
FEATURES

- **Zero Ground Current for Longer Battery Life!**
- Very Low Dropout Voltage
- Guaranteed 50mA and 100mA Output (TC1072, TC1073, Respectively
- High Output Voltage Accuracy
- Standard or Custom Output Voltages
- Power-Saving Shutdown Mode
- ERROR Ouput can be Used as a Low Battery Detector, or Processor Reset Generator
- Bypass Input for Ultra-Quiet Operation
- Over-Current and Over-Temperature Protection
- Space-Saving 6-Pin SOT-23A Package
- Pin Compatible Upgrades for Bipolar Regulators

APPLICATIONS

- Battery Operated Systems
- Portable Computers
- Medical Instruments
- Instrumentation
- Cellular / GSM / PHS Phones
- Linear Post-Regulator for SMPS
- Pagers

TYPICAL APPLICATION

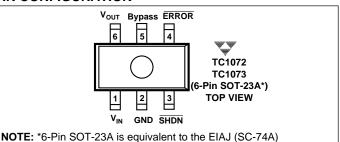
GENERAL DESCRIPTION

The TC1072 and TC1073 are high accuracy (typically $\pm 0.5\%$) CMOS upgrade for older (bipolar) low dropout regulators. Designed specifically for battery-operated systems, the devices' CMOS construction eliminates wasted ground current, significantly extending battery life. Total supply current is typically 50µA at full load (*20 to 60 times lower than in bipolar regulators*!).

The devices' key features include ultra low noise operation (plus optional Bypass input); very low dropout voltage (typically 85mV,TC1072 and 180mV,TC1073 at full load) and fast response to step changes in load. An error output (ERROR) is asserted when the devices are out-of-regulation (due to a low input voltage or excessive output current). ERROR can be used as a low battery warning or as a processor RESET signal (with the addition of an external RC network). Supply current is reduced to 0.5μ A (max), and both V_{OUT} and ERROR are disabled when the shutdown input is low. The devices incorporate both over-temperature and over-current protection.

The TC1072 and TC1073 are stable with an output capacitor of only 1µF and have a maximum output current of 50mA. For higher output current versions, please see the TC1185, TC1186, TC1187 (I_{OUT} = 150mA) and TC1107, TC1108, and TC1173 (I_{OUT} = 300mA) data sheets.

ORDERING INFORMATION


Part Number	Package	Junction Temp. Range			
TC1072-xxVCH	6-Pin SOT-23A*	- 40°C to +125°C			
TC1073-xxVCH	6-Pin SOT-23A*	- 40°C to +125°C			
TC1015EV Evaluation Kit for CMOS LDO Family					
NOTE: *6-Pin SOT-23A is equivalent to the EIAJ (SC-74A).					

Available Output Voltages:

2.5, 2.7, 2.8, 2.85, 3.0, 3.3, 3.6, 4.0, 5.0 xx indicates output voltages

Other output voltages are available. Please contact TelCom Semiconductor for details.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS*

Input Voltage	6.5V
Output Voltage	
Power Dissipation	Internally Limited
Operating Temperature	– 40°C < T _J < 125°C
Storage Temperature	65°C to +150°C
Maximum Voltage on Any Pin	V _{IN} + 0.3V to - 0.3V
Lead Temperature (Soldering, 10 S	Sec.) +260°C

*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: VIN = VOUT + 1V, IL = 0.1mA, CL = 3.3µF, SHDN > VIH, TA = 25°C, unless				
otherwise specified. BOLDFACE type specifications apply for junction temperatures of – 40°C to +125°C.				

