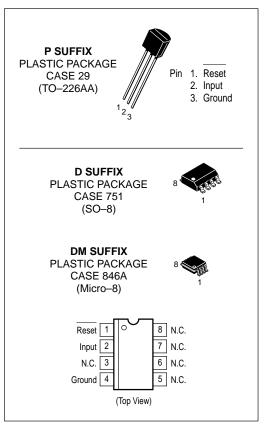


Micropower Undervoltage Sensing Circuits

The MC34164 series are undervoltage sensing circuits specifically designed for use as reset controllers in portable microprocessor based systems where extended battery life is required. These devices offer the designer an economical solution for low voltage detection with a single external resistor. The MC34164 series features a bandgap reference, a comparator with precise thresholds and built–in hysteresis to prevent erratic reset operation, an open collector reset output capable of sinking in excess of 6.0 mA, and guaranteed operation down to 1.0 V input with extremely low standby current. These devices are packaged in 3–pin TO–226AA, 8–pin SO–8 and Micro–8 surface mount packages.

Applications include direct monitoring of the 3.0 or 5.0 V MPU/logic power supply used in appliance, automotive, consumer, and industrial equipment.


- Temperature Compensated Reference
- Monitors 3.0 V (MC34164-3) or 5.0 V (MC34164-5) Power Supplies
- Precise Comparator Thresholds Guaranteed Over Temperature
- Comparator Hysteresis Prevents Erratic Reset
- Reset Output Capable of Sinking in Excess of 6.0 mA
- Internal Clamp Diode for Discharging Delay Capacitor
- Guaranteed Reset Operation With 1.0 V Input
- Extremely Low Standby Current: As Low as 9.0 μA
- Economical TO-226AA, SO-8 and Micro-8 Surface Mount Packages

MC34164 MC33164

MICROPOWER UNDERVOLTAGE SENSING CIRCUITS

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC34164D-3		SO-8
MC34164D-5		30-0
MC34164DM-3	T 0° to 170°C	Missa
MC34164DM-5	$T_A = 0^\circ \text{ to } +70^\circ C$	Micro-8
MC34164P-3		TO 00044
MC34164P-5		TO-226AA
MC33164D-3		SO-8
MC33164D-5		30-6
MC33164DM-3	T. 400 to .4050C	
MC33164DM-5	$T_A = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	Micro-8
MC33164P-3		TO 00044
MC33164P-5		TO-226AA

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Input Supply Voltage	V _{in}	-1.0 to 12	V
Reset Output Voltage	V _O	-1.0 to 12	V
Reset Output Sink Current	l _{Sink}	Internally Limited	mA
Clamp Diode Forward Current, Pin 1 to 2 (Note 1)	lF	100	mA
Power Dissipation and Thermal Characteristics P Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C	P _D	700	mW
Thermal Resistance, Junction-to-Air D Suffix, Plastic Package	$R_{\theta JA}$	178	°C/W
Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction–to–Air DM Suffix, Plastic Package	P _D R _θ JA	700 178	mW °C/W
Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction–to–Air	P _D R _{θJA}	520 240	mW °C/W
Operating Junction Temperature	TJ	+150	°C
Operating Ambient Temperature Range MC34164 Series MC33164 Series	T _A	0 to +70 - 40 to + 85	°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C

NOTE: ESD data available upon request.

MC34164-3, MC33164-3 SERIES

ELECTRICAL CHARACTERISTICS (For typical values $T_A = 25$ °C, for min/max values T_A is the operating ambient temperature range that applies [Notes 2 & 3], unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
COMPARATOR					
Threshold Voltage High State Output (V _{in} Increasing) Low State Output (V _{in} Decreasing) Hysteresis (I _{Sink} = 100 μA)	VIH VIL VH	2.55 2.55 0.03	2.71 2.65 0.06	2.80 2.80 –	V
RESET OUTPUT	•	•		•	•
Output Sink Saturation $(V_{in} = 2.4 \text{ V}, I_{Sink} = 1.0 \text{ mA})$ $(V_{in} = 1.0 \text{ V}, I_{Sink} = 0.25 \text{ mA})$	VoL	- -	0.14 0.1	0.4 0.3	V
Output Sink Current (V _{in} , Reset = 2.4 V)	l _{Sink}	6.0	12	30	mA
Output Off—State Leakage (V _{in} , Reset = 3.0 V) (V _{in} , Reset = 10 V)	IR(leak)	- -	0.02 0.02	0.5 1.0	μА
Clamp Diode Forward Voltage, Pin 1 to 2 (I _F = 5.0 mA)	٧F	6.0	0.9	1.2	V
TOTAL DEVICE	•	•		•	ı
Operating Input Voltage Range	V _{in}	1.0 to 10	-	-	V
Quiescent Input Current Vin = 3.0 V Vin = 6.0 V	lin	- -	9.0 24	15 40	μА

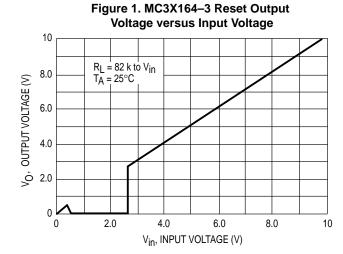
NOTES: 1. Maximum package power dissipation limits must be observed.

