz crystal oscillation HALT mode	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		1.7	4.8	mA
		(fxx = 5.0 MHz)Note 3	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		0.68	1.95	mA
	I _{DD3}	32.768 kHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		46	120	μΑ
		operating modeNote 4	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		26	64	μΑ
			$V_{DD} = 2.0 \text{ V} \pm 10 \%$		18	48	μΑ
	I _{DD4}	32.768 kHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		17	55	μΑ
		HALT mode ^{Note 4}	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		6	15	μΑ
			$V_{DD} = 2.0 \text{ V} \pm 10 \%$		2.5	12.5	μΑ
	I _{DD5}	XT1 = VDD	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		1.7	30	μΑ
		STOP mode	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		0.7	10	μΑ
		When feedback resistor is used	$V_{DD} = 2.0 \text{ V} \pm 10 \%$		0.3	10	μΑ
	I _{DD6}	XT1 = VDD	$V_{DD} = 5.0 \text{ V} \pm 10 \%$		0.01	30	μΑ
		STOP mode	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		0.01	10	μΑ
		When feedback resistor is unused	$V_{DD} = 2.0 \text{ V} \pm 10 \%$		0.01	10	μΑ

- **Notes 1.** The AV_{REF0}, AV_{REF1}, AV_{DD} currents and port current (including a current flowing in the on-chip pull-up resistor) are not included.
 - **2.** Operation with fxx = fx/2 (when oscillation mode select register (OSMS) is set to 00H)
 - **3.** Operation with fxx = fx (when oscillation mode select register (OSMS) is set to 01H)
 - 4. When the main system clock is halted
 - 5. Operating in high-speed mode (when the processor clock control register (PCC) is set to 00H).
 - 6. Operating in low-speed mode (when the processor clock control register (PCC) is set to 04H).
- Remarks 1. The characteristics of the shared pins are the same as those of the port pins unless otherwise specified.
 - 2. fxx: Main system clock frequency (fx or fx/2)
 - **3.** fx: Main system clock oscillation frequency

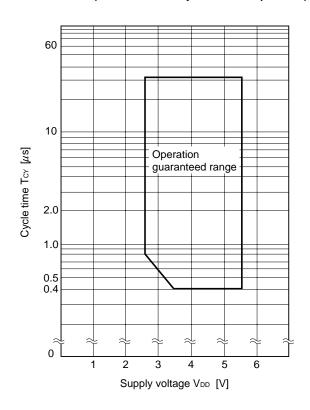
AC CHARACTERISTICS

(1) Basic Operation (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Cycle time	Tcy	Operating on main	$fxx = fx/2^{\text{Note 1}}$	V _{DD} = 2.7 to 5.5 V	0.8		64	μs
(Min. instruction		system clock			2.0		64	μs
execution time)			fxx = fxNote 2	$3.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.4		32	μs
				2.7 V ≤ V _{DD} < 3.5 V	0.8		32	μs
		Operating on subsy	stem clock		40	122	125	μs
TI00 input high/	ttihoo, ttiloo	$3.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			2/f _{sam} + 0.1 Note 3			μs
low-level width		2.7 V ≤ V _{DD} < 3.5 V	1		2/f _{sam} + 0.2 ^{Note 3}			μs
					2/f _{sam} + 0.5 ^{Note 3}			μs
TI01 input high/	tTIH01, tTIL01	V _{DD} = 2.7 to 5.5 V			10			μs
low-level width					20			μs
TI1, TI2, TI5, TI6	f _{Tl1}	V _{DD} = 4.5 to 5.5 V			0		4	MHz
input frequency					0		275	kHz
TI1, TI2, TI5, TI6 input high/	ttih1, ttil1	V _{DD} = 4.5 to 5.5 V			100			ns
low-level width					1.8			μs
Interrupt input	tinth, tintl	INTP0		$3.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2/f _{sam} + 0.1 Note 3			μs
high/low-level				2.7 V ≤ V _{DD} < 3.5 V	2/f _{sam} + 0.2 ^{Note 3}			μs
width					2/f _{sam} + 0.5 ^{Note 3}			μs
		INTP1 to INTP6, Ki	R0 to KR7	V _{DD} = 2.7 to 5.5 V	10			μs
					20			μs
RESET low-	trsL	V _{DD} = 2.7 to 5.5 V			10			μs
level width					20			μs


Notes 1. When oscillation mode select register (OSMS) is set to 00H

2. When oscillation mode select register (OSMS) is set to 01H


3. In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS), selection of f_{sam} is possible between fxx/2^N, fxx/32, fxx/64 and fxx/128 (when N = 0 to 4).

Remark fxx : Main system clock frequency (fx or fx/2) fx : Main system clock oscillation frequency

Tcy vs V_{DD} (At $f_{XX} = f_X/2$ main system clock operation)

Tcy vs V_{DD} (At fxx = fx main system clock operation)

(2) READ/WRITE OPERATION

(a) When MCS = 1, PCC2 to PCC0 = 000B ($T_A = -40$ to $+85^{\circ}$ C, $V_{DD} = 4.5$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	t asth		0.85tcy - 50		ns
Address setup time	tads		0.85tcy - 50		ns
Address hold time	t adh		50		ns
Data input time from address	t ADD1			(2.85 + 2n)tcy - 80	ns
	tADD2			(4 + 2n)tcy - 100	ns
Data input time from $\overline{RD} \downarrow$	t RDD1			(2 + 2n)tcy - 100	ns
	tRDD2			(2.85 + 2n)tcy - 100	ns
Read data hold time	t RDH		0		ns
RD low-level width	t RDL1		(2 + 2n)tcy - 60		ns
	tRDL2		(2.85 + 2n)tcy - 60		ns
$\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{RD}}\downarrow$	t RDWT1			0.85tcy - 50	ns
	tRDWT2			2tcy - 60	ns
$\overline{\mathrm{WAIT}} \downarrow$ input time from $\overline{\mathrm{WR}} \downarrow$	twrwt			2tcy - 60	ns
WAIT low-level width	t wTL		(1.15 + 2n)tcy	(2 + 2n)tcy	ns
Write data setup time	twos		(2.85 + 2n)tcy - 100		ns
Write data hold time	twон	Load resistance $\geq 5 \text{ k}\Omega$	20		ns
WR low-level width	t WRL1		(2.85 + 2n)tcy - 60		ns
RD↓ delay time from ASTB↓	tastrd		25		ns
WR ↓ delay time from ASTB↓	tastwr		0.85tcy + 20		ns
ASTB↑ delay time from RD↑ at external fetch	t rdast		0.85tcy - 10	1.15tcy + 20	ns
Address hold time from RD↑ at external fetch	t rdadh		0.85tcy - 50	1.15tcy + 50	ns
Write data output time from RD↑	trowd		40		ns
Write data output time from WR↓	twrwd		0	50	ns
Address hold time from WR↑	twradh		0.85tcy - 20	1.15tcy + 40	ns
RD↑ delay time from WAIT↑	twtrd		1.15tcy + 40	3.15tcy + 40	ns
WR↑ delay time from WAIT↑	twrwr		1.15tcy + 30	3.15tcy + 30	ns