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
V _{IN}	Input Operating Voltage		_	_	6.0	V
I _{OUTMAX}	Maximum Output Current	TC1072 TC1073	50 100		_	mA mA
Vout	Output Voltage	Note 1	V _R – 2.5%	V _R ±0.5%	V _R + 2.5%	V
TC V _{OUT}	V _{OUT} Temperature Coefficient	Note 2	_	20 40	_	ppm/°C
$\Delta V_{OUT} / \Delta V_{IN}$	Line Regulation	$(V_R + 1V) \le V_{IN} \le 6V$	—	0.05	0.35	%
$\Delta V_{OUT}/V_{OUT}$	Load Regulation	$I_L = 0.1 \text{mA to } I_{OUT_{MAX}}$ (Note 3)		0.5	2.0	%
V _{IN} – V _{OUT}	Dropout Voltage (Note 4)	$I_{L} = 0.1mA$ $I_{L} = 20mA$ $I_{L} = 50mA$ $I_{L} = 100mA (TC1073)$ (Note 4)	 	2 65 85 180	 120 250	mV
I _{IN}	Supply Current (Note 8)	$\overline{\text{SHDN}} = V_{\text{IH}}, I_{\text{L}} = 0$	_	50	80	μA
IINSD	Shutdown Supply Current	SHDN = 0V	_	0.05	0.5	μA
PSRR	Power Supply Rejection Ratio	F _{RE} ≤1 KHz	_	64		dB
IOUTSC	Output Short Circuit Current	$V_{OUT} = 0V$	_	300	450	mA
$\Delta V_{OUT} / \Delta P_D$	Thermal Regulation	Notes 5, 6	—	0.04		V/W
T _{SD}	Thermal Shutdown Die Temperature		—	160		°C
ΔT_{SD}	Thermal Shutdown Hysteresis		_	10		°C
eN	Output Noise	$I_L = I_{OUTMAX}$ 470pF from Bypass to GND	_	260	—	nV/√Hz
SHDN Input	:				· · ·	
V _{IH}	SHDN Input High Threshold	V _{IN} = 2.5V to 6.5V	45	_	_	%V _{IN}
VIL	SHDN Input Low Threshold	V _{IN} = 2.5V to 6.5V	_		15	%V _{IN}

ELECTRICAL CHARACTERISTICS: VIN = VOUT + 1V, IL = 0.1mA, CL = 3.3µF, SHDN > VIH, TA = 25°C, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
ERROR Op	en Drain Output					
V _{INMIN}	Minimum V _{IN} Operating Voltage		1.0	_	_	V
V _{OL}	Output Logic Low Voltage	1mA Flows to ERROR			400	mV
V _{TH}	ERROR Threshold Voltage	See Figure 2		0.95 x V _R		V
V _{HYS}	ERROR Positive Hysteresis Note 7		_	50		mV

NOTES: 1. V_R is the regulator output voltage setting. $V_R = 2.5V$, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.

2. TC V_{OUT} = $(V_{OUT_{MAX}} - V_{OUT_{MIN}}) \times 10^6$

V_{OUT} x ΔT

3. Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

4. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value.

 Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{LMAX} at V_{IN} = 6V for T = 10 msec.

6. The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e. T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see *Thermal Considerations* section of this data sheet for more details.

7. Hysteresis voltage is referenced by V_R.

8. Apply for Junction Temperatures of-40°C to +85°C.

PIN DESCRIPTION

3A) Symbol	Description		
V _{IN}	Unregulated supply input.		
GND	Ground terminal.		
SHDN	Shutdown control input. The regulator is fully enabled when a logic high is applied to this input. The regulator enters shutdown when a logic low is applied to this input. During shutdown, output voltage falls to zero and supply current is reduced to 0.05 μ A (typical).		
ERROR	Out-of-Regulation Flag. (Open drain output). This output goes low when V_{OUT} is out-of-tolerance by approximately – 5%.		
Bypass	Reference bypass input. Connecting a 470pF to this input further reduces output noise.		
V _{OUT}	Regulated voltage output.		
	GND SHDN ERROR Bypass		

DETAILED DESCRIPTION

The TC1072 and TC1073 are precision fixed output voltage regulators. (If an adjustable version is desired, please see the TC1070/TC1071/TC1187 data sheet.) Unlike bipolar regulators, the TC1072 and TC1073's supply current does not increase with load current. In addition, V_{OUT} remains stable and within regulation at very low load currents (an important consideration in RTC and CMOS RAM battery back-up applications).