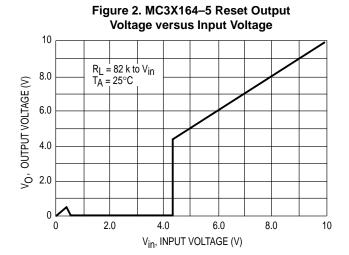
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

3. T_{low} = 0°C for MC34164

- 40°C for MC33164

Thigh = +70°C for MC34164


= +85°C for MC33164


MC34164-5, MC33164-5 SERIES

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (\text{For typical values T}_{A} = 25^{\circ}\text{C}, \text{ for min/max values T}_{A} \text{ is the operating ambient temperature range} \\$ that applies [Notes 2 & 3], unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
COMPARATOR	•	•			•
Threshold Voltage High State Output (V _{in} Increasing) Low State Output (V _{in} Decreasing) Hysteresis (I _{Sink} = 100 μA)	VIH VIL VH	4.15 4.15 0.02	4.33 4.27 0.09	4.45 4.45 –	V
RESET OUTPUT		•		•	•
Output Sink Saturation $(V_{in} = 4.0 \text{ V, } I_{Sink} = 1.0 \text{ mA})$ $(V_{in} = 1.0 \text{ V, } I_{Sink} = 0.25 \text{ mA})$	VOL	- -	0.14 0.1	0.4 0.3	V
Output Sink Current (Vin, Reset = 4.0 V)	lSink	7.0	20	50	mA
Output Off-State Leakage (V _{in} , Reset = 5.0 V) (V _{in} , Reset = 10 V)	IR(leak)	- -	0.02 0.02	0.5 2.0	μА
Clamp Diode Forward Voltage, Pin 1 to 2 (I _F = 5.0 mA)	VF	0.6	0.9	1.2	V
TOTAL DEVICE	•	•		•	
Operating Input Voltage Range	V _{in}	1.0 to 10	-	-	V
Quiescent Input Current Vin = 5.0 V Vin = 10 V	l _{in}	- -	12 32	20 50	μА

NOTES: 2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible. $3. T_{low} = 0^{\circ} C$ for MC34164 $T_{high} = +70^{\circ} C$ for MC34164 $= +85^{\circ} C$ for MC33164

Voltage versus Input Voltage

Figure 3. MC3X164-3 Reset Output

5.0 4.0 V_O, OUTPUT VOLTAGE (V) 3.0 2.0 1.0 $R_L = 82 \text{ k to } V_{in}$ $T_A = 25^{\circ}C$ 2.62 2.78 2.66 2.70 2.74

Figure 4. MC3X164-5 Reset Output Voltage versus Input Voltage 5.0 4.0 V_0 , OUTPUT VOLTAGE (V) 3.0 2.0 1.0 $R_L = 82 \text{ k to } V_{in}$ $T_A = 25^{\circ}C$ 0 4.22 4.26 4.30 4.34 4.38 V_{in}, INPUT VOLTAGE (V)

Figure 5. MC3X164-3 Comparator Threshold **Voltage versus Temperature**

V_{in}, INPUT VOLTAGE (V)