Remarks 1. MCS : Oscillation mode select register (OSMS) bit 0

2. PCC2 to PCC0 : Processor clock control register (PCC) bit 2 to bit 0 $\,$

3. tcy = Tcy/4

4. n indicates the number of waits.

(b) When except MCS = 1, PCC2 to PCC0 = 000B ($T_A = -40$ to +85°C, $V_{DD} = 2.7$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		tcy - 80		ns
Address setup time	tads		tcy - 80		ns
Address hold time	tadh		0.4tcy - 10		ns
Data input time from address	tADD1			(3 + 2n)tcy - 160	ns
	tADD2			(4 + 2n)tcy - 200	ns
Data input time from $\overline{RD} \!\downarrow$	tRDD1			(1.4 + 2n)tcy - 70	ns
	tRDD2			(2.4 + 2n)tcy - 70	ns
Read data hold time	trdh		0		ns
RD low-level width	trdL1		(1.4 + 2n)tcy - 20		ns
	tRDL2		(2.4 + 2n)tcy - 20		ns
$\overline{\text{WAIT}} \downarrow \text{ input time from } \overline{\text{RD}} \downarrow$	trdwT1			tcy - 100	ns
	trdwt2			2tcy - 100	ns
$\overline{\mathrm{WAIT}} \downarrow$ input time from $\overline{\mathrm{WR}} \downarrow$	twrwt			2tcy - 100	ns
WAIT low-level width	twtL		(1 + 2n)tcy	(2 + 2n)tcy	ns
Write data setup time	twps		(2.4 + 2n)tcy - 60		ns
Write data hold time	twoH	Load resistance $\geq 5 \text{ k}\Omega$	20		ns
WR low-level width	twrL		(2.4 + 2n)tcy - 20		ns
$\overline{\text{RD}} \downarrow \text{ delay time from ASTB} \downarrow$	tastrd		0.4tcy - 30		ns
$\overline{\mathrm{WR}} \!\!\downarrow \mathrm{delay}$ time from ASTB $\!\!\downarrow$	tastwr		1.4tcy - 30		ns
ASTB↑ delay time from RD↑ at external fetch	trdast		tcy - 10	tcy + 20	ns
Address hold time from RD↑ at external fetch	trdadh		tcy - 80	tcy + 50	ns
Write data output time from RD↑	trowd		0.4tcy - 30		ns
Write data output time from $\overline{\mathrm{WR}} \downarrow$	twrwd		0	60	ns
Address hold time from WR↑	twradh		tcy - 60	tcy + 60	ns
RD↑ delay time from WAIT↑	twtrd		0.6tcy + 180	2.6tcy + 180	ns
WR↑ delay time from WAIT↑	twrwr		0.6tcy + 120	2.6tcy + 120	ns

Remarks 1. MCS : Oscillation mode select register (OSMS) bit 0

2. PCC2 to PCC0: Processor clock control register (PCC) bit 2 to bit 0

3. tcy = Tcy/4

4. n indicates the number of waits.

(3) SERIAL INTERFACE ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) Serial Interface Channel 0

(i) 3-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK0 high/low-level	tkH1, tkL1	V _{DD} = 4.5 to 5.5 V	tксү1/2 - 50			ns
width			tксү1/2 - 100			ns
SI0 setup time	tsıĸı	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK0 ↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI0 hold time (from SCK0↑)	t _{KSI1}		400			ns
SO0 output delay time from SCK0↓	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of SCK0 and SO0 output lines.

(ii) 3-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy2	4.5 V ≤ V _{DD} ≤ 5.	.5 V	800			ns
		2.7 V ≤ V _{DD} < 4	.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2	.7 V	3200			ns
				4800			ns
SCK0 high/low-level	tkH2, tkL2	$4.5~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		400			ns
width		2.7 V ≤ V _{DD} < 4	2.7 V ≤ V _{DD} < 4.5 V				ns
		2.0 V ≤ V _{DD} < 2.7 V		1600			ns
				2400			ns
SI0 setup time	tsik2	$V_{DD} = 2.0 \text{ to } 5.5$	V	100			ns
(to SCK0↑)				150			ns
SI0 hold time (from SCK0↑)	tksi2			400			ns
SO0 output delay time	tkso2	C = 100 pF ^{Note}	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK0↓						500	ns
SCK0 rise/fall time	tR2, tF2	When using external device expansion function				160	ns
		When not using device expansion				1000	ns

Note C is the load capacitance of SO0 output line.

(iii) SBI mode (SCK0... Internal clock output)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	4.5 V ≤ V _{DD} ≤ 5	.5 V	800			ns
		2.0 V ≤ V _{DD} < 4	.5 V	3200			ns
				4800			ns
SCK0 high/low-level	tкнз, tкгз	$V_{DD} = 4.5 \text{ to } 5.5$	V	tксүз/2 — 50			ns
width				tксүз/2 – 150			ns
SB0, SB1 setup time	tsik3	4.5 V ≤ V _{DD} ≤ 5.5 V		100			ns
(to SCK0 ↑)		2.0 V ≤ V _{DD} < 4.5 V		300			ns
				400			ns
SB0, SB1 hold time (from $\overline{SCK0}$ ↑)	tкsıз			tксүз/2			ns
SB0, SB1 output delay	tкsоз	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		250	ns
time from SCK0↓		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tksb			tксүз			ns
SCK0↓ from SB0, SB1↓	tsвк	2.0 V ≤ V _{DD} ≤ 5.5 V		tксүз			ns
SB0, SB1 high-level width	tsвн	2.0 V ≤ V _{DD} ≤ 5.5 V		tксүз			ns
SB0, SB1 low-level width	tsbl	2.0 V ≤ V _{DD} ≤ 5	.5 V	tксүз	-		ns

Note R and C are the load resistance and load capacitance of the SCK0 and SB0, SB1 output lines.

