Features

- GaN on SiC D-Mode Transistor Technology
- Unmatched, Ideal for Pulsed Applications
- 50 V Typical Bias, Class AB
- Common-Source Configuration
- Thermally-Enhanced $3 \times 6 \mathrm{~mm}$ 14-Lead DFN
- MTTF $=600$ years $\left(\mathrm{T}_{j}<200^{\circ} \mathrm{C}\right)$
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible
- MSL-1

Description

The MAGX-000035-05000P is a GaN on SiC unmatched power device offering the widest RF frequency capability, most reliable high voltage operation, lowest overall power transistor size, cost and weight in a "TRUE SMT"TM plastic-packaging technology.

Use of an internal stress buffer technology allows reliable operation at junction temperatures up to $200^{\circ} \mathrm{C}$. The small package size and excellent RF performance make it an ideal replacement for costly flanged or metal-backed module components.

Ordering Information ${ }^{1}$

Part Number	Package
MAGX-000035-05000P	Bulk Packaging
MAGX-000035-PB2PPR	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration ${ }^{2}$

Pin No.	Function	Pin No.	Function
1	No Connection	8	No Connection
2	No Connection	9	No Connection
3	$\mathrm{~V}_{G G} / \mathrm{RF}_{\text {IN }}$	10	$\mathrm{~V}_{\mathrm{DD}} / \mathrm{RF}_{\text {OUT }}$
4	$\mathrm{~V}_{\mathrm{GG}} / \mathrm{RF}_{\mathrm{IN}}$	11	$\mathrm{~V}_{\mathrm{DD}} / \mathrm{RF}_{\text {out }}$
5	$\mathrm{~V}_{\mathrm{GG}} / \mathrm{RF}_{\text {IN }}$	12	$\mathrm{~V}_{\mathrm{DD}} / \mathrm{RF}_{\text {out }}$
6	No Connection	13	No Connection
7	No Connection	14	No Connection
		15	Paddle ${ }^{3}$

2. M/A-COM Technology Solutions recommends connecting unused package pins to ground.
3. The exposed pad centered on the package bottom must be connected to RF and DC ground.

* Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN Wideband 50 WPulsed Transistor in Plastic Package DC-3.5GHz

Typical Performance ${ }^{4}$: $\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	30 MHz	1 GHz	2.5 GHz	3.5 GHz	Units
Gain	24	22	17	14	dB
Saturated Power ($\mathrm{P}_{\text {SAT }}$)	65	65	50	45	W
Power Gain at $\mathrm{P}_{\text {SAT }}$	22	21	15	11	dB
PAE @ P ${ }_{\text {SAT }}$	73	65	58	53	\%

4. Typical RF performance measured in M/A-COM Technology Solutions RF evaluation boards. See recommended tuning solutions on page 4.

Electrical Specifications: Freq. $=1.6 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+50 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Test Conditions	Symbol	Min.	Typ.	Max.	Units
RF FUNCTIONAL TESTS						
CW Output Power (P2.5 dB)	$V_{D D}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$	Pout	-	12	-	W
Pulsed Output Power (P2.5 dB) 1 ms and 10\% Duty Cycle	$V_{D D}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$	Pout	42	50	-	W
Pulsed Power Gain (P2.5 dB)	$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$	G_{P}	16	18	-	dB
Pulsed Drain Efficiency (P2.5 dB)	$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$	$\eta_{\text {D }}$	55	66	-	\%
Load Mismatch Stability (P2.5 dB)	$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$	VSWR-S	-	5:1	-	-
Load Mismatch Tolerance (P2.5 dB)	$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$	VSWR-T	-	10:1	-	-

Electrical Characteristics: $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Test Conditions	Symbol	Min.	Typ.	Max.	Units
DC CHARACTERISTICS						
Drain-Source Leakage Current	$V_{G S}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=175 \mathrm{~V}$	l_{DS}	-	-	3.0	mA
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6 \mathrm{~mA}$	$V_{\text {GS (th) }}$	-5	-3	-2	V
Forward Transconductance	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1500 \mathrm{~mA}$	G_{M}	1.1	-	-	S
DYNAMIC CHARACTERISTICS						
Input Capacitance	$V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {ISS }}$	-	13.1	-	pF
Output Capacitance	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz}$	Coss	-	5.2	-	pF
Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {RSS }}$	-	0.5	-	pF

