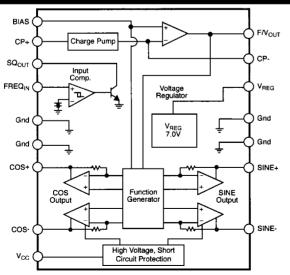


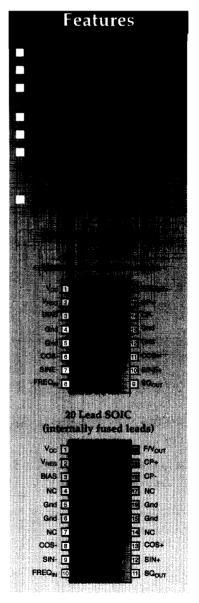
# **Precision Air-Core Tach/Speedo Driver**with Short Circuit Protection

# Description

The CS8191 is specifically designed for use with 4 quadrant air-core meter movements. The IC includes an input comparator for sensing input frequency such as vehicle speed or engine RPM, a charge pump for frequency to voltage conversion, a bandgap reference for stable operation and a function generator with sine and cosine

amplifiers that differentially drive the motor coils.


The CS8191 has a higher torque output and better output signal symmetry than other competitive parts (CS289, and LM1819). It is protected against short circuit and overvoltage (60V) fault conditions. Enhanced circuitry permits functional operation down to 8V.


### Absolute Maximum Ratings

| Supply Voltage                                                | ( ≤ 100ms pulse transient) | $V_{CC} = 60V$ |  |  |
|---------------------------------------------------------------|----------------------------|----------------|--|--|
|                                                               | (continuous)               | $V_{CC} = 24V$ |  |  |
| Operating Temp                                                | erature Range              | 40°C to +105°C |  |  |
| Junction Temperature Range40°C to +150°C                      |                            |                |  |  |
| Storage Temperature Range55°C to +165°C                       |                            |                |  |  |
| Electrostatic Discharge (Human Body Model)4kV                 |                            |                |  |  |
| Lead Temperature Soldering                                    |                            |                |  |  |
| Wave Solder (through hole styles only)10 sec. max, 260°C peak |                            |                |  |  |

Wave Solder (through hole styles only)......10 sec. max, 260°C peak Reflow (SMD styles only)......60 sec. max above 183°C, 230°C peak

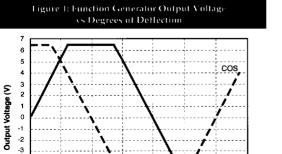
#### Block Diagram







Cherry Semiconductor Corporation 2000 South County Trail, East Greenwich, RI 02818 Tel: (401)885-3600 Fax: (401)885-5786 Email: info@cherry-semi.com Web Site: www.cherry-semi.com