(iv) SBI mode (SCK0... External clock input)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	4.5 V ≤ V _{DD} ≤ 5	.5 V	800			ns
		2.0 V ≤ V _{DD} < 4.5 V		3200			ns
				4800			ns
SCK0 high/low-level	tkH4, tkL4	4.5 V ≤ V _{DD} ≤ 5	.5 V	400			ns
width		2.0 V ≤ V _{DD} < 4	.5 V	1600			ns
				2400			ns
SB0, SB1 setup time	tsık4	4.5 V ≤ V _{DD} ≤ 5	.5 V	100			ns
(to SCK0↑)		2.0 V ≤ V _{DD} < 4.5 V		300			ns
				400			ns
SB0, SB1 hold time (from $\overline{SCK0}$)	tksi4			tkcy4/2			ns
SB0, SB1 output delay	tkso4	$R = 1 k\Omega$,	V _{DD} = 4.5 to 5.5 V	0		300	ns
time from SCK0↓		C = 100 pF ^{Note}		0		1000	ns
SB0, SB1↓ from SCK0↑	tksb			tkcy4			ns
$\overline{\text{SCK0}} \downarrow \text{ from SB0, SB1} \downarrow$	tsвк	2.0 V ≤ V _{DD} ≤ 5	.5 V	tkcy4			ns
SB0, SB1 high-level width	tsвн	2.0 V ≤ V _{DD} ≤ 5	.5 V	tkcy4			ns
SB0, SB1 low-level width	tsbl	2.0 V ≤ V _{DD} ≤ 5	.5 V	tkcy4			ns
SCK0 rise/fall time	t _{R4} , t _{F4} When using external device expansion function					160	ns
		When not using external device expansion function				1000	ns

Note R and C are the load resistance and load capacitance of the SB0, SB1 output line.

(v) 2-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy5	$R = 1 k\Omega$,	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	1600			ns
		C = 100 pFNote	2.0 V ≤ V _{DD} < 2.7 V	3200			ns
				4800			ns
SCK0 high-level width	t кн5		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	tkcy5/2 - 160			ns
				tkcy5/2 - 190			ns
SCK0 low-level width	t _{KL5}		$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	tkcy5/2 - 50			ns
				tkcy5/2 - 100			ns
SB0, SB1 setup time	tsik5		$4.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	300			ns
(to SCK0↑)			2.7 V ≤ V _{DD} < 4.5 V	350			ns
			2.0 V ≤ V _{DD} < 2.7 V	400			ns
				500			ns
SB0, SB1 hold time (from SCK0↑)	tksi5			600			ns
SB0, SB1 output delay time from SCK0↓	t KSO5			0		300	ns

Note R and C are the load resistance and load capacitance of the SCK0 and SB0, SB1 output lines.

(vi) 2-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy6	2.7 V ≤ V _{DD} ≤ 5.5	5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.	7 V	3200			ns
				4800			ns
SCK0 high-level width	t кн6	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.8$	5 V	650			ns
		2.0 V ≤ V _{DD} < 2.	7 V	1300			ns
				2100			ns
SCK0 low-level width	th tkl6 2.7 V ≤ Vdd ≤ 5.5 V		5 V	800			ns
		2.0 V ≤ VDD < 2.7 V		1600			ns
				2400			ns
SB0, SB1 setup time	tsik6	V _{DD} = 2.0 to 5.5 V		100			ns
(to SCK0↑)				150			ns
SB0, SB1 hold time (from SCK0↑)	tksi6			tксу6/2			ns
SB0, SB1 output delay	tkso6	$R = 1 k\Omega$,	4.5 V ≤ V _{DD} ≤ 5.5 V	0		300	ns
time from SCK0↓		C = 100 pF ^{Note}	2.0 V ≤ V _{DD} < 4.5 V	0		500	ns
						800	ns
SCK0 rise/fall time	tre, tre	When using external device expansion function				160	ns
		When not using expansion functi				1000	ns

Note R and C are the load resistance and load capacitance of the SB0, SB1 output line.

(b) Serial Interface Channel 1

(i) 3-wire serial I/O mode (SCK1... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү7	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK1 high/low-level	tkh7, tkL7	V _{DD} = 4.5 to 5.5 V	tксүт/2 - 50			ns
width			tксүл/2 – 100			ns
SI1 setup time	tsık7	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
(to SCK1↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI1 hold time (from SCK1↑)	tksi7		400			ns
SO1 output delay time from SCK1↓	tkso7	C = 100 pFNote			300	ns

Note C is the load capacitance of SCK1 and SO1 output lines.

(ii) 3-wire serial I/O mode (SCK1... External clock input)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксүв	4.5 V ≤ V _{DD} ≤ 5.5	5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5	5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V		3200			ns
				4800			ns
SCK1 high/low-level	tкнв,	4.5 V ≤ V _{DD} ≤ 5.5	4.5 V ≤ V _{DD} ≤ 5.5 V				ns
width	t _{KL8}	2.7 V ≤ V _{DD} < 4.5	2.7 V ≤ V _{DD} < 4.5 V				ns
		$2.0 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$		1600			ns
				2400			ns
SI1 setup time	tsik8	$V_{DD} = 2.0 \text{ to } 5.5 ^{\circ}$	V	100			ns
(to SCK1 ↑)				150			ns
SI1 hold time (from SCK1↑)	tksi8			400			ns
SO1 output delay time	tkso8	C = 100 pFNote	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise/fall time	trs, trs	When using external device expansion function				160	ns
		When not using external device expansion function				1000	ns

Note C is the load capacitance of SO1 output line.