Figure 1 shows a typical application circuit. The regulator is enabled any time the shutdown input (SHDN) is at or above V_{IH}, and shutdown (disabled) when SHDN is at or below V_{IL}. SHDN may be controlled by a CMOS logic gate, or I/O port of a microcontroller. If the SHDN input is not required, it should be connected directly to the input supply. While in shutdown, supply current decreases to 0.05 μ A (typical) and V_{OUT} falls to zero volts and ERROR is opencircuited.

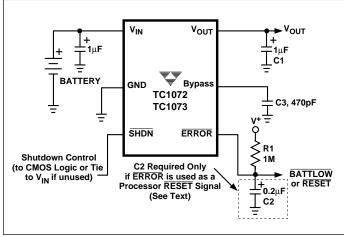


Figure 1. Typical Application Circuit

ERROR Open Drain Output

 $\overline{\text{ERROR}}$ is driven low whenenver V_{OUT} falls out of regulation by more than – 5% (typical). The condition may be caused by low input voltage, output current limiting, or thermal limiting. The $\overline{\text{ERROR}}$ output voltage value (e.g. $\overline{\text{ERROR}} = V_{OL}$ at 4.75V (typ) for a 5.0V regulator and 2.85V (typ) for a 3.0V regulator). $\overline{\text{ERROR}}$ ouput operation is shown in Figure 2.

Note that ERROR is active when V_{OUT} falls to V_{TH}, and inactive when V_{OUT} rises above V_{TH} by V_{HYS}. As shown in Figure 1, ERROR can be used as a battery low flag, or as a processor RESET signal (with the addition of timing capacitor C2). R1 x C2 should be chosen to maintain ERROR below V_{IH} of the processor RESET input for at least 200 msec to allow time for the system to stabilize. Pull-up resistor R1 can be tied to V_{OUT}, V_{IN} or any other voltage less than (V_{IN}+0.3V).

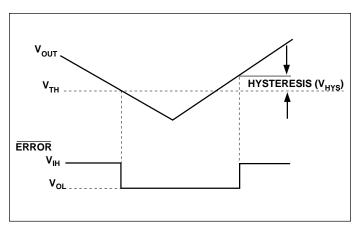


Figure 2. ERROR Output Operation

Output Capacitor

A 1µF (min) capacitor from V_{OUT} to ground is recommended. The output capacitor should have an effective series resistance of 5 Ω or less, and a resonant frequency above 1MHz. A 1µF capacitor should be connected from V_{IN} to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used. (Since many aluminum electrolytic capacitors freeze at approximately -30° C, solid tantalums are recommended for applications operating below -25° C.) When operating from sources other than batteries, supplynoise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

Bypass Input

A 470pF capacitor connected from the Bypass input to ground reduces noise present on the internal reference, which in turn significantly reduces output noise. If output noise is not a concern, this input may be left unconnected. Larger capacitor values may be used, but results in a longer time period to rated output voltage when power is initially applied.

Thermal Considerations

Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 160°C. The regulator remains off until the die temperature drops to approximately 150°C.

Power Dissipation

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current.

<u>50mA</u> and 100mA CMOS LDOs with Shutdown, Error Output and V_{REF} Bypass

The following equation is used to calculate worst case *actual* power dissipation:

$$P_D \approx (V_{IN_{MAX}} - V_{OUT_{MIN}})I_{LOAD_{MAX}}$$

Where:

 $\begin{array}{l} \mathsf{P}_{\mathsf{D}} = \mathsf{W} orst \ \mathsf{case} \ \mathsf{actual} \ \mathsf{power} \ \mathsf{dissipation} \\ \mathsf{V}_{\mathsf{IN}_{\mathsf{MAX}}} = \mathsf{M} \mathsf{aximum} \ \mathsf{voltage} \ \mathsf{on} \ \mathsf{V}_{\mathsf{IN}} \\ \mathsf{V}_{\mathsf{OUT}_{\mathsf{MIN}}} = \mathsf{M} \mathsf{inimum} \ \mathsf{regulator} \ \mathsf{output} \ \mathsf{voltage} \\ \mathsf{I}_{\mathsf{LOAD}_{\mathsf{MAX}}} = \mathsf{M} \mathsf{aximum} \ \mathsf{output} \ (\mathsf{load}) \ \mathsf{current} \end{array}$

Equation 1.