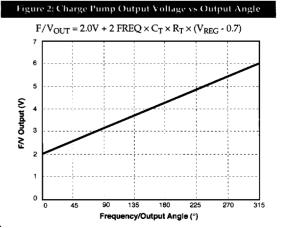

|                                                                         | eristics: -40°C % L <sub>A</sub> < 105°C, 8V % A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | otherwise sp | 1               |          |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-----------------|----------|
| PARAMETER                                                               | TEST CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN             | TYP          | MAX             | UN       |
| Supply Voltage Section                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                 |          |
| I <sub>CC</sub> Supply Current                                          | $V_{CC} = 16V$ , $-40^{\circ}$ C, No Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 70           | 125             | m        |
| V <sub>CC</sub> Normal Operation Range                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0             | 13.1         | 16.0            | 1        |
| Input Comparator Section                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                 |          |
| Positive Input Threshold                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4             | 2.7          | 3.0             |          |
| Negative Input Threshold                                                | 46000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0             | 2.3          | Seathfail:      | Teles.   |
| Input Hysteresis                                                        | and the same of the second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200             | 400          | 1000            | m        |
| Input Bias Current *                                                    | $0V \le V_{IN} \le 8V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | -2           | ±10             | μ        |
| Input Frequency Range                                                   | Hamiler Helling Hoteley (12 days of the 1500 for the following)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0               |              | 20              | kŀ       |
| Input Voltage Range                                                     | in series with $1k\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1              |              | V <sub>CC</sub> |          |
| Output V <sub>SAT</sub>                                                 | $I_{CC} = 10 \text{mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 0.15         | 0.40            | V        |
| Output Leakage                                                          | V <sub>CC</sub> =7V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              | 10              | μ        |
| Logic 0 Input Voltage                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                 |          |
| Note: Input is clamped by an internal 12                                | V Zener.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |                 |          |
| ■ Voltage Regulator Section                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                 |          |
| Output Voltage                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.50            | 7.00         | 7.50            |          |
| Output Load Current                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 法数据             |              | 10              | m        |
| Output Load Regulation                                                  | 0 to 10 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 10           | 50              | m        |
| Output Line Regulation                                                  | $8.0V \le V_{CC} \le 16V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 20           | 150             | m        |
| Power Supply Rejection                                                  | $V_{CC} = 13.1V, 1V_P/P 1kHz$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34              | 46           |                 | d        |
| Charge Pump Section                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |                 |          |
| Inverting Input Voltage                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5             | 2.0          | 2.5             |          |
| Input Bias Current                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 40           | 150             | n.       |
| V <sub>BIAS</sub> Input Voltage                                         | - The Company of the Company of the Company (A Performance And And Company A Performance And And Company And Com   | 1.5             | 2.0          | 2.5             | \        |
| Non Invert. Input Voltage                                               | $I_{IN} = 1 mA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 0.7          | 1.1             |          |
| Linearity*                                                              | @ 0, 87.5, 175, 262.5, + 350Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.10           | 0.28         | +0.70           | 9/       |
| F/V <sub>OUT</sub> Gain                                                 | @ 350Hz, $C_T = 0.0033\mu F$ , $R_T = 243k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ω 7             | 10           | 13              | mV,      |
| Norton Gain, Positive                                                   | $I_{IN} = 15\mu A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9             | 1.0          | 1.1             | I/       |
| Norton Gain, Negative                                                   | $I_{\rm IN}$ = -15 $\mu$ A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9             | 1.0          | 1.1             | 1/       |
| Note: Applies to % of full scale (270°).                                | The second secon |                 |              |                 |          |
| Function Generator Section: -4                                          | $40^{\circ} \leq T_{A} \leq 85^{\circ}C$ , $V_{CC} = 13.1V$ unles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s otherwise not | ed.          |                 |          |
| Differential Drive Voltage<br>(V <sub>COS</sub> + - V <sub>COS</sub> -) | $10V \le V_{CC} \le 16V$ $\Theta = 0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.5             | 8.0          | 8.5             | V        |
| Differential Drive Voltage                                              | 10V ≤ V <sub>CC</sub> ≤ 16V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.5             | 8.0          | 8.5             | <b>.</b> |
| (V <sub>SIN</sub> + - V <sub>SIN</sub> -)                               | Θ=90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |                 |          |
| Differential Drive Voltage<br>(V <sub>COS</sub> + - V <sub>COS</sub> -) | $10V \le V_{CC} \le 16V$<br>$\Theta = 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8.5            | -8.0         | -7.5            | V        |
| Differential Drive Voltage<br>(V <sub>SIN</sub> + - V <sub>SIN</sub> -) | $10V \le V_{CC} \le 16V$ $\Theta = 270^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8.5            | -8.0         | -7.5            | 1        |
| Differential Drive Load                                                 | $10V \le V_{CC} \le 16V, -40^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 178             |              |                 | 2        |
| Sincicida Silve Load                                                    | 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 239             |              |                 | 2        |
|                                                                         | 105°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 314             |              |                 | 2        |
| Zero Hertz Output Voltage                                               | the complete of programmers and the complete programmers and the complete of t | -0.08           | 0.0          | +0.08           | V        |