(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy9	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK1 high/low-level	tkH9, tkL9	V _{DD} = 4.5 to 5.5 V	tксү9/2 — 50			ns
width			tксу9/2 - 100			ns
SI1 setup time (to SCK1↑)	tsike	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI1 hold time (from SCK1↑)	tksi9		400			ns
SO1 output delay time from SCK1↓	tkso9	C = 100 pFNote			300	ns
STB↑ from SCK1↑	tsbd		tксү9/2 — 100		tксү9/2 + 100	ns
Strobe signal	tssw	2.7 V ≤ V _{DD} ≤ 5.5 V	tксү9 — 30		tксүө + 30	ns
high-level width		2.0 V ≤ V _{DD} < 2.7 V	tксү9 — 60		tксүэ + 60	ns
			tксү9 — 90		tксүэ + 90	ns
Busy signal setup time (to busy signal detection timing)	teys		100			ns
Busy signal hold time	tвүн	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(from busy signal		2.7 V ≤ V _{DD} < 4.5 V	150			ns
detection timing)		2.0 V ≤ V _{DD} < 2.7 V	200			ns
			300			ns
SCK1↓ from busy inactive	tsps				2tксүэ	ns

Note C is the load capacitance of SCK1 and SO1 output lines.

(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock input)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tKCY10	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.$	5 V	800			ns
		2.7 V ≤ V _{DD} < 4.	5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.	7 V	3200			ns
				4800			ns
SCK1 high/low-level	tкн10,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.$	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$				ns
width	tKL10	2.7 V ≤ V _{DD} < 4.	5 V	800			ns
		2.0 V ≤ V _{DD} < 2.7 V		1600			ns
				2400			ns
SI1 setup time	tsik10	$V_{DD} = 2.0 \text{ to } 5.5$	V	100			ns
(to SCK1↑)				150			ns
SI1 hold time (from SCK1↑)	tksi10			400			ns
SO1 output delay time	t KSO10	C = 100 pF ^{Note}	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise/fall time	tR10, tF10	When using external device expansion function				160	ns
		When not using expansion funct				1000	ns

Note C is the load capacitance of SO1 output line.

(c) Serial Interface Channel 2

(i) 3-wire serial I/O mode (SCK2... Internal clock output)

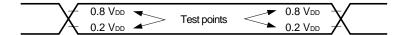
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkcY11	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK2 high/low-level	tkH11, tkL11	V _{DD} = 4.5 to 5.5 V	tkcy11/2 - 50			ns
width			tkcY11/2 - 100			ns
SI2 setup time	tsik11	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	100			ns
(to SCK2↑)		$2.7 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI2 hold time (from SCK2↑)	tksi11		400			ns
SO2 output delay time from SCK2↓	t KSO11	C = 100 pFNote			300	ns

Note $\,$ C is the load capacitance of $\overline{\text{SCK2}}$ and SO2 output lines.

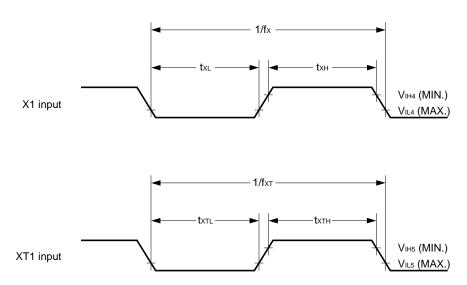
(ii) 3-wire serial I/O mode (SCK2... External clock input)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkCY12	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.$	5 V	800			ns
		2.7 V ≤ V _{DD} < 4.	5 V	1600			ns
		$2.0 \text{ V} \leq \text{V}_{DD} < 2.$	7 V	3200			ns
				4800			ns
SCK2 high/low-level	tкн12,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.$	5 V	400			ns
width	tKL12	2.7 V ≤ V _{DD} < 4.	5 V	800			ns
		2.0 V ≤ V _{DD} < 2.	7 V	1600			ns
				2400			ns
SI2 setup time	tsik12	$V_{DD} = 2.0 \text{ to } 5.5$	V	100			ns
(to SCK2 ↑)				150			ns
SI2 hold time (from SCK2↑)	t KSI12			400			ns
SO2 output delay time	t KSO12	C = 100 pFNote	$V_{DD} = 2.0 \text{ to } 5.5 \text{ V}$			300	ns
from SCK2↓						500	ns
SCK2 rise/fall time	tR12, tF12	V _{DD} = 4.5 to 5.5 When not using expansion funct	external device			1000	ns
						160	ns

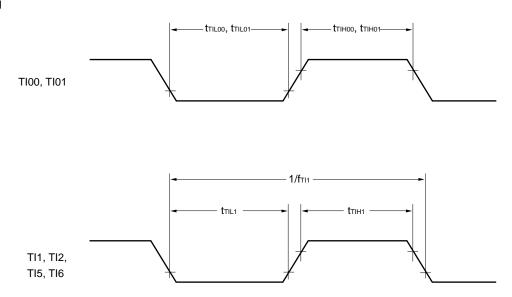
Note C is the load capacitance of SO2 output line.


(iii) UART mode (Dedicated baud rate generator output)

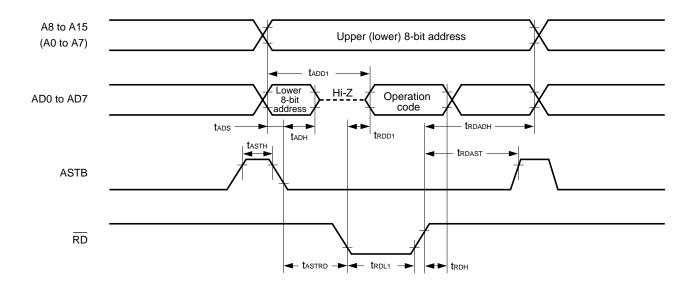
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		4.5 V ≤ V _{DD} ≤ 5.5 V			78125	bps
		2.7 V ≤ V _{DD} < 4.5 V			39063	bps
		2.0 V ≤ V _{DD} < 2.7 V			19531	bps
					9766	bps