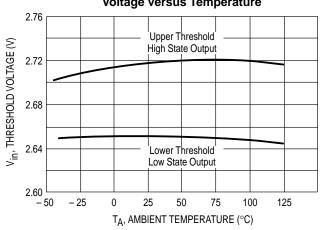


Figure 6. MC3X164-5 Comparator Threshold **Voltage versus Temperature**

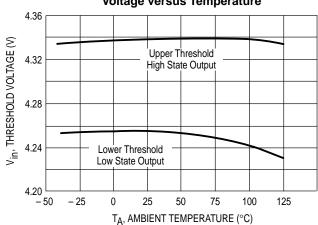


Figure 7. MC3X164-3 Input Current

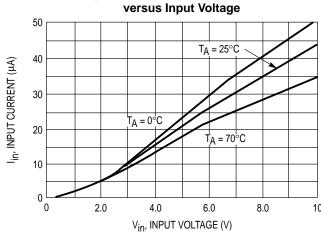


Figure 8. MC3X164-5 Input Current versus Input Voltage

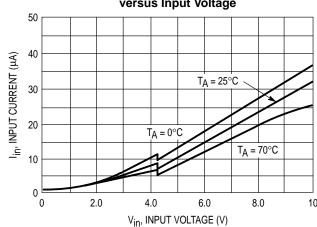


Figure 9. MC3X164–3 Reset Output Saturation versus Sink Current

4.0 $V_{in} = 2.4 \text{ V}$ $T_{A} = 70^{\circ}\text{C}$ $T_{A} = 0^{\circ}\text{C}$ $T_{A} = 70^{\circ}\text{C}$ $T_{A} = 70^{\circ}\text{C}$

8.0

12

V_{Sink}, SINK CURRENT (mA)

16

20

0

0

4.0

Figure 10. MC3X164-5 Reset Output Saturation versus Sink Current 4.0 T_A = 25°C V_{in}, Reset = 4 V V_{OL}, OUTPUT SATURATION (V) $T_A = 70^{\circ}C$ T_A = 0°C 3.0 $T_A = 25^{\circ}C$ 2.0 $T_A = 0^{\circ}C$ 1.0 T_A = 70°C 0 4.0 8.0 20 12 16 ISink, SINK CURRENT (mA)

Figure 11. Clamp Diode Forward Current versus Voltage 32 I F , FORWARD CURRENT (mA) V_{in} = 0 V 24 $T_{A} = 25^{\circ}C$ 16 8.0 0 0 0.4 0.8 1.2 1.6 V_F, FORWARD VOLTAGE (V)

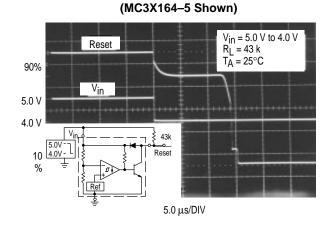
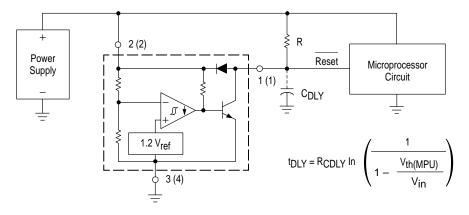



Figure 12. Reset Delay Time

Figure 13. Low Voltage Microprocessor Reset

A time delayed reset can be accomplished with the addition of C_{DLY} . For systems with extremely fast power supply rise times (< 500 ns) it is recommended that the RCDLY time constant be greater than 5.0 μ s. $V_{th(MPU)}$ is the microprocessor reset input threshold.

Figure 14. Low Voltage Microprocessor Reset With Additional Hysteresis (MC3X164–5 Shown)

Test Data							
V _H (mV)	ΔV _{th} (mV)	R _H (Ω)	R _L (kΩ)				
60	0	0	43				
103	1.0	100	10				
123	1.0	100	6.8				
160	1.0	100	4.3				
155	2.2	220	10				
199	2.2	220	6.8				
280	2.2	220	4.3				
262	4.7	470	10				
306	4.7	470	8.2				
357	4.7	470	6.8				
421	4.7	470	5.6				
530	4.7	470	4.3				

Comparator hysteresis can be increased with the addition of resistor R_H . The hysteresis equation has been simplified and does not account for the change of input current I_{in} as V_{in} crosses the comparator threshold (Figure 8). An increase of the lower threshold $\Delta V_{th}(I_{OWer})$ will be observed due to I_{in} which is typically 10 μ A at 4.3 V. The equations are accurate to $\pm 10\%$ with R_H less than 1.0 $k\Omega$ and R_L between 4.3 $k\Omega$ and 43 $k\Omega$.

Figure 15. Voltage Monitor

Power Supply

1.0 k

1.0 k

1.2 Vref

Figure 16. Solar Powered Battery Charger

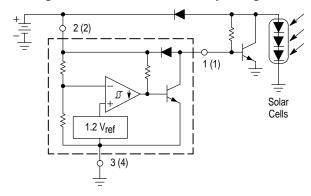
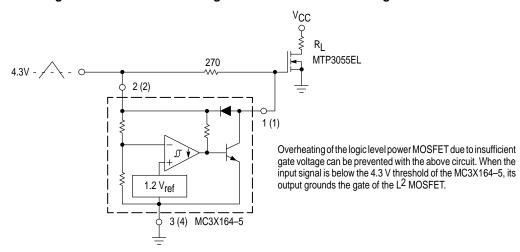
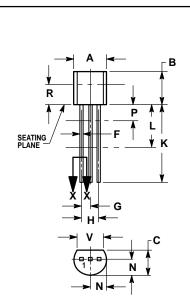
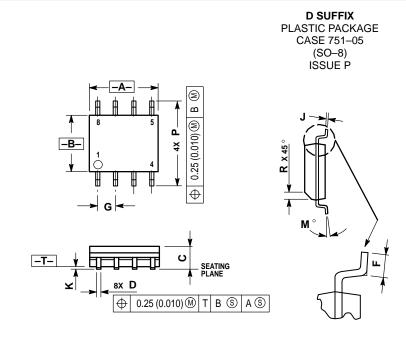