|                               | Hectrical Characteristics: con                            | itinued |                  |                     |      |
|-------------------------------|-----------------------------------------------------------|---------|------------------|---------------------|------|
| PARAMETER                     | HST CONDITIONS                                            | MIN     | TYP              | MAX                 | UNII |
| ■ Function Generator Section: | continued                                                 |         |                  |                     |      |
| Function Generator Error *    | $\Theta = 0^{\circ}$ to 225°                              | -2      | 0                | +2                  | deg  |
| Reference Figures 1 - 4       | Θ = 226° to 305°                                          | -3      | 1.1.1.70         | +3                  | deg  |
| Function Generator Error      | $13.1V \le V_{CC} \le 16V$                                | -1      | 0                | +1                  | deg  |
| Function Generator Error      | 13.1V ≤ V <sub>CC</sub> ≤ 10V                             |         | ### <b>0</b> - 1 | .√6. <b>+1</b> ,5.6 | deg  |
| Function Generator Error      | $13.1 \text{V} \le \text{V}_{\text{CC}} \le 8.0 \text{V}$ | -7      | 0                | +7                  | deg  |
| Function Generator Error      | 25°C ≤ T <sub>A</sub> ≤ 80°C                              | -2      | 0                | +2                  | deg  |
| Function Generator Error      | 25°C ≤ T <sub>A</sub> ≤ 105°C                             | -4      | 0                | +4                  | deg  |
| Function Generator Error      | _40°C ≤ T <sub>A</sub> ≤ 25°C                             | -2      | 0                | +2                  | deg  |
| Function Generator Gain       | $T_A = 25^{\circ}C$ , $\Theta$ vs $F/V_{OUT}$             | 60      | 77               | 95                  | °/V  |

<sup>\*</sup>Note: Deviation from nominal per Table 1 after calibration at 0° and 270°.

|              | Package Lead Description                                  |                            |                                                        |  |  |  |
|--------------|-----------------------------------------------------------|----------------------------|--------------------------------------------------------|--|--|--|
| PACKA        | GF LEAD #                                                 | LEAD SYMBOL                | FUNCTION                                               |  |  |  |
| 16L PDIP     | 20L SO                                                    |                            |                                                        |  |  |  |
| 1            | 1                                                         | $\overline{v_{cc}}$        | Ignition or battery supply voltage.                    |  |  |  |
| 2            | 2 3 12 3 13 14 14 14 14 14 14 14 14 14 14 14 14 14        | $\mathbf{v}_{	extbf{REG}}$ | Voltage regulator output.                              |  |  |  |
| 3            | 3                                                         | BIAS                       | Test point or zero adjustment.                         |  |  |  |
| 4, 5, 12, 13 | 5, 6, 15, 16                                              | Gnd                        | Ground Connections.                                    |  |  |  |
| 6            | 8                                                         | COS-                       | Negative cosine output signal.                         |  |  |  |
| 7000         | 9 15 1                                                    | SIN-                       | Negative sine output signal.                           |  |  |  |
| 8            | 10                                                        | $FREQ_{IN}$                | Speed or rpm input signal.                             |  |  |  |
| 9            | 11                                                        | SQ <sub>OUT</sub>          | Buffered square wave output signal.                    |  |  |  |
| 10           | 12                                                        | SIN+                       | Positive sine output signal.                           |  |  |  |
| 11           | 7 - 1 - 1 <b>13</b> - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | COS+                       | Positive cosine output signal.                         |  |  |  |
| 14           | 18                                                        | CP-                        | Negative input to charge pump.                         |  |  |  |
| 15           | 19                                                        | CP+                        | Positive input to charge pump.                         |  |  |  |
| 16           | 20                                                        | F/V <sub>OUT</sub>         | Output voltage proportional to input signal frequency. |  |  |  |
|              | 4, 7, 14, 17                                              | NC                         | No connection.                                         |  |  |  |

**Lypical Performance Characteristics** 




135

Degrees of Deflection (°)

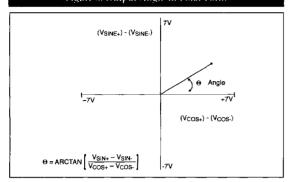
-5 -6 -7

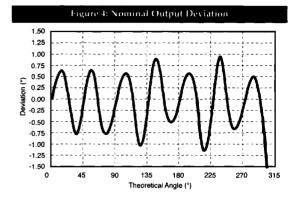
45



SIN

315


270


225



#### Lypical Performance Characteristics: continued

## Figure 3: Output Angle in Polar Form





## Nominal Angle vs. Ideal Angle (After calibrating at 180°)

Note: Temperature, voltage and nonlinearity not included.