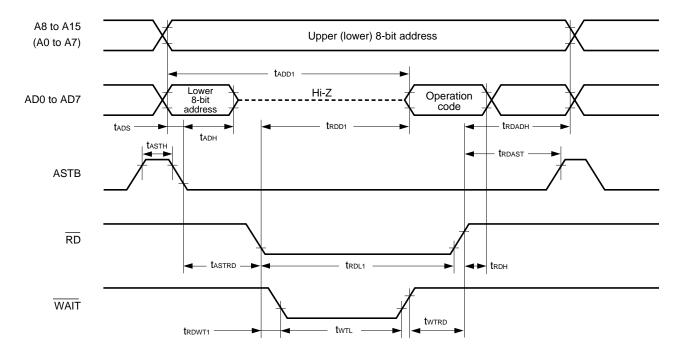

(iv) UART mode (External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	t ксү13	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
ASCK high/low-level	tкн13, tкL13	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	400			ns
width		2.7 V ≤ V _{DD} < 4.5 V	800			ns
		2.0 V ≤ V _{DD} < 2.7 V	1600			ns
			2400			ns
Transfer rate		4.5 V ≤ V _{DD} ≤ 5.5 V			39063	bps
		2.7 V ≤ V _{DD} < 4.5 V			19531	bps
		2.0 V ≤ V _{DD} < 2.7 V			9766	bps
					6510	bps
ASCK rise/fall time	t R13, t F13	V _{DD} = 4.5 to 5.5 V			1000	ns
		When not using external device expansion function				
					160	ns

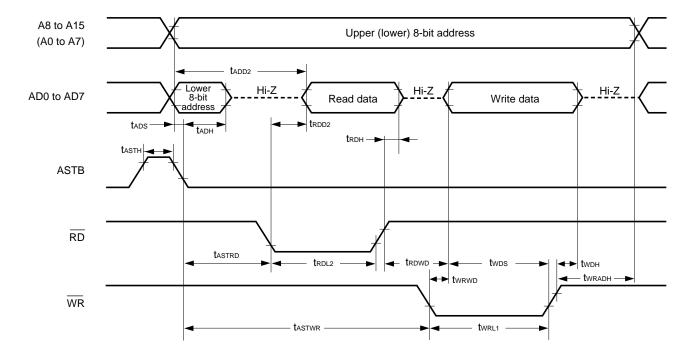

AC Timing Test Points (excluding X1, XT1 inputs)

Clock Timing

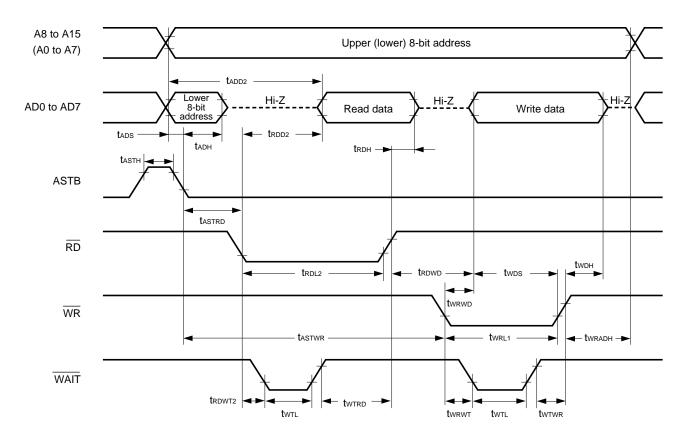

TI Timing


Read/Write Operation

External fetch (no wait):


Remark () is valid only in the separate bus mode.

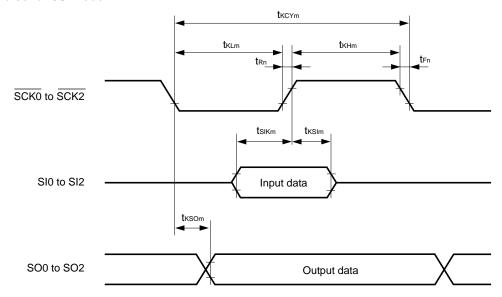
External fetch (wait insertion):


Remark () is valid only in the separate bus mode.

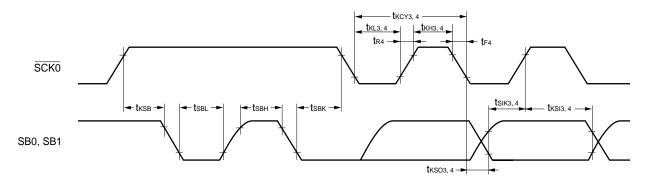
External data access (no wait):

Remark () is valid only in the separate bus mode.

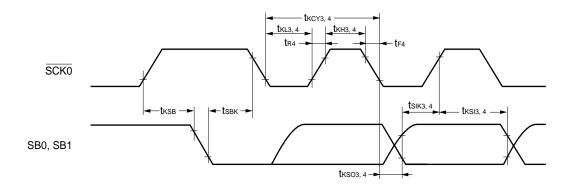
External data access (wait insertion):



 $\boldsymbol{Remark} \hspace{0.1cm} \textbf{(} \hspace{0.1cm} \textbf{)}$ is valid only in the separate bus mode.

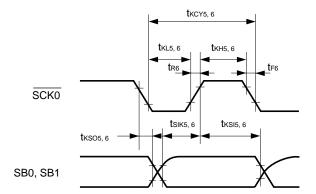

Serial Transfer Timing

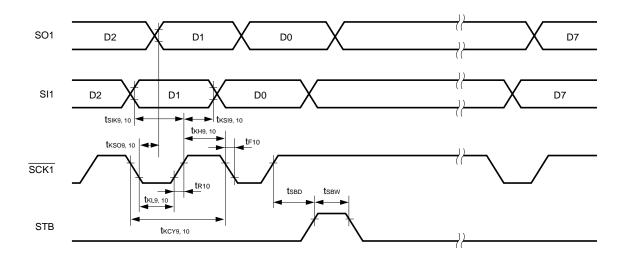
3-wire serial I/O mode:

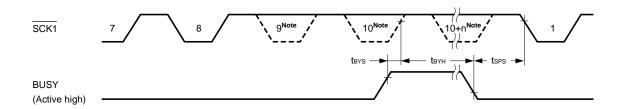


$$m = 1, 2, 7, 8, 11, 12$$

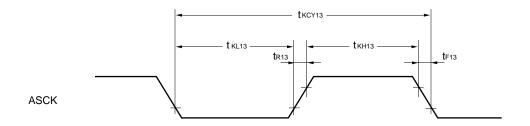
 $n = 2, 8, 12$


SBI mode (bus release signal transfer) :