Figure 17. MOSFET Low Voltage Gate Drive Protection Using the MC3X164-5

OUTLINE DIMENSIONS

P SUFFIX PLASTIC PACKAGE CASE 29-04 (TO-226AA) ISSUE AD

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.

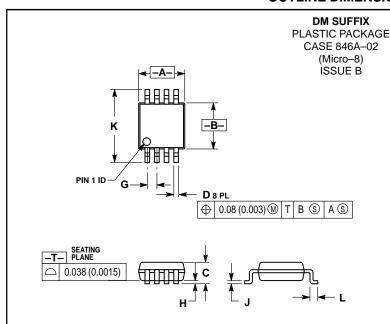
 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION HINDIMENSION HI IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
С	0.125	0.165	3.18	4.19	
D	0.016	0.022	0.41	0.55	
F	0.016	0.019	0.41	0.48	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
Р		0.100		2.54	
R	0.115		2.93		
٧	0.135		3.43		

- VOIES.

 1. DIMENSIONS A AND B ARE DATUMS AND T IS A DATUM SURFACE.

 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14.5M, 1982.


 3. DIMENSIONS ARE IN MILLIMETER.

 4. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION D DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	MILLIMETERS					
DIM	MIN	MAX					
Α	4.80	5.00					
В	3.80	4.00					
С	1.35	1.75					
D	0.35	0.49					
F	0.40	1.25					
G	1.27	BSC					
J	0.18	0.25					
K	0.10	0.25					
M	0°	7 °					
Р	5.80	6.20					
R	0.25	0.50					

OUTLINE DIMENSIONS

NOTES:

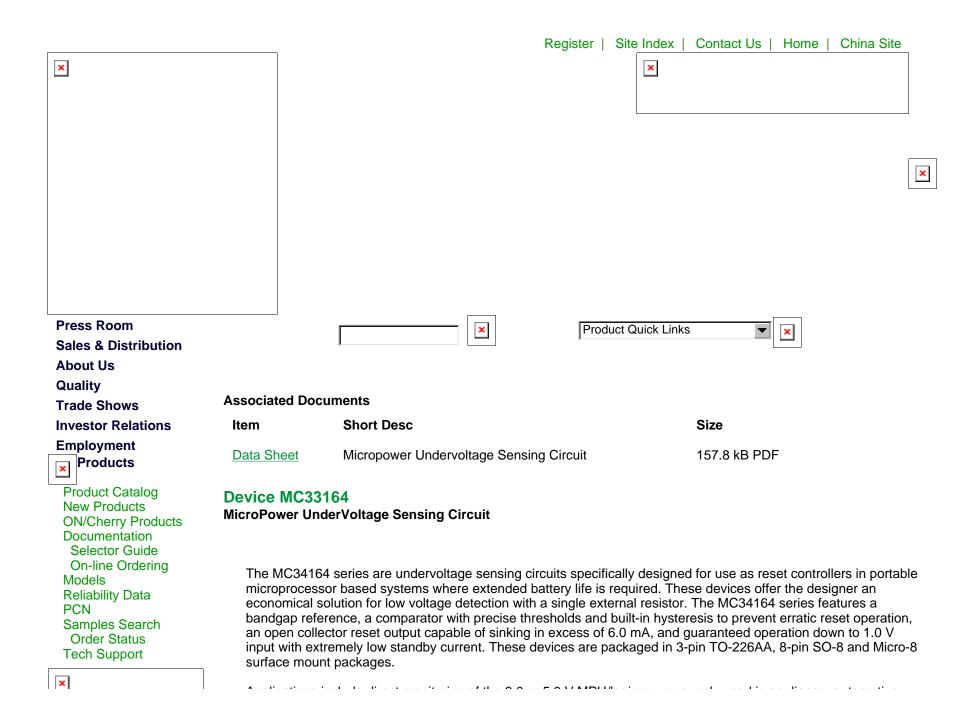
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION, INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
С		1.10		0.043	
D	0.25	0.40	0.010	0.016	
G	0.65	BSC	0.026 BSC		
Н	0.05	0.15	0.002	0.006	
J	0.13	0.23	0.005	0.009	
K	4.75	5.05	0.187	0.199	
L	0.40	0.70	0.016	0.028	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454


MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

Applications include direct monitoring of the 3.0 or 5.0 v MPU/logic power supply used in appliance, automotive, consumer, and industrial equipment.