The maximum *allowable* power dissipation (Equation 2) is a function of the maximum ambient temperature (T_{AMAX}), the maximum allowable die temperature (125°C) and the thermal resistance from junction-to-air (θ_{JA}). SOT-23A-6 packag has a θ_{JA} of approximately *220°C/Watt* when mounted on a single layer FR4 dielectric copper clad PC board.

$$P_{D_{MAX}} = \left(\frac{T_{J_{MAX}} - T_{A_{MAX}}}{\theta_{JA}}\right)$$

Where all terms are previously defined.

Equation 2.

Equation 1 can be used in conjunction with Equation 2 to ensure regulator thermal operation is within limits. For example:

Given:

$$\begin{array}{l} V_{\text{IN}_{\text{MAX}}} = 3.0 \text{V} \pm 5\% \\ V_{\text{OUT}_{\text{MIN}}} = 2.7 \text{V} - 2.5\% \\ I_{\text{LOAD}} = 40 \text{mA} \\ T_{\text{AMAX}} = 55^{\circ} \text{C} \end{array}$$

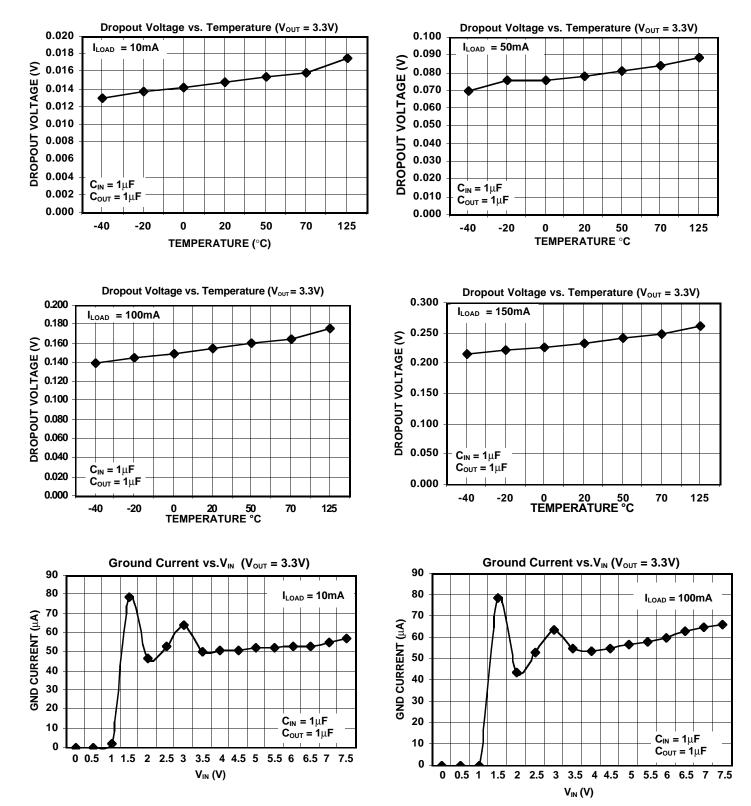
Find: 1. Actual power dissipation 2. Maximum allowable dissipation