SBI mode (command signal transfer) :


2-wire serial I/O mode:

3-wire serial I/O mode with automatic transmit/receive function :


3-wire serial I/O mode with automatic transmit/receive function (busy processing) :

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

UART mode (external clock input):

A/D CONVERTER CHARACTERISTICS (TA = -40 to +85°C, VDD = 1.8 to 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}		2.7 V ≤ AV _{REF0} ≤ V _{DD}			0.6	%
		$1.8 \text{ V} \leq \text{AV}_{\text{REF0}} < 2.7 \text{ V}$			1.4	%
Conversion time	tconv	2.0 V ≤ AV _{REF0} ≤ 5.5 V	19.1		200	μs
		1.8 V ≤ AV _{REF0} < 2.0 V	38.2		200	μs
Sampling time	t SAMP		24/fxx			μs
Analog input voltage	VIAN		AVss		AV _{REF0}	V
Reference voltage	AV _{REF0}		1.8		V _{DD}	V
Resistance between AVREFO and AVss	RAIREFO		4	20		kΩ

Note Excluding quantization error (±1/2LSB). It is indicated as a ratio to the full-scale value.

Remark fxx: Main system clock frequency (fx or fx/2) fx: Main system clock oscillation frequency

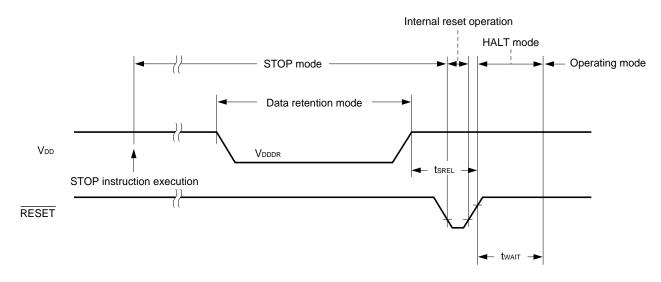
D/A CONVERTER CHARACTERISTICS (TA = -40 to +85°C, VDD = 1.8 to 5.5 V, AVss = Vss = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution						8	bit
Overall error		$R = 2 M\Omega^{N}$	Note 1			1.2	%
		R = 4 MΩ ^N	Note 1			0.8	%
		R = 10 MΩ	Note 1			0.6	%
Settling time		Note 1	4.5 V ≤ AV _{REF1} ≤ 5.5 V			10	μs
		C = 30 pF	2.7 V ≤ AV _{REF1} < 4.5 V			15	μs
			1.8 V ≤ AV _{REF1} < 2.7 V			20	μs
Output resistance	Ro	Note 2			10		kΩ
Analog reference voltage	AV _{REF1}			1.8		V _{DD}	V
Resistance between AVREF1 and AVss	Rairef1	DACS0, D	ACS1 = 55H ^{Note 2}	4	8		kΩ

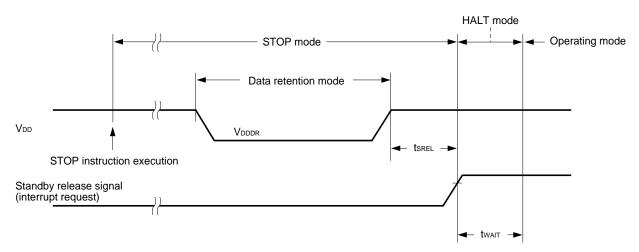
Notes 1. R and C are D/A converter output pin load resistance and load capacitance, respectively.

2. Value for 1 D/A converter channel

Remark DACS0, DACS1: D/A conversion value setting register 0, 1

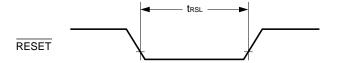

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (TA = -40 to + 85°C)

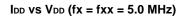
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		1.8		5.5	V
Data retention power supply current	IDDDR	V _{DDDR} = 1.8 V Subsystem clock stop and feed- back resistor disconnected		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		ms
wait time		Release by interrupt		Note		ms

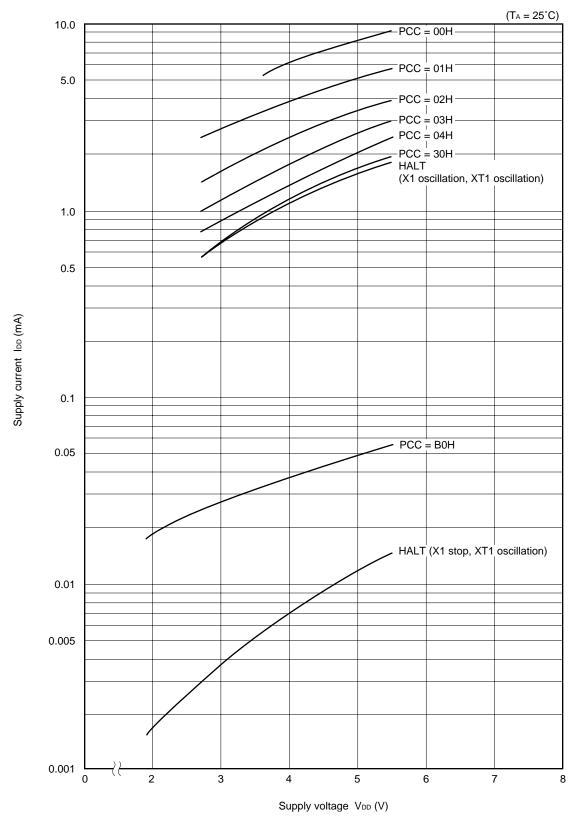

Note In combination with bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of 2¹³/fxx and 2¹⁵/fxx to 2¹⁸/fxx is possible.

