SC0015B 550.00 MHz

Differential Sine-Wave Clock

- Quartz SAW Frequency Stability
- Fundamental Fixed Frequency
- Very Low Jitter and Power Consumption
- Rugged, Miniature, Surface-Mount Case
- Low-Voltage Power Supply (5.0 VDC)

This digital clock is designed for use with high-speed CPUs and digitizers. Fundamental-mode oscillation is made possible by surface-acoustic-wave (SAW) technology. The design results in low jitter, compact size, and low power consumption. Differential outputs provide a sine wave that is capable of driving $50~\Omega$ loads.

Electrical Characteristics

	Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units	
Output Frequency	Absolute Frequency	f _O	1, 2	549.89		550.1	MHz	
	Tolerance from 550.000 MHz	Δf_{O}				±200	ppm	
Q and $\overline{\mathrm{Q}}$ Output	Voltage into 50Ω (VSWR ≤ 1.2)	V _O	1, 3	0.60		1.1	V _{P-P}	
	Operating Load VSWR					2:1		
	Symmetry		3, 4, 5	49		51	%	
	Harmonic Spurious		3, 4, 6			-30	dBc	
	Nonharmonic Spurious					-60	dBc	
Q and Q Period Jitter	No Noise on V _{CC}		3, 4, 6, 7		15	30	ps _{P-P}	
	200 mV $_{P\text{-}P}$ from 1 MHz to $1\!\!\!/_2$ f_O on V_{CC}		3, 4, 7, 8			35	ps _{P-P}	
Output (Disabled)	Amplitude into 50 Ω		3, 9			75	mV _{P-P}	
Output DC Resistance (between Q & Q)			3	50			ΚΩ	
ENABLE (Terminal 14)	Input HIGH Voltage	V _{IH}	3, 9	V _{CC} -0.1	V _{CC}	V _{CC} +0.1	V	
	Input LOW Voltage	V _{IL}		0.0		0.20	V	
	Input HIGH Current	I _{IH}			3	5	mA	
	Input LOW Current	I _{IL}				-1	mA	
	Propagation Delay	t _{PD}				1	ms	
DC Power Supply	Operating Voltage	V _{CC}	1, 3	4.75	5.0	5.25	VDC	
	Operating Current	Icc			20	40	mA	
Operating Ambient Temperature		T _A	1, 3	0		+70	°C	
Lid Symbolization (YY = Year, WW = Week)			RFM SC0015B 550.00 MHz YYWW					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes:

- 1. Unless otherwise noted, all specifications include any combination of load VSWR, VCC, and TA. In addition, Q and Q are terminated into 50 Ω loads to ground. (See: Typical Test Circuit.)
- 2. One or more of the following United States patents apply: 4,616,197; 4,670,681; 4,760,352.
- 3. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 4. Only under the nominal conditions of 50 Ω load impedance with VSWR \leq 1.2 and nominal power supply voltage.
- 5. Symmetry is defined as the pulse width (in percent of total period) measured at the 50% points of Q or Q. (See: Timing Definitions.)
- 6. Jitter and other spurious outputs induced by externally generated electrical noise on V_{CC} or mechanical vibration are not included. Dedicated external voltage regulation and careful PCB layout are recommended for optimum performance.
- 7. Applies to period jitter of Q and Q. Measurements are made with the Tektronix CSA803 signal analyzer with at least 1000 samples.
- 8. Period jitter measured with a 200 mV_{P.P} sine wave swept from 1 MHz to one-half of f_O at the V_{CC} power supply terminal.
- 9. The outputs are enabled when Terminal 8 is at logic HIGH. Propagation delay is defined as the time from the 50% point on the rising edge of ENABLE to the 90% point on the rising edge of the output amplitude or as the fall time from the 50% point to the 10% point. (SEE: Timing Definitions.)

RF Monolithics, Inc. Phone: (972) 233-2903 Fax: (972) 387-8148

RFM Europe Sales Phone: (33-0) (1) 39.16.42.89 Fax: (33-0) (1) 39.16.42.70

@1998 by RF Monolithics Inc. The stylized RFM logo and RFM are registered trademarks of RF Monolithics. Inc.