Actual power dissipation:

$$P_{D \approx} (V_{IN_{MAX}} - V_{OUT_{MIN}})I_{LOAD_{MAX}}$$

= [(3.0 x 1.05) - (2.7 x .975)]40 x 10⁻³
= 20.7mW

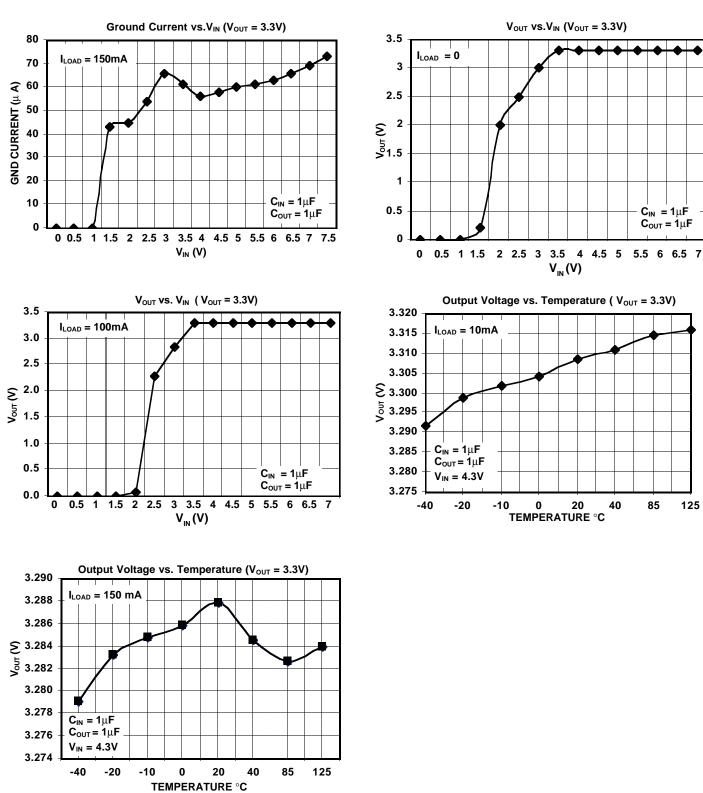
Maximum allowable power dissipation:


$$\mathsf{P}_{\mathsf{D}_{\mathsf{MAX}}} = (\underbrace{\mathsf{T}_{\mathsf{J}_{\mathsf{MAX}}} - \mathsf{T}_{\mathsf{A}_{\mathsf{MAX}}}}_{\theta_{\mathsf{JA}}})$$

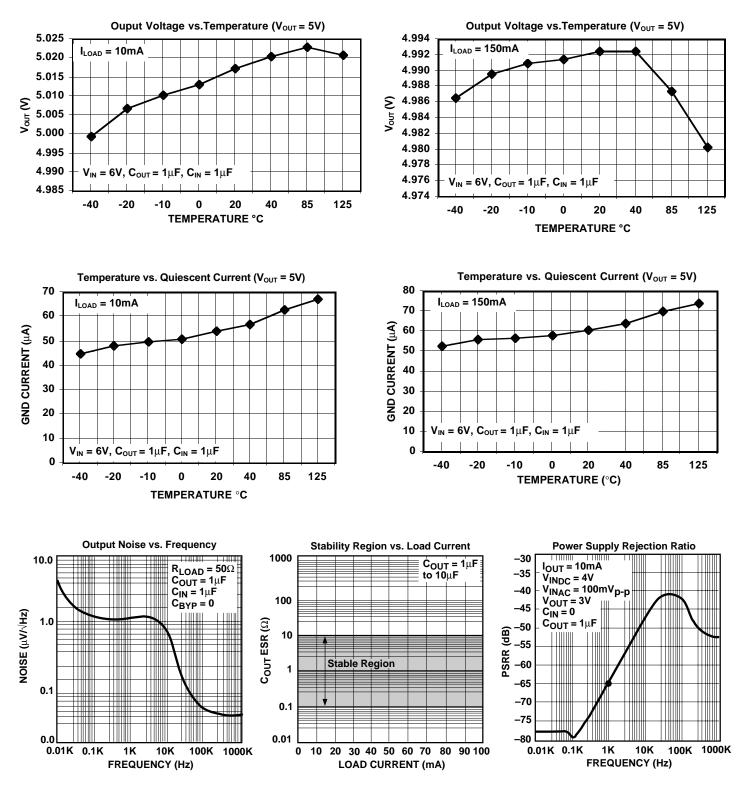
= 318mW

In this example, the TC1072 dissipates a maximum of only 20.7mW; far below the allowable limit of 318mW. In a similar manner, Equation 1 and Equation 2 can be used to calculate maximum current and/or input voltage limits.