Remark fxx: Main system clock frequency (fx or fx/2) fx: Main system clock oscillation frequency

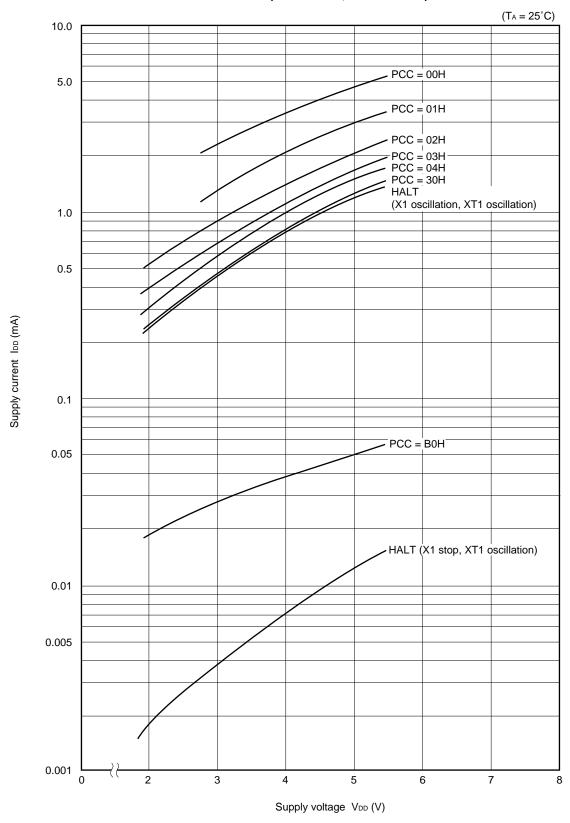
Data Retention Timing (STOP mode release by RESET)


Data Retention Timing (Standby release signal: STOP mode release by interrupt request signal)

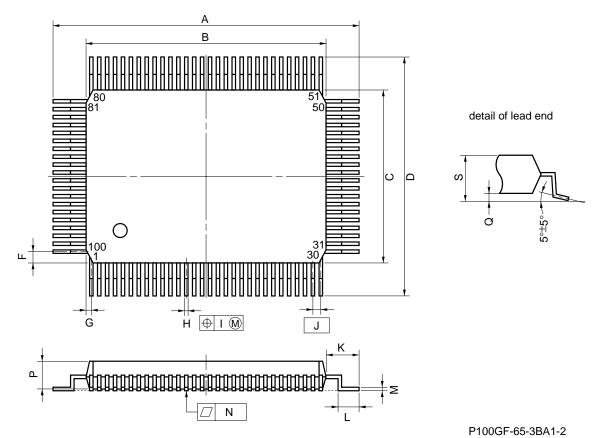

Interrupt Input Timing



RESET Input Timing



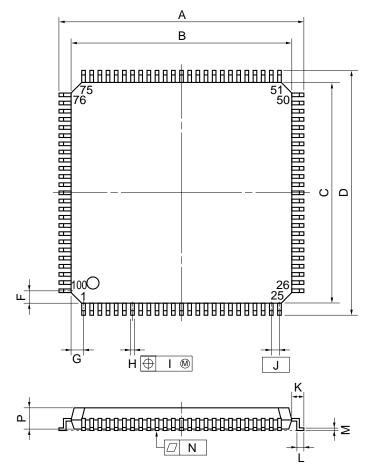
12. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)



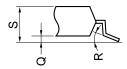
IDD VS VDD (fx = 5.0 MHz, fxx = 2.5 MHz)

13. PACKAGE DRAWINGS

100 PIN PLASTIC QFP (14 × 20)


NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
Α	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	0.15 ^{+0.10} _{-0.05}	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

Remark The shape and material of ES versions are the same as those of mass-produced versions.

100 PIN PLASTIC QFP (FINE PITCH) (□14)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	16.0±0.2	0.630±0.008
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	16.0±0.2	0.630±0.008
F	1.0	0.039
G	1.0	0.039
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
I	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	0.020+0.008
М	0.17 + 0.03 - 0.07	0.007+0.001
N	0.10	0.004
Р	1.45	0.057
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.

P100GC-50-7EA-2

Remark The shape and material of ES versions are the same as those of mass-produced versions.

14. RECOMMENDED SOLDERING CONDITIONS

The μ PD78074B and 78075B should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, consult our sales representative.

Table 14-1. Surface Mounting Type Soldering Conditions

(1) μ PD78074BGF-xxx-3BA : 100-pin plastic QFP (14 × 20 mm, resin thickness 2.7 mm) μ PD78075BGF-xxx-3BA : 100-pin plastic QFP (14 × 20 mm, resin thickness 2.7 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Reflow time: 30 seconds or below (at 210°C or higher), Number of reflow processes: three or less	IR35-00-3
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds or below (at 200°C or higher), Number of reflow processes: three or less	VP15-00-3
Wave soldering	Solder temperature: 260°C or below, Flow time: 10 seconds or below, Number of flow processes: once, Preheating temperature: 120°C or below (package surface temperature)	WS60-00-1
Pin partial heating	Pin temperature: 300°C or below, Time: 3 seconds or below (per device side)	_

(2) μ PD78074BGC-xxx-7EA : 100-pin plastic QFP (fine pitch) (14 x 14 mm, resin thickness 1.45 mm) μ PD78075BGC-xxx-7EA : 100-pin plastic QFP (fine pitch) (14 x 14 mm, resin thickness 1.45 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Reflow time: 30 seconds or below (at 210°C or higher), Number of reflow processes: two or less Exposure limit: 7 days ^{Note} (after that, prebaking is necessary at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds or below (at 200°C or higher), Number of reflow processes: two or less Exposure limit: 7 days ^{Note} (after that, prebaking is necessary at 125°C for 10 hours)	VP15-107-2
Pin partial heating	Pin temperature: 300°C or below, Time: 3 seconds or below (per device side)	_

Note Exposure limit after dry-pack is opened. Storage conditions: temperature of 25°C and relative humidity of 65% or less.

Caution Use of more than one soldering method should be avoided (except for the pin partial heating method).

APPENDIX A. DEVELOPMENT TOOLS

The following tools are available for system development using the μ PD78074B and 78075B.