Features:

- Temperature Compensated Reference
- Monitors 3.0 V (MC34164-3) or 5.0 V (MC34164-5) Power Supplies
- Precise Comparator Thresholds Guaranteed Over Temperature
- Comparator Hysteresis Prevents Erratic Reset
- Reset Output Capable of Sinking in Excess of 6.0 mA
- Internal Clamp Diode for Discharging Delay Capacitor
- Guaranteed Reset Operation With 1.0 V Input
- Extremely Low Standby Current: As Low as 9.0 μA
- Economical TO-226AA, SO-8 and Micro-8 Surface Mount Packages

Orderable Parts

Action	Orderable Part	Short Desc.	Package Desc.	Pin Count	Case Outline	<u>Status</u>	Price/Unit	Pack Qty
N/A	MC33164D-3.3	MicroPower UnderVoltage Sensing Circuit	N/A	N/A	N/A	Intro Pending		
N/A	MC33164-3.3R2	Tape and Reel	N/A	N/A	N/A	Intro Pend		
N/A	MC33164D-4.6	MicroPower UnderVoltage Sensing Circuit	N/A	N/A	N/A	Intro Pending		
N/A	MC33164D-4.6R2	Tape and Reel	N/A	N/A	N/A	Intro Pending		
N/A	MC33164P-3.3	MicroPower UnderVoltage Sensing Circuit	N/A	N/A	N/A	Intro Pending		
N/A	MC33164P-4.6	MicroPower UnderVoltage Sensing	N/A	N/A	N/A	Intro Pending		

Circuit

N/A	MC33164SN-5T1	Tape and Reel	N/A	N/A	N/A	Active		
N/A	MC33164P-3.3RP	MicroPower UnderVoltage Sensing Circuit	N/A	N/A	N/A	Intro Pending		
N/A	MC33164P-3RA	MicroPower UnderVoltage Sensing Circuit	TO-92 (TO- 226)	3	<u>29-11</u>	Active	\$0.920	2000
N/A	MC33164P-3RP	MicroPower UnderVoltage Sensing Circuit	TO-92 (TO- 226)	3	<u>29-11</u>	Active	\$0.920	2000
N/A	MC33164P-4.6RA	MicroPower UnderVoltage Sensing Circuit	N/A	N/A	N/A	Intro Pending		
N/A	MC33164P-4.6RP	MicroPower UnderVoltage Sensing Circuit	N/A	N/A	N/A	Intro Pending		
N/A	MC33164P-5RA	MicroPower UnderVoltage Sensing Circuit	TO-92 (TO- 226)	3	<u>29-11</u>	Active	\$0.920	2000
N/A	MC33164P-5RP	MicroPower UnderVoltage Sensing Circuit	TO-92 (TO- 226)	3	<u>29-11</u>	Active	\$0.920	2000
N/A	MC33164D-3R2	Tape and Reel	SOIC	8	<u>751-06</u>	Active	\$0.933	2500
N/A	MC33164D-3	MicroPower UnderVoltage	SOIC	8	<u>751-06</u>	Active		

		Sensing Circuit						
N/A	MC33164D-5R2	Tape and Reel	SOIC	8	<u>751-06</u>	Active	\$0.933	2500
N/A	MC33164D-5	MicroPower UnderVoltage Sensing Circuit	SOIC	8	<u>751-06</u>	Active		
N/A	MC33164DM-3R2	Tape and Reel	Micro-8	8	846A-02	Active		
N/A	MC33164DM-5R2	Tape and Reel	Micro-8	8	846A-02	Active		
N/A	MC33164P-3	MicroPower UnderVoltage Sensing Circuit	TO-92 (TO- 226)	3	<u>29-11</u>	Active		
N/A	MC33164P-5	MicroPower UnderVoltage Sensing Circuit	TO-92 (TO- 226)	3	<u>29-11</u>	Active		
N/A	MC33164P-3.3RA	MicroPower UnderVoltage Sensing Circuit	N/A	N/A	N/A	Intro Pending		

Register | Site Index | Contact Us | Home | China Site

Products | Press Room | Sales | About | Investor | Employment © Semiconductor Components Industries, L.L.C., 1999, 2000. All rights reserved. Terms of use.