Layout Considerations

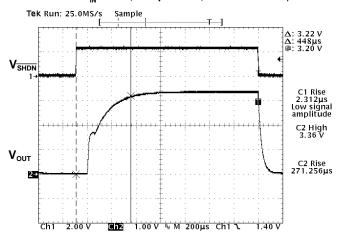

The primary path of heat conduction out of the package is via the package leads. Therefore, layouts having a ground plane, wide traces at the pads, and wide power supply bus lines combine to lower θ_{JA} and therefore increase the maximum allowable power dissipation limit.

TYPICAL CHARACTERISTICS: (Unless otherwise specified, all parts are measured at Temperature = 25°C)


85

125

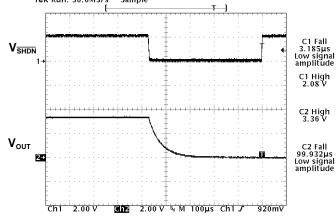
TYPICAL CHARACTERISTICS: (Unless otherwise specified, all parts are measured at Temperature = 25°C


TYPICAL CHARACTERISTICS

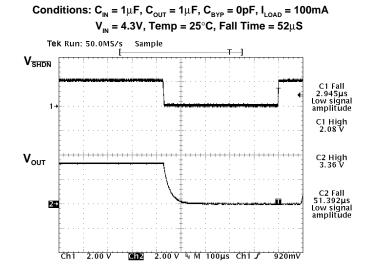
TYPICAL CHARACTERISTICS

Measure Rise Time of 3.3V LDO with Bypass Capacitor

Conditions: $C_{IN} = 1\mu F$, $C_{OUT} = 1\mu F$, $C_{BYP} = 470 pF$, $I_{LOAD} = 100 mA$ $V_{IN} = 4.3V$, Temp = 25°C, Rise Time = 448 μ S

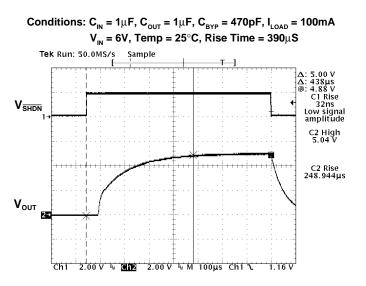


Measure Rise Time of 3.3V LDO without Bypass Capacitor


Conditions: $C_{IN} = 1\mu$ F, $C_{OUT} = 1\mu$ F, $C_{BVP} = 0$ pF, $I_{LOAD} = 100$ mA $V_{IN} = 4.3$ V, Temp = 25°C, Rise Time = 184 μ S Tek Run: 25.0MS/s Sample V_{SHDN} $I = \frac{1}{200}$ V_{SHDN} $I = \frac{1}{200}$ C1 Rise C2 Rise 98.736μ S

Measure Fall Time of 3.3V LDO with Bypass Capacitor

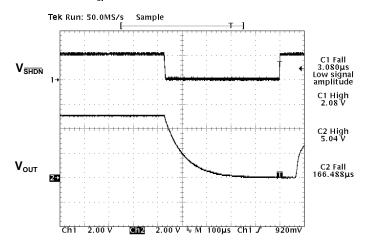
Conditions: $C_{IN} = 1\mu F$, $C_{OUT} = 1\mu F$, $C_{BYP} = 470 pF$, $I_{LOAD} = 50 mA$ $V_{IN} = 4.3V$, Temp = 25°C, Fall Time = 100 μ S Tek Run: 50.0MS/s Sample