Absolute Maximum Ratings ${ }^{\text {5,6,7,8,9 }}$

Parameter	Absolute Max.
Input Power	Pout $^{\prime} \mathrm{G}_{\mathrm{P}}+2.5 \mathrm{dBm}$
Drain Supply Voltage, V_{DD}	+65 V
Gate Supply Voltage, V_{GG}	-8 V to 0 V
Supply Current, I	2500 mA
Power Dissipation, CW @ $85^{\circ} \mathrm{C}$	13 W
Power Dissipation (PAVG), Pulsed @ $85^{\circ} \mathrm{C}$	43 W
Junction Temperature ${ }^{10}$	$200^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.
7. For saturated performance it is recommended that the sum of $\left(3^{*} \mathrm{~V}_{\mathrm{DD}}+\mathrm{abs}\left(\mathrm{V}_{\mathrm{GG}}\right)\right) \leq 175 \mathrm{~V}$.
8. CW operation at V_{DD} voltages above 28 V is not recommended.
9. Operating at nominal conditions with $\mathrm{T}_{J} \leq 200^{\circ} \mathrm{C}$ will ensure MTTF $>1 \times 10^{6}$ hours. Junction temperature directly affects device MTTF and should be kept as low as possible to maximize lifetime.
10. Junction Temperature $\left(T_{J}\right)=T_{C}+\Theta_{\mathrm{Jc}}$ * $\left(\left(V^{*} \mathrm{I}\right)-\left(\mathrm{P}_{\text {OUT }}-\mathrm{P}_{\text {IN }}\right)\right)$

Typical CW thermal resistance $\left(\Theta_{\mathrm{Jc}}\right)=9.63^{\circ} \mathrm{C} / \mathrm{W}$
a) For $\mathrm{T}_{\mathrm{C}}=79^{\circ} \mathrm{C}$,
$\mathrm{T}_{\mathrm{J}}=200^{\circ} \mathrm{C} @ 28 \mathrm{~V}, 840 \mathrm{~mA}, \mathrm{P}_{\text {OUT }}=12 \mathrm{~W}, \mathrm{P}_{\mathrm{IN}}=0.92 \mathrm{~W}$
Typical transient thermal resistances:
b) 300μ s pulse, 10% duty cycle, $\Theta_{\mathrm{Jc}}=1.6^{\circ} \mathrm{C} / \mathrm{W}$

For $\mathrm{T}_{\mathrm{C}}=79^{\circ} \mathrm{C}$,
$\mathrm{T}_{\mathrm{J}}=117^{\circ} \mathrm{C} @ 50 \mathrm{~V}, 1090 \mathrm{~mA}, \mathrm{P}_{\text {OUt }}=30.2 \mathrm{~W}, \mathrm{P}_{\text {IN }}=1.42 \mathrm{~W}$
c) 1 ms pulse, 10% duty cycle, $\Theta_{\mathrm{Jc}}=2.0^{\circ} \mathrm{C} / \mathrm{W}$

For $\mathrm{T}_{\mathrm{C}}=79^{\circ} \mathrm{C}$,
$\mathrm{T}_{\mathrm{J}}=129^{\circ} \mathrm{C} @ 50 \mathrm{~V}, 1110 \mathrm{~mA}, \mathrm{P}_{\text {OUT }}=30.7 \mathrm{~W}, \mathrm{P}_{\text {IN }}=1.5 \mathrm{~W}$
d) 1 ms pulse, 20% duty cycle, $\Theta_{\mathrm{Jc}}=2.81^{\circ} \mathrm{C} / \mathrm{W}$

For $\mathrm{T}_{\mathrm{C}}=79^{\circ} \mathrm{C}$,
$\mathrm{T}_{\mathrm{J}}=153^{\circ} \mathrm{C} @ 50 \mathrm{~V}, 1120 \mathrm{~mA}, \mathrm{P}_{\text {OUT }}=30.9 \mathrm{~W}, \mathrm{P}_{\text {IN }}=1.59 \mathrm{~W}$

Evaluation Board Details and Recommended Tuning Solutions

Parts measured on evaluation board (8-mils thick RO4003C). Electrical and thermal ground is provided using copper-filled via hole array (not pictured), and evaluation board is mounted to a metal plate.

Matching is provided using lumped elements as shown at left. Recommended tuning solutions for 2 frequency ranges are detailed in the parts list below.

Bias Sequencing

Turning the device ON

1. Set V_{G} to the pinch-off $\left(\mathrm{V}_{\mathrm{P}}\right)$, typically -5 V .
2. Turn on V_{D} to nominal voltage (50 V).
3. Increase V_{GS} until the I_{DS} current is reached.
4. Apply RF power to desired level.

