101 Element Bar Graph Array ## **Technical Data** HDSP-8820 HDSP-8825 HDSP-8835 #### **Features** - High Resolution (1%) - Excellent Element Appearance Wide, Recognizable Elements Matched LEDs for Uniformity Excellent Element Alignment - Single-in-line Package Design Sturdy Leads on Industry Standard 2.54 mm (0.100 in.) Centers Environmentally Rugged Package # Common Cathode Configuration - Low Power Requirements 1.0 mA Average per Element at 1% Duty Cycle - Support Electronics Easy Interface with Microprocessors #### **Applications** - Industrial Process Control Systems - Edgewise Panel Meters - Instrumentation - Position Indicators - Fluid Level Indicators ### Description The HDSP-88XX series is a family of 101-element LED linear arrays designed to display information in easily recognizable bar graph or position indicator form. The HDSP-8820, utilizing red GaAsP LED chips assembled on ## Package Dimensions^[1, 2] a PC board and enclosed in a red polycarbonate cover with an epoxy backfill seal, has 1.52 mm (0.060 inch) wide segments. The HDSP-8825 and HDSP-8835 are high efficiency red and high performance green respectively, each with a 1.02 mm (0.040 inch) segment width. The HDSP-8825 and HDSP-8835 have a clear polycarbonate lens. Mechanical considerations and pin-out are identical among all 3 devices. The common cathode chips are addressed via 22 single-in-line pins extending from the back side of the package. ## **Device Pin Description** | | 1 | |-----------------|------------| | PIN
LOCATION | FUNCTION | | 1 | C0 | | 2 | A4 | | 3 | C.(e) | | 4 | No Pin | | 5 | C10 | | 6 | A1 | | 7 | A8 | | 8 | No Pin | | 9 | C20 | | 10 | No Pin | | 11 | A'(6) | | 12 | No Pin | | 13 | C30 | | 14 | No Pin | | 15 | A7 | | 16 | No Pin | | 17 | C40 | | 18 | No Pin | | 19 | A2 | | 20 | No Pin | | 21 | C50 | | 22 | No Pin | | 23 | A3 | | 24 | No Pin | | 25 | C60 | | 26 | No Pin | | 27 | A10 | | 28 | No Pin | | 29 | C70 | | 30 | No Pin | | 31 | A9 | | 32 | No Pin | | 33 | C80 | | 34 | A 5 | | 35 | A6 | | 36 | No Pin | | 37 | C90 | ## Internal Circuit Diagram^[5,6] NOTES. 5. ELEMENT LOCATION NUMBER + COMMON CATHODE NUMBER + ANODE NUMBER FOR EXAMPLE, ELEMENT B3 IS OBTAINES BY ADDRESSING C80 AND A3 6 A*AND C* ARE ANODE AND CATHODE OF ELEMENT ZERO. ## **Absolute Maximum Ratings** | Parameter | HDSP-8820 | HDSP-8825 | HDSP-8835 | |--|-------------------|-------------------|------------------| | Average Power per Element (T _A = 25° C) | 15 mW | 20 mW | 20 mW | | Peak Forward Current per Element (TA = 25° C) ⁻⁷ (Pulse Width ≤ 300 µs) | 200 mA | 150 mA | 150 mA | | Average Forward Current per Element (T _A = 25° C) 8. | 7 mA | 5 mA | 5 mA | | Operating Temperature Range | 40° to +85° C | 40° to +85° C | -40° to +85° C | | Storage Temperature Range | -40° to +85° C | -40° to +85° C | -40° to +85°C | | Reverse Voltage per Element or DP | 5.0 V | 5.0 V | 5.0 V | | Lead Solder Temperature 1.59 mm 1.16 inch below seating plane ⁹ | 260° C for 3 sec. | 260° C for 3 sec. | 260°C for 3 sec. | #### Notes: - 7. See Figures 1 and 2 to establish pulsed operating conditions. 8. Derate maximum average forward current above T_A = 70° C at 0.16 mA/°C/Element for the HDSP-8820 and 0.11 mA/°C/Element for the HDSP-8825 and HDSP-8835. See Figures 3 and 4. - Clean only in water, Isopropanol, Ethanol, Freen TF or TE (or equivalent) and Genesolv DI-15 or DE-15 (or equivalent). See mechanical section of this data sheet for information on wave soldering conditions. ## Electrical/Optical Characteristics at $\rm T_A = 25^{\circ}C$ **RED HDSP-8820** | Parameter | Symbol | Units | Min. | Тур. | Max. | Test Conditions | |--|---------------------|--------------|------|------|------|-------------------------------------| | Time averaged Luminous Intensity per Element (Unit average) [10] | lv | μcd | 8 | 20 | | 100 mA Pk.: 1 of 110
Duty Factor | | Peak Wavelength | λρεακ | nm | | 655 | | | | Dominant Wavelength [11] | λd | nm | | 640 | | | | Forward Voltage per Element | VF | V | | 1.7 | 2.1 | IF = 100 mA | | Reverse Voltage per Element | VR | V | 3.0 | | | I _R = 100 μA | | Temperature Coefficient V _F per Element | 7∧E\ _o C | mV/°C | | -2.0 | | | | Thermal Resistance LED Junction-to-Pin | ROJ PIN | °C/W/
LED | | 700 | | | #### HIGH EFFICIENCY RED HDSP-8825 | Parameter | Symbol | Units | Min. | Тур. | Max. | Test Conditions | |---|---------------------|--------------|------|------|------|-------------------------------------| | Time averaged Luminous Intensity per Element (Unit average) | Ιv | μcd | 60 | 175 | | 100 mA Pk.: 1 of 110
Duty Factor | | Peak Wavelength | XPEAK | nm | | 635 | | | | Dominant Wavelength (11) | λd | nm | | 626 | | | | Forward Voltage per Element | VF | V | | 2.3 | 3.1 | IF 100 mA | | Reverse Voltage per Element | VR | V | 3.0 | | | I _R = 100 μA | | Temperature Coefficient V _F per Element | ΔΛ೬∖ _o C | mV/°C | | -2.0 | | | | Thermal Resistance LED Junction-to-Pin | ROJ PIN | °C/W/