Measure Fall Time of 3.3V LDO without Bypass Capacitor

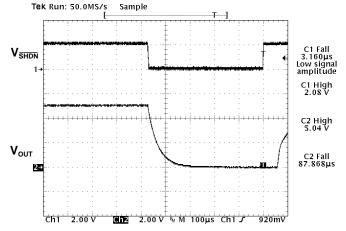
TYPICAL CHARACTERISTICS

Measure Rise Time of 5.0V LDO with Bypass Capacitor


Measure Rise Time of 5.0V LDO without Bypass Capacitor

Conditions: C_{IN} = 1µF, C_{OUT} = 1µF, C_{BYP} = 0, I_{LOAD} = 100mA V_{IN} = 6V, Temp = 25°C, Rise Time = 192µS Tek Run: 50.0MS/s Sample V_{SHDN} 1 CI Rise CI Ris

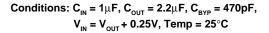
Ch1 2.00 V % Ch2 2.00 V % M 100µs Ch1 \ 1.16 V

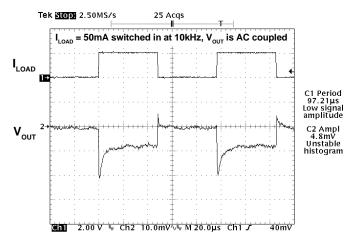

Measure Fall Time of 5.0V LDO with Bypass Capacitor

Conditions: $C_{IN} = 1\mu F$, $C_{OUT} = 1\mu F$, $C_{BYP} = 470pF$, $I_{LOAD} = 50mA$ $V_{IN} = 6V$, Temp = 25°C, Fall Time = 167 μ S

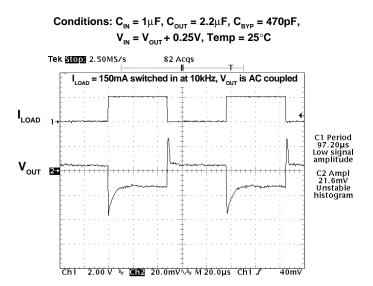
Measure Fall Time of 5.0V LDO without Bypass Capacitor

 $\begin{array}{l} \text{Conditions: } \textbf{C}_{_{\text{IN}}} = 1\mu F, \, \textbf{C}_{_{\text{OUT}}} = 1\mu F, \, \textbf{C}_{_{\text{BYP}}} = 0pF, \, \textbf{I}_{_{\text{LOAD}}} = 100 \text{mA} \\ \textbf{V}_{_{\text{IN}}} = 6V, \, \text{Temp} = 25^{\circ}\text{C}, \, \text{Fall Time} = 88\mu\text{S} \end{array}$