Language Processing Software

RA78K/0 ^{Notes 1, 2, 3, 4}	Assembler package used in common for the 78K/0 Series
CC78K/0Notes 1, 2, 3, 4	C compiler package used in common for the 78K/0 Series
DF78078Notes 1, 2, 3, 4	Device file used in common for the μ PD78078 Subseries
CC78K/0-LNotes 1, 2, 3, 4	C compiler library source file used in common for the 78K/0 Series

PROM Writing Tools

PG-1500	PROM programmer
PA-78P078GF	Programmer adapter connected to the PG-1500
PA-78P078GC	
PA-78P078KL-T	
PG-1500 controllerNotes 1, 2	Control program for the PG-1500

Debugging Tools

IE-78000-R	In-circuit emulator used in common for the 78K/0 Series	
IE-78000-R-A	In-circuit emulator used in common for the 78K/0 Series (for integrated debugger)	
IE-78000-R-BK	Break board used in common for the 78K/0 Series	
IE-78078-R-EM	Emulation board used in common for the μ PD78078 Subseries	
EP-78064GC-R	Emulation probe used in common for the μ PD78064 Subseries	
EP-78064GF-R		
EV-9200GF-100	Socket mounted on the target system board prepared for 100-pin plastic QFP (GF-3BA type)	
TGC-100SDW	Adapter mounted on the target system board prepared for 100-pin plastic LQFP (GC-7EA type)	
	TGC-100SDW is made by Tokyo Eletech Corporation (Tokyo 03-5295-1661).	
	Contact an NEC sales representative for details.	
EV-9900	Jig used for removing the μ PD78P078KL-T from the EV-9200GF-100	
SM78K0Notes 4, 5, 6, 7	System simulator used in common for the 78K/0 Series	
ID78K0Notes 4, 5, 6, 7	Integrated debugger for the IE-78000-R-A	
SD78K/0 ^{Notes 1, 2}	Screen debugger for the IE-78000-R	
DF78078Notes 1, 2, 4, 5, 6, 7	Device file used in common for the μ PD78078 Subseries	

70

Real-Time OS

RX78K/0Notes 1, 2, 3, 4	Real-time OS used for the 78K/0 Series
MX78K0 ^{Notes 1, 2, 3, 4}	OS used for the 78K/0 Series

Fuzzy Inference Development Support System

FE9000Note 1/FE9200Note 5	Fuzzy knowledge data input tool
FT9080Note 1/FT9085Note 2	Translator
FI78K0Notes 1, 2	Fuzzy inference module
FD78K0Notes 1, 2	Fuzzy inference debugger

Notes 1. PC-9800 Series (MS-DOS™) based

- 2. IBM PC/AT™ and compatibles (PC DOS™/IBM DOS™/MS-DOS) based
- 3. HP9000 Series 300™ (HP-UX™) based
- **4.** HP9000 Series 700[™] (HP-UX), SPARCstation[™] (SunOS[™]), and EWS4800 Series (EWS-UX/V) based
- **5.** PC-9800 Series (MS-DOS+Windows™) based
- 6. IBM PC/AT and compatibles (PC DOS/IBM DOS/MS-DOS+Windows) based
- 7. NEWS™ (NEWS-OS™) based

Remarks 1. For development tools supplied by third-party manufacturers, refer to 78K/0 Series Selection Guide (U11126E).

2. Use the RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 in combination with the DF78078.

APPENDIX B. RELATED DOCUMENTS

Documents Related to Devices

Document Name	Docur	Document No.	
	Japanese	English	
μ PD78075B, 78075BY Subseries User's Manual	In preparation	Planned	
μPD78074B, 78075B Data Sheet	U12017J	This document	
μPD78P078 Data Sheet	U10168J	U10168E	
78K/0 Series User's Manual—Instructions	IEU-849	IEU-1372	
78K/0 Series Instruction Table	U10903J	_	
78K/0 Series Instruction Set	U10904J	_	
μPD78078 Subseries Special Function Register Table	IEM-5607	_	
78K/0 Series Application Note—Fundamental (III)	IEA-767	U10182E	

Development Tool Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor	'	EEU-817	EEU-1402
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly Language	U11801J	U11801E
	Structured Assembly Language	U11789J	U11789E
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K/0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K/0 C Compiler Application Note	Programming Know-how	EEA-618	EEA-1208
CC78K Series Library Source File		EEU-777	_
PG-1500 PROM Programmer		EEU-651	EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Based		EEU-5008	U10540E
IE-78000-R		EEU-810	U11376E
IE-78000-R-BK		EEU-867	EEU-1427
IE-78000-R-A		U10057J	U10057E
IE-78078-R-EM		U10775J	U10775E
EP-78064		EEU-934	EEU-1522
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External Part User Open	U10092J	U10092E
	Interface Specifications		
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	_
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
SD78K/0 Screen Debugger	Introduction	EEU-852	
PC-9800 Series (MS-DOS) Based	Reference	U10952J	_
SD78K/0 Screen Debugger	Introduction	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Based	Reference	U11279J	EEU-1413

Caution The contents of the documents listed above are subject to change without prior notice. Be sure to use the latest edition when starting design.

72

Embedded Software Documents (User's Manual)

Document Name		Docur	Document No.	
		Japanese	English	
78K/0 Series Real-time OS	Basic	U11537J	_	
	Installation	U11536J	_	
78K/0 Series OS MX78K0	Basic	EEU-5010	_	
Fuzzy Knowledge Data Input Tools		EEU-829	EEU-1438	
78K/0, 78K/II, and 87AD Series		EEU-862	EEU-1444	
Fuzzy Inference Development Support System	n Translator			
78K/0 Series Fuzzy Inference Development Support System		EEU-858	EEU-1441	
Fuzzy Inference Module				
78K/0 Series Fuzzy Inference Development Support System		EEU-921	EEU-1458	
Fuzzy Inference Knowledge Debugger				

Other Documents

Document Name	Docum	Document No.	
	Japanese	English	
IC Package Manual	C10	943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E	
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E	
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E	
Electrostatic Discharge (ESD) Test	MEM-539	_	
Guide to Quality Assurance for Semiconductor Devices	C11893J	MEI-1202	
Microcomputer Product Series Guide	U11416J	_	

Caution The contents of the documents listed above are subject to change without prior notice. Be sure to use the latest edition when starting design.

NOTES FOR CMOS DEVICES—

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

FIP and IEBus are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 300, HP9000 Series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.