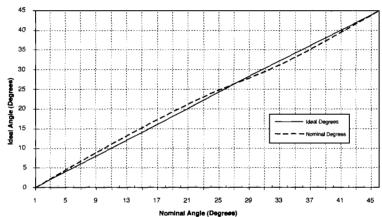



Table 1: Function Generator Output Nominal Angle vs. Ideal Angle (After calibrating at 270°)

| Ideal 0<br>Degrees | Nominal<br>O Degrees | Ideal 0<br>Degrees | Nominal<br>Θ Degrees | Ideal 0<br>Degrees | Nominal<br>O Degrees | Ideal 0<br>Degrees | Nominal<br>O Degrees | Ideal 0<br>Degrees | Nominal<br>O Degrees | Ideal O<br>Degrees | Nominal<br>O Degrees |
|--------------------|----------------------|--------------------|----------------------|--------------------|----------------------|--------------------|----------------------|--------------------|----------------------|--------------------|----------------------|
| 0                  | 0                    | 17                 | 17.98                | 34                 | 33.04                | 75                 | 74.00                | 160                | 159.14               | 245                | 244.63               |
| 1                  | 1.09                 | 18                 | 18.96                | 35                 | 34,00                | 80                 | 79.16                | 165                | 164.00               | 250                | 249.14               |
| 2                  | 2.19                 | 19                 | 19.92                | 36                 | 35.00                | 85                 | 84.53                | 170                | 169.16               | 255                | 254.00               |
| 3                  | 3.29                 | 20                 | 20.86                | 37                 | 36.04                | 90                 | 90.00                | 1 <i>7</i> 5       | 174.33               | 260                | 259.16               |
| 4                  | 4.38                 | 21                 | 21.79                | 38                 | 37.11                | 95                 | 95.47                | 180                | 180.00               | 265                | 264.53               |
| 5                  | 5.47                 | 22                 | 22.71                | 39                 | 38.21                | 100                | 100.84               | 185                | 185.47               | 270                | 270.00               |
| 6                  | 6.56                 | 23                 | 23.61                | 40                 | 39.32                | 105                | 106.00               | 190                | 190.84               | 275                | 275.47               |
| 7                  | 7.64                 | 24                 | 24.50                | 41                 | 40.45                | 110                | 110.86               | 195                | 196.00               | 280                | 280.84               |
| 8                  | 8.72                 | 25                 | 25.37                | 42                 | 41.59                | 115                | 115.37               | 200                | 200.86               | 285                | 286.00               |
| 9                  | 9.78                 | 26                 | 26.23                | 43                 | 42.73                | 120                | 119.56               | 205                | 205.37               | 290                | 290.86               |
| 10                 | 10.84                | 27                 | 27.07                | 44                 | 43.88                | 125                | 124.00               | 210                | 209.56               | 295                | 295.37               |
| 11                 | 11.90                | 28                 | 27.79                | 45                 | 45.00                | 130                | 129.32               | 215                | 214.00               | 300                | 299.21               |
| 12                 | 12.94                | 29                 | 28.73                | 50                 | 50.68                | 135                | 135.00               | 220                | 219.32               | 305                | 303.02               |
| 13                 | 13.97                | 30                 | 29.56                | 55                 | 56,00                | 140                | 140.68               | 225                | 225.00               |                    |                      |
| 14                 | 14.99                | 31                 | 30.39                | 60                 | 60.44                | 145                | 146.00               | 230                | 230.58               |                    |                      |
| 15                 | 16.00                | 32                 | 31.24                | 65                 | 64.63                | 150                | 150.44               | 235                | 236.00               |                    |                      |
| 16                 | 17.00                | 33                 | 32.12                | 70                 | 69.14                | 155                | 154.63               | 240                | 240.44               |                    |                      |

Note: Temperature, voltage and nonlinearity not included.