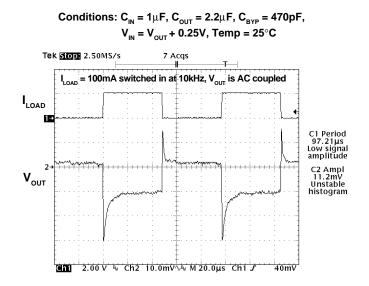



Vout

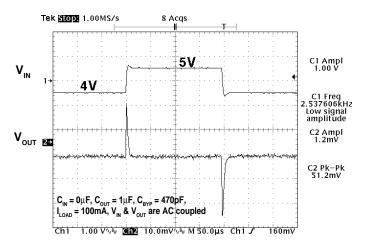
2-


TYPICAL CHARACTERISTICS

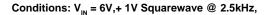
Load Regulation of 3.3V LDO

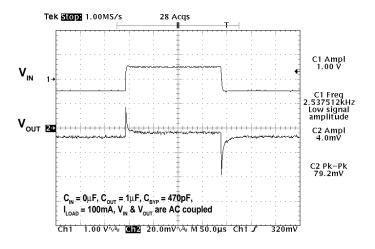


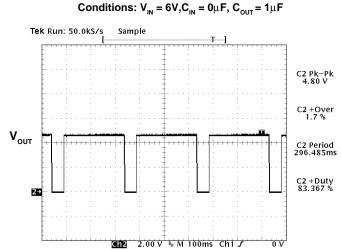
Load Regulation of 3.3V LDO


Load Regulation of 3.3V LDO

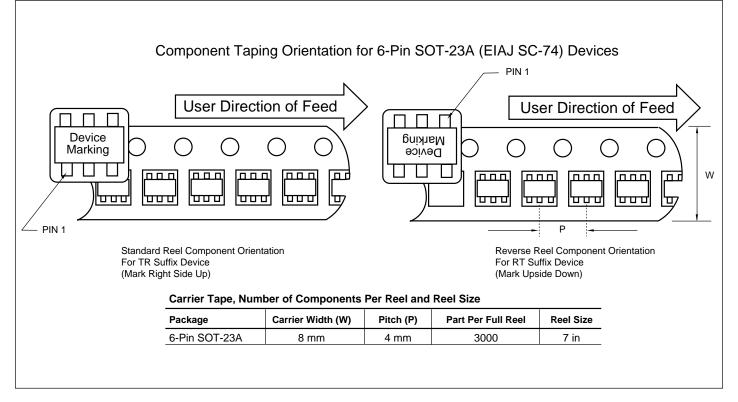
TC1072 TC1073

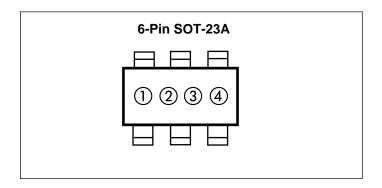

Line Regulation of 3.3V LDO


Conditions: V_{IN} = 4V,+ 1V Squarewave @ 2.5kHz,


TYPICAL CHARACTERISTICS

Line Regulation of 5.0V LDO

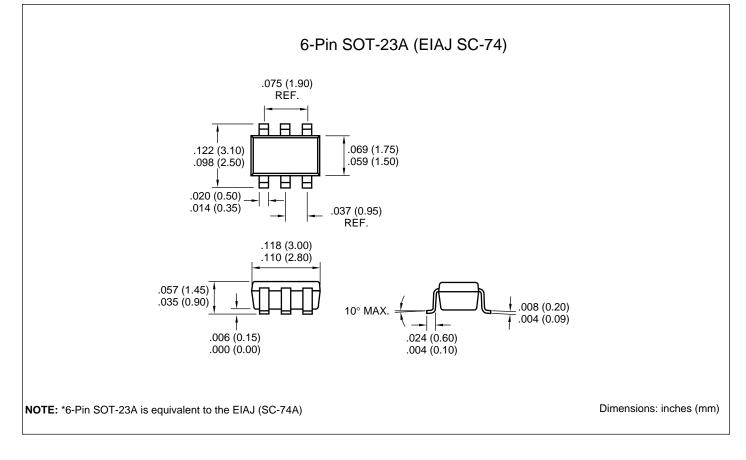

Thermal Shutdown Response of 5.0V LDO



 ${\rm I}_{\rm LOAD}$ was increased until temperature of die reached about 160°C, at which time integrated thermal protection circuitry shuts the regulator off when die temperature exceeds approximately 160°C. The regulator remains off until die temperature drops to approximately 150°C.

TC1072 TC1073

TAPING FORM


(1) & (2) = part number code + temperature range and voltage

<u>(V)</u>	TC1072 Code	<u>TC1073 Code</u>
2.5	E1	F1
2.7	E2	F2
2.8	EZ	FZ
2.85	E8	F8
3.0	E3	F3
3.3	E5	F5
3.6	E9	F9
4.0	E0	F0
5.0	E7	F7

③ represents year and quarter code

④ represents lot ID number

PACKAGE DIMENSIONS

Sales Offices

TelCom Semiconductor, Inc.

1300 Terra Bella Avenue P.O. Box 7267 Mountain View, CA 94039-7267 TEL: 650-968-9241 FAX: 650-967-1590 E-Mail: liter@telcom-semi.com TelCom Semiconductor, GmbH Lochhamer Strasse 13 D-82152 Martinsried Germany TEL: (011) 49 89 895 6500 FAX: (011) 49 89 895 6502 2

TelCom Semiconductor H.K. Ltd. 10 Sam Chuk Street, 6/F San Po Kong Kowloon Hong Kong TEL: 852-2324-0122 FAX: 852-2354-9957