Turning the device OFF

1. Turn the RF power off.
2. Decrease V_{G} down to V_{P}.
3. Decrease V_{D} down to 0 V .
4. Turn off V_{G}.

Parts List (N/A = not applicable for this tuning solution)

Part	Frequency $=1.6 \mathrm{GHz}$	Frequency $=0.9-1.2 \mathrm{GHz}$
C1	$040227 \mathrm{pF}, \pm 5 \%, 200 \mathrm{~V}, \mathrm{ATC}$	0402, $8.2 \mathrm{pF}, \pm 0.1 \mathrm{pF}, 200 \mathrm{~V}, \mathrm{ATC}$
C2	0603, 6.8 pF, ± 0.1 pF, 250 V, ATC	0402, $15 \mathrm{pF}, \pm 5 \%, 200 \mathrm{~V}, \mathrm{ATC}$
C3	$0505,100 \mathrm{pF}, \pm 10 \%, 200 \mathrm{~V}$, ATC	0505, $100 \mathrm{pF}, \pm 10 \%, 200 \mathrm{~V}$, ATC
C4	0805, 1000 pF, $100 \mathrm{~V}, 5 \%$, AVX	0805, 1000 pF, $100 \mathrm{~V}, 5 \%$, AVX
C5	N/A	N/A
C6	0505, 2.2 pF, $\pm 5 \%$, $250 \mathrm{~V}, \mathrm{ATC}$	0505, $2.7 \mathrm{pF}, \pm 0.1 \mathrm{pF}, 250 \mathrm{~V}, \mathrm{ATC}$
C7	0505, $36 \mathrm{pF}, \pm 5 \%, 250 \mathrm{~V}, \mathrm{ATC}$	0603, $56 \mathrm{pF}, \pm 5 \%, 250 \mathrm{~V}, \mathrm{ATC}$
C8	0505, $36 \mathrm{pF}, \pm 5 \%, 250 \mathrm{~V}$, ATC	0505, $100 \mathrm{pF}, \pm 10 \%, 200 \mathrm{~V}, \mathrm{ATC}$
C9	0805, $1000 \mathrm{pF}, 100 \mathrm{~V}, 5 \%$, AVX	0805, $1000 \mathrm{pF}, 100 \mathrm{~V}, 5 \%$, AVX
C10	1210, $1 \mu \mathrm{~F}, 100 \mathrm{~V}, 20 \%$, ATC	1210, $1 \mu \mathrm{~F}, 100 \mathrm{~V}, 20 \%$, ATC
C11	N/A	$100 \mu \mathrm{~F}, 160 \mathrm{~V}$
R1	33Ω, 0805, 5%	$9.1 \Omega, 0805,5 \%$
R2	$1.0 \Omega, 0603,5 \%$	$0.33 \Omega, 0805,5 \%$
R3	$1.0 \Omega, 0603,5 \%$	$0.33 \Omega, 0805,5 \%$
L1	N/A	0402HP, 3.3 nH
L2	N/A	0402HP, 1.0 nH
L3	N/A	0402HP, 4.7 nH
L4	N/A	0402HP, 3.6 nH

Lead-Free 3×6 mm 14-Lead DFN ${ }^{\dagger}$

[^0]
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Devices and Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Applications Section

S-Parameter Data: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$

Applications Section

Thermal Performance: Freq. $=1.6 \mathrm{GHz}, \mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}, \mathrm{Z}_{0}=50 \Omega$

Power (Output \& Dissipated) vs. Transient Junction Temperature, Pulse Duration and Duty Cycle

Pulse Width, Duty Cycle	$100 \mu \mathrm{~s}$, 10%	$100 \mu \mathrm{~s}$, 20%	$300 \mu \mathrm{~s}$, 10%	$300 \mu \mathrm{~s}$, 20%	$500 \mu \mathrm{~s}$, 10%	$500 \mu \mathrm{~s}$, 20%	$1000 \mu \mathrm{~s}$, 10%	$1000 \mu \mathrm{~s}$, 20%	$8000 \mu \mathrm{~s}$, 9.2%
Power Dissipation (W)	25.9	25.8	26.6	26.6	27.7	28.0	27.2	26.7	32.8
1.6 GHz Pout (W)	29.9	29.8	30.8	30.9	30.7	30.8	30.7	30.9	35.2
Max. Transient Junction Temp. (${ }^{\circ} \mathrm{C}$)	108.2	113.1	116.6	139.9	121.3	145.2	129.2	153.1	169.6

Junction temperature measured using High-Speed Transient (HST) temperature detection microscopy.

Applications Section

Typical Performance Curves (reference 1.6 GHz parts list):

1.6 GHz, 1 ms Pulse, 10% Duty Cycle, $\mathrm{V}_{\mathrm{DD}}=+50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$

Gain vs. Input Power

Output Power vs. Input Power

PAE vs. Input Power

Applications Section

Typical Performance Curves (reference 0.9-1.2 GHz parts list):

0.9 - 1.2 GHz, $500 \mu \mathrm{~s}$ Pulse, 10% Duty Cycle, $\mathrm{V}_{\mathrm{DD}}=+50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$

Gain vs. Input Power

Output Power vs. Input Power

PAE vs. Input Power

[^0]: \dagger Reference Application Note S2083 for lead-free solder reflow recommendations.
 Meets JEDEC moisture sensitivity level 1 requirements.
 Plating is $\mathrm{Ni} / \mathrm{Pd} / \mathrm{Au}$.