The CS8191 is specifically designed for use with air-core meter movements. It includes an input comparator for sensing an input signal from an ignition pulse or speed sensor, a charge pump for frequency to voltage conversion, a bandgap voltage regulator for stable operation, and a function generator with sine and cosine amplifiers to differentially drive the motor coils.

From the simplified block diagram of Figure 5A, the input signal is applied to the FREQ $_{\rm IN}$  lead, this is the input to a high impedance comparator with a typical positive input threshold of 2.7V and typical hysteresis of 0.4V. The output of the comparator, SQ $_{\rm OUT}$ , is applied to the charge pump input CP+ through an external capacitor C $_{\rm T}$ . When the input signal changes state, C $_{\rm T}$  is charged or discharged through R3 and R4. The charge accumulated on C $_{\rm T}$  is mirrored to C4 by the Norton Amplifier circuit comprising of Q1, Q2 and Q3. The charge pump output voltage, F/V $_{\rm OUT}$ , ranges from 2V to 6.3V depending on the input signal frequency and the gain of the charge pump according to the formula:

$$F/V_{OUT} = 2.0V + 2 \times FREQ \times C_T \times R_T \times (V_{REG} - 0.7V)$$

 $R_T$  is a potentiometer used to adjust the gain of the F/V output stage and give the correct meter deflection. The F/V output voltage is applied to the function generator which generates the sine and cosine output voltages. The output voltage of the sine and cosine amplifiers are derived from the on-chip amplifier and function generator circuitry. The various trip points for the circuit (i.e., 0°, 90°, 180°, 270°) are determined by an internal resistor divider and the bandgap voltage reference. The coils are differentially driven, allowing bidirectional current flow in the outputs, thus providing up to 305° range of meter deflection. Driving the coils differentially offers faster response time, higher current capability, higher output voltage swings, and reduced external component count. The key advantage is a higher torque output for the pointer.

The output angle,  $\Theta$ , is equal to the F/V gain multiplied by the function generator gain:

$$\Theta = A_{F/V} \times A_{FG/V}$$

where:

$$A_{FG} = 77^{\circ}/V \text{ (typ)}$$

The relationship between input frequency and output angle is:

$$\Theta = \mathrm{A_{FG}} \times 2 \times \mathrm{FREQ} \times C_{\mathrm{T}} \times \mathrm{R_{\mathrm{T}}} \times (\mathrm{V_{\mathrm{REG}}} - 0.7\mathrm{V})$$

or, 
$$\Theta = 970 \times FREQ \times C_T \times R_T$$

The ripple voltage at the F/V converter's output is determined by the ratio of  $C_T$  and C4 in the formula:

$$\Delta V = \frac{C_T(V_{REG} - 0.7V)}{C4}$$

Ripple voltage on the F/V output causes pointer or needle flutter especially at low input frequencies.

The response time of the F/V is determined by the time constant formed by  $R_T$  and C4. Increasing the value of C4 will reduce the ripple on the F/V output but will also increase the response time. An increase in response time causes a very slow meter movement and may be unacceptable for many applications.

#### Design Example

Maximum meter Deflection = 270° Maximum Input Frequency = 350Hz

#### 1. Select R<sub>T</sub> and C<sub>T</sub>

$$\Theta = A_{GEN} \times \Delta_{F/V}$$

$$\Delta_{F/V} = 2 \times FREQ \times C_T \times R_T \times (V_{REG} - 0.7V)$$

$$\Theta = 970 \times FREQ \times C_T \times R_T$$

Let  $C_T = 0.0033 \mu F$ , Find  $R_T$ 

$$R_T = \frac{270^{\circ}}{970 \times 350 Hz \times 0.0033 \mu F}$$

$$R_T = 243k\Omega$$

 $R_T\,\text{should}$  be a 250k $\Omega$  potentiometer to trim out any inaccuracies due to IC tolerances or meter movement pointer placement.