LED | | 1000 | | | # Electrical/Optical Characteristics at T_A = 25°C (continued) HIGH PERFORMANCE GREEN HDSP-8835 | Parameter | Symbol | Units | Min. | Тур. | Max. | Test Conditions | |--|---------|--------------|------|------|------|-------------------------------------| | Time Averaged Luminous Intensity per Element (Unit average) (10) | ly | μcd | 70 | 175 | | 100 mA Pk.: 1 of 110
Duty Factor | | Peak Wavelength | λPEAK | nm | | 568 | | | | Dominant Wavelength [11] | λd | nm | | 574 | | | | Forward Voltage per Element | VF | V | | 2.3 | 3.1 | I _F = 100 mA | | Reverse Voltage per Element | VA | V | 3.0 | | | I _F = 100 μA | | Temperature Coefficient V _F per Element | ΔVF/°C | mV/°C | | -2.0 | | | | Thermal Resistance LED Junction-to-Pin | ROJ-PIN | °C/W/
LED | | 1000 | | | #### Notes - 10. Operation at peak currents of less than 100 mA may cause intensity mismatch. Consult factory for low current operation. - The dominant wavelength, λd, is derived from the CIE chromaticity diagram and is the single wavelength which defines the color of the device. Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration HDSP-8820. Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration HDSP-8825 and HDSP-8835. TA - AMBIENT TEMPERATURE - °C Figure 3. Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings Based on Maximum Allowable Thermal Resistance, LED Junction-to-Ambient on a per LED Basis. T_{JMAX} = 115°C HDSP-8820. Figure 5. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current. TA - AMBIENT TEMPERATURE - C Figure 4. Maximum Allowable D.C. Current per LED vs. Ambient Temperature. Deratings Based on Maximum Allowable Thermal Resistance, LED Junction-to-Ambient on a per LED Basis. T_{JMAX} = 118°C HDSP-8825/HDSP-8835. Figure 6. Forward Current vs. Forward Voltage. For a Detailed Explanation on the Use of Data Sheet Information, See Application Note 1005. #### Operational Considerations #### Electrical The HDSP-88XX is a 101 element bar graph array. The linear array is arranged as ten groups of ten LED elements plus one additional element. The ten elements of each group have common cathodes. Like elements in the ten groups have common anodes. The device is addressed via 22 single-in-line pins extending from the back side of the display. This display is designed specifically for strobed (multiplexed) operation. Minimum peak forward current at which all elements will be illuminated is 15 mA. Display aesthetics are specified at 100 mA, 1/110 DF, peak forward current. The typical forward voltage values, scaled from Figure 6 should be used for calculating the current limiting resistor value and typical power dissipation. Expected maximum VF values, for the purpose of driver circuit design and maximum power dissipation. may be calculated using the following VF model: $$\begin{split} &HDSP\text{-}8820\\ &V_{FMAX}=2.02\ V+I_{PEAK}\ (0.8\Omega)\\ &For\ I_{PEAK}>40\ mA \end{split}$$ HDSP-8825 V_{FMAX} = 1.7 V + I_{PEAK} (14 Ω) For I_{PEAK} > 40 mA $\begin{array}{l} HDSP-8835 \\ V_{FMAX} = 1.7 \ V + I_{PEAK} \ (14 \) \\ For \ I_{PEAK} > 40 \ mA \end{array}$ The time averaged luminous intensity at $T_A = 25^{\circ}$ C may be calculated using: I_V Time Avg. = $[I_{F-AVG}/I_{F-SPEC-AVG}] \cdot \eta I_{PEAK} \cdot I_{V-SPEC}$ where η , relative efficiency, may be determined from Figure 5. The circuit in Figure 7 displays an analog input voltage in bar graph form with 101 bit resolution. The 74390 dual decade counter has been configured to count from 0 to 99. The 1Q outputs correspond to "ones" and the 20 outputs correspond to "tens". The "one" outputs from the counter drives the display element anodes through a 7442 1 of 10 BCD decoder, Sprague UDN 2585 drivers source the anodes with 80 mA peak/segment. The "ten" outputs from the counter drive the group cathodes through a 74145 BCD decoder. The circuit multiplexes segments 100 to 91 first, then segments 90 to 81, and so on with segments 10 to 1 last. During the time that the output from the T.l. TL507C A/D converter is low the corresponding display elements will be illuminated. The TL507C is an economical A/D converter with 7 bit resolution. The single output is pulse-width-modulated to correspond to the analog input voltage magnitude. With $V_{\rm CC}=5$ V the analog input voltage range is 1.3 V to 3.9 V. The TL507C output is reset each time the 74390 resets. Duration of the high output pulse is shorter for larger analog input voltages. A high output from the TL507C disables the display by forcing the 7442 inputs to an invalid state. Hence, as the analog input voltage increases more elements of the bar graph display are illuminated. Display element zero is DC driven. The circuit in Figure 8 uses the HDSP-88XX as a 100 bit position indicator. Two BCD input words define the position of the illuminated element. Display duty factor, 1/100, is controlled by the ENABLE signal. #### Mechanical Suitable conditions for wave soldering depend on the specific kind of equipment and procedure used. A cool down period after flow solder and before flux rinse is recommended. Figure 7. 101 Element Bar Graph. Figure 8. 100 Element Position Indicator.