#### 2. Select R3 and R4

Resistor R3 sets the output current from the voltage regulator. The maximum output current from the voltage regulator is 10mA, R3 must ensure that the current does not exceed this limit.

Choose R3 =  $3.3k\Omega$ 

The charge current for  $C_T$  is:

$$\frac{V_{REG} - 0.7V}{3.3kO} = 1.90 \text{mA}$$

C1 must charge and discharge fully during each cycle of the input signal. Time for one cycle at maximum frequency is 2.85ms. To ensure that  $C_T$  is discharged, assume that the (R3+R4)  $C_T$  time constant is less than 10% of the minimum input frequency pulse width.

$$T = 285us$$

Choose  $R4 = 1k\Omega$ .

Charge time:  $T = R3 \times C_T = 3.3k\Omega \times 0.0033\mu F = 10.9\mu s$ 

Discharge time:  $T = (R3 + R4)C_T = 4.3k\Omega \times 0.0033\mu F = 14.2\mu s$ 

#### 3. Determine C4

C4 is selected to satisfy both the maximum allowable ripple voltage and response time of the meter movement.

$$C4 = \frac{C_T(V_{REG} - 0.7V)}{V_{RIPPLE(MAX)}}$$

With C4 =  $0.47\mu$ F, the F/V ripple voltage is 44mV.

Figure 7 shows how the CS8191 and the CS8441 are used to produce a Speedometer and Odometer circuit.

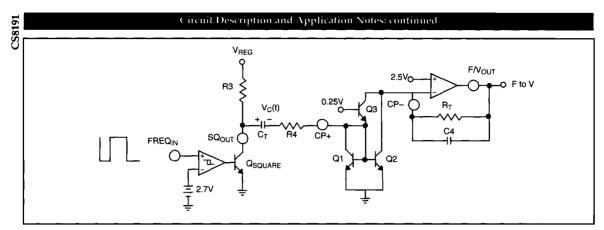



Figure 5A: Partial Schematic of Input and Charge Pump

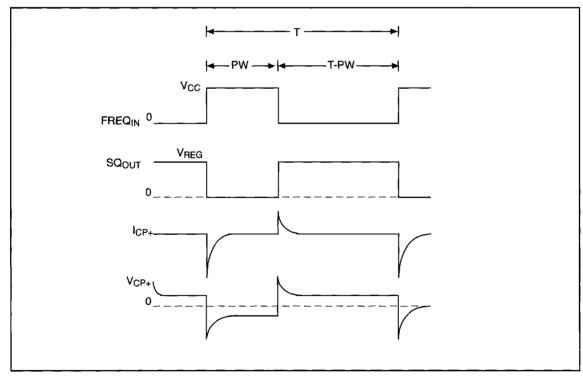



Figure 5B: Timing Diagram of FREQIN and ICP

#### Speedometer/Odometer or Lachometer Application

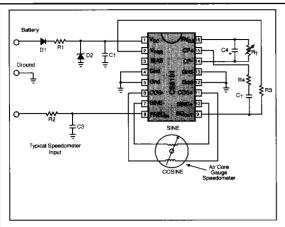



Figure 6

R1 - 3.9, 500mW

R2 - 10kΩ

R3 - 3kΩ R4 - 1kΩ

R<sub>T</sub> - Trim Resistor +/- 20 PPM/DEG. C

C1 - 0.1µF

C2 - With CS-8441 application, 10µF

C3 - 0.1µF

C4 - 0.47µF

 $C_T$  - 0.0033 $\mu F$ , +/- 30 PPM/°C

D1 - 1A, 600 PIV

D2 - 50V, 500mW Zener

Note 1: The product of C<sub>T</sub> and R<sub>T</sub> have a direct effect on gain and therefore directly effect temperature compensation.

Note 2: C4 Range; 20pF to .2µF.

Note 3: R4 Range;  $100k\Omega$  to  $500k\Omega$ .

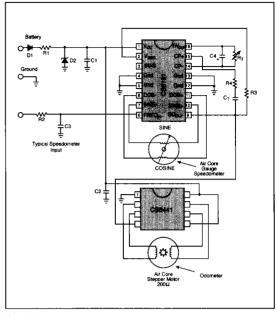



Figure 7

Note 4: The IC must be protected from transients above 60V and reverse battery conditions.

Note 5: Additional filtering on the FREQIN lead may be required.

In some cases a designer may wish to use the CS8191 only as a driver for an air-core meter having performed the F/V conversion elsewhere in the circuit.

Figure 8 shows how to drive the CS8191 with a DC voltage ranging from 2V to 6V. This is accomplished by forcing a voltage on the F/V<sub>OUT</sub> lead. The alternative scheme shown in figure 9 uses an external op amp as a buffer and operates over an input voltage range of 0V to 4V.

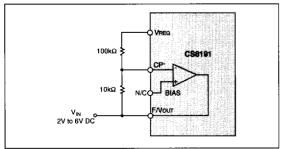



Figure 8. Driving the CS8191 from an external DC voltage.

An alternative solution is to use the CS4101 which has a separate function generator input lead and can be driven directly from a DC source. Figure 8 and 9 are not temperature compensated.

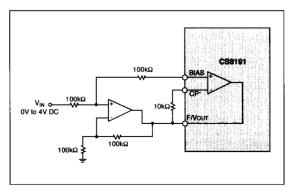
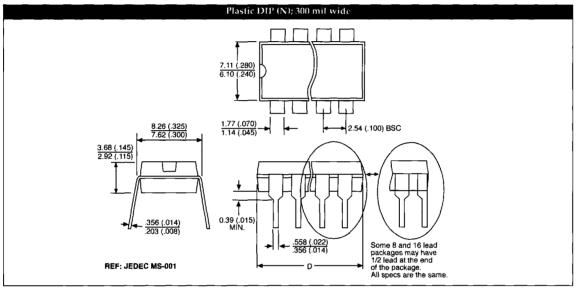
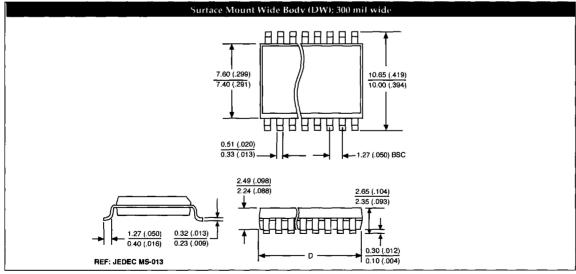



Figure 9. Driving the CS8191 from an external DC voltage using an Op Amp Buffer.

#### Package Specification


#### PACKAGE DIMENSIONS IN mm (INCHES)


|                                   |        |       | D       |      |
|-----------------------------------|--------|-------|---------|------|
| Lead Count                        | Metric |       | English |      |
|                                   | Max    | Min   | Max     | Min  |
| 16L PDIP (internally fused leads) | 19.69  | 18.67 | .775    | .735 |
| 20L SOIC (internally fused leads) | 13.00  | 12.60 | .512    | .496 |

#### PACKAGE THERMAL DATA

| Thermal Data    |     | 16L PDIP* | 20L SOIC* |      |  |
|-----------------|-----|-----------|-----------|------|--|
| $R_{\Theta JC}$ | typ | 15        | 9         | °C/W |  |
| $R_{\Theta JA}$ | typ | 50        | 55        | °C/W |  |

<sup>\*</sup>Internally Fused Leads





| Ord           | Ordering Information                            |  |  |  |  |
|---------------|-------------------------------------------------|--|--|--|--|
| Part Number   | Description                                     |  |  |  |  |
| CS8191XNF16   | 16L PDIP (internally fused leads)               |  |  |  |  |
| CS8191XDWF20  | 20L SOIC (internally fused leads)               |  |  |  |  |
| CS8191XDWFR20 | 20L SOIC (internally fused leads) (tape & reel) |  |  |  |  |

Cherry Semiconductor Corporation reserves the right to make changes to the specifications without notice. Please contact Cherry Semiconductor Corporation for the